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 Abstract: Adaptive Neuro-Based Fuzzy Inference System (ANFIS) and Particle 

Swarm Optimization (PSO) algorithms were utilized to produce numerical tools 

for predicting the bond strength between the concrete surface and carbon fiber 

reinforced polymer (CFRP) sheets. From the relevant literature, a credible 

database encompassing 242 test specimens was developed, along with six 

input factors that primarily determine bond strength. These characteristics 

include the beam's width, the compressive strength of the concrete, the FRP 

thickness, the FRP modulus of elasticity, the FRP length, and the FRP width. 

Finally, using conventional statistical metrics, the outputs of the two suggested 

models (ANFIS and ANFIS-PSO) were compared to the experimental data. 

Both models were shown to be a good alternative strategy for predicting the 

bond strength of FRP-to-concrete. 

Keywords: Bond Strength; FRP-to-concrete; Adaptive Neuro-Based Fuzzy 

Inference System (ANFIS); Particle Swarm Optimization (PSO). 

 
 

1. Introduction 

Reinforced concrete is one of the most 

commonly used construction materials because of 

its strength, ease of application, adaptability, 

flexibility, durability, and affordable price. 

However, in complicated weather conditions, 

intense aggressiveness of the environment 

causes steel rusting, peeling of the protective 

concrete layer, and reducing the reinforced 

concrete bearing structure system [1]. In addition, 

the changes due to user requirements often tend 

to be detrimental to existing structures requiring 

the implementation of solutions to repair, upgrade 

or even replace the structure. At that time, 

repairing and upgrading are often practical 

solutions because replacing a series of works 

requires significant costs. Therefore, the 

development of repair and reinforcement 

technology solutions to maintain and restore the 

normal working of reinforced concrete structures is 

highly necessitated. 

In recent times, repairing and reinforcing 

works by using fiber reinforced polymers (FRP) in 

sheet form is a solution that has been widely 

studied and applied [2,3]. This method takes 

advantage of the properties of FRP materials such 

as high strength and corrosion resistance,  high 

durability, non-magnetic, and has a higher 

strength-to-weight ratio, which reduces the self-

weight of an RC structure and high fatigue 

resistance. In addition, the convenience of 

construction, high aesthetics, ensuring the 
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preservation of the old structural shape (because 

FRP sheets can be quickly bonded with structures 

of any cross-section), suitable for projects that 

require high waterproofing and corrosion 

resistance is also an advantage to use reinforced 

FRP sheets outside the structure [4,5]. External 

reinforcement using FRP sheets is mainly reliant 

on the capacity of the FRP sheets to adhere to the 

concrete surface. This bond plays an essential role 

in stress transfer between the concrete and the 

FRP sheets and is critical in controlling various 

bondage failures in FRP-reinforced structures [6]. 

Many studies have investigated the bond 

strength using experimental approaches such as 

the break test or the single ring shear test [7–9]. In 

addition, to calculate the bond strength of FRP-to-

concrete, numerical approaches [10,11] and 

hybrid models expanded by experimental data and 

analytical solutions [12,13] have been utilized. 

Furthermore, based on empirical analysis of 

experimental data acquired from tensile testing, 

many distinct design equations have been 

constructed to estimate the bond strength [14–16]. 

However, multiple studies have shown that the 

capacity to forecast the bond strength of FRP-to-

concrete is limited by the data sets employed 

[17,18]. Additionally, the aforementioned formulae 

do not take into account the nonlinear relationship 

between the input and output parameters and do 

not test for alternative combinations of input 

parameters when calculating bond strength. 

Furthermore, the majority of existing prediction 

algorithms overlook the adhesive material's 

characteristics [19]. 

Recent years have seen a progressive 

increase in popularity and the use of machine 

learning (ML) or artificial intelligence (AI) based on 

computer science. In the construction sector, 

machine learning or artificial intelligence has been 

used in areas such as structure [20,21], materials 

[22,23], soil mechanics [24,25]. As a result, 

artificial intelligence may be used to assess the 

bond strength of FRP-to-concrete. The Adaptive 

Neuro-Based Fuzzy Inference System (ANFIS) 

model, a branch of artificial intelligence, is 

commonly used in construction engineering. 

Therefore, the ANFIS model is suggested in this 

work to forecast the bond strength of FRP-to-

concrete. In addition, the ANFIS model's 

hyperparameters are optimized using the Particle 

Swarm Optimization (PSO) technique. The 

following sections of the paper are given in 

chronological order: The theoretical foundation of 

the ANFIS model utilized in this work is introduced 

in section 2, the database for training and 

validation of ANFIS models is shown in part 3, and 

the findings and comments are presented in 

section 4. Finally, in section 5, some conclusions 

are presented. 

2. Methods used 

2.1. Adaptive Neuro-Based Fuzzy Inference 

System 

Jang created the Adaptive Neural Fuzzy 

Inference System (ANFIS) in 1993 [26], which is a 

prominent artificial intelligence system that 

combines artificial neural networks with fuzzy 

logic. ANFIS uses fuzzy learning rules in the form 

of TSK (Takasi – Sugeno – Kang). The jth fuzzy 

learning rule of ANFIS is Rj of the form: 

IF: X1 is j

1B  AND X2 is j

2B …AND Xn is j

nB  

THEN: Y = Fj = 
n

j j

0 i i
i=1

p +Σp X  
(1) 

with Xi, Y are input and output variables 

respectively, 

 j

1 iB x are fuzzy linguistic variables 

corresponding to the input variable Xi, jip R is the 

coefficient of the linear function fj, i = 1,2,…,n; j = 

1,2,…,M 

The structure of ANFIS consists of five 

layers [27] represented by several nodes and node 

functions (Figure 1). Various types of buttons, 

such as square and circular, are used to represent 

different aspects of adaptive learning. Parameters 

are present in square nodes (adaptive nodes), but 

not in round nodes (fixed nodes). Each button has 

a certain purpose. The direction of the signal is 

indicated by the link between two nodes. Buttons 
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in the same class have the same function, as 

described below. 

 

 
Fig. 1. The adaptive neuro-fuzzy inference (ANFIS) algorithm structure.. 

 

- The first layer includes adaptive nodes 

(square nodes), as well as a membership function 

  j

i iA X . The output of this class is computed 

using the Gaussian membership function. 

 
  
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- The rule layer is the second layer. Each 

node in this layer is identified by a circle labeled Π, 

referred to as rule nodes. It is the sum of the 

incoming signals, and the output value of each 

node indicates the strength of a rule: 

   
i ii B Cω =η X η Y  (3) 

- Each node in the third tier is a fixed circular 

node designated N. The ith node in this class is 

defined as the ratio of the ith rule's magnitude to 

the total of all normals' intensities: 



i
i

i

ω
ω=

ω
i

  (4) 

- Each node in the fourth layer, denoted Z, is 

a square adaptive node. This layer has the same 

number of nodes as the third layer. Each node 

outputs the weighted result value of a particular 

rule: 

 i i i i i iωF=ω p X+qY+r  (5) 

- The fifth layer has a circular node. In this 

layer, the symbol  is the output equal to the sum 

of all input signals. 

i i
i

i i
i

i
i

ΣωF
ΣωF=

Σω
 (6) 

2.2. Particle Swarm Optimization Algorithm 

The Particle Swarm Optimization method 

(PSO) was created by Eberhart and Kennedy 

(1995) [28]. It is a population-based stochastic 

optimization approach that replicates the behavior 

of flocks of birds or schools of fish hunting for food. 

They proposed that the swarm foraging process 

occurs in an area of space where all components 

in the swarm are aware of the location of food and 

maintain their position closest to it. Then, the 

greatest strategy for finding food is to follow the 

flock's leaders - those closest to the food. The 

PSO algorithm is offered to adapt to this 

circumstance and solve optimization difficulties. 

Each answer in PSO is a component of the 

preceding scenario. Each element is defined by 

two parameters: its current location and velocity. 

Simultaneously, each element has a fitness value, 

which the fitness function evaluates. At the start, 

X

Y
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the swarm, or more accurately, the location of 

each element, is initialized randomly. During 

motion, each element is impacted by two pieces of 

information: the first, named Qbest, is the 

element's best position in the past; the second, 

designated Jbest, is the swarm's best position in 

the past. Specifically, after each discrete time 

period, each element's velocity and location are 

changed using the following formulas: 

      
  

t+1 t t

i,m i,m 1 i,m i,m

t

2 i,m i,m

V =W.V +C .rand(). Qbest -X

+C .rand(). Jbest -X
 

 

(7) 

      
  

t+1 t t

i,m i,m 1 i,m i,m

t

2 i,m i,m

V =W.V +C .rand(). Qbest -X

+C .rand(). Jbest -X
 (8) 

2.3. Cross-validation 

Cross-validation is a statistical technique 

that is used to quantify the performance (or 

accuracy) of machine learning models. It guards 

against model overfitting, which is particularly 

important when data is few. 

The critical parameter in this technique is k, 

representing the number of groups into which the 

training dataset will be divided. Then, the testing 

data section will be kept separate and reserved for 

the final evaluation step to check the "reaction" of 

the model when encountering completely unseen 

data. The training data will be randomly divided 

into k parts (k is an integer or preferably a given 

value of 5 or 10 [29,30]. In the next step, the model 

is trained k times. For each simulation, the process 

will choose 1 part as validation data and k-1 as 

training data. The final model evaluation result will 

be the average of the evaluation results of k 

training times, which allows one to evaluate the 

predictive models more objectively and accurately. 

 

 

Fig. 2. Demonstration of 5 fold cross-validation technique. 

2.4. Model evaluation 

The correlation between the predicted 

values by the machine learning model and the 

actual experimental values was evaluated using 

conventional assessment metrics such as 

Pearson correlation coefficient (R), root mean 

square error (RMSE), and mean absolute error 

(MAE) in this work. In general, the model's 

performance improves when the MAE and RMSE 

approach zero. Similarly, R's value is in the range 

All Dataset

Training dataset Testing Dataset

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 2 Fold 3 Fold 4 Fold 5Fold 1

Fold 2 Fold 3 Fold 4 Fold 5Fold 2Fold 1

Fold 2 Fold 3 Fold 4 Fold 5Fold 1 Fold 3

Fold 2 Fold 3 Fold 4 Fold 5Fold 1 Fold 4

Fold 2 Fold 3 Fold 4 Fold 5Fold 1 Fold 5

Testing DatasetFinal evaluation
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[-1; 1], and the closer R's absolute value is to 1, 

the more accurate the model is. Formulas for 

calculating R, RMSE, and MAE can be found in the 

cited documents [31-33]. 

3. Database construction 

The suggested ANFIS model for predicting FRP-

to-concrete bond strength is based on a database 

of 242 laboratory test results from 15 published 

papers [6–8,34–42]. The experimental database is 

collected from the tests conducted to measure the 

bond strength between CFRP sheets and the 

concrete surface under direct tension. The training 

and testing datasets are randomly selected from 

the database. 70% of the dataset is utilized for 

training, whereas 30% is used for testing the 

model. According to published experimental data, 

the bond strength between the CFRP panels and 

the concrete surface is mostly determined by the 

six primary factors used to build the ANFIS model. 

The beam width (bc), the concrete compressive 

strength (fc'), the FRP thickness (t), the FRP 

modulus of elasticity (Ef), the FRP length (lf), and 

the FRP width (bf). 

Table 1. Statistical analysis of the input and output variables used in this study 

Variable Not. Min Median Mean Max 
Standard 

deviation 
Skewness 

I1 bc 100.000 150.000 158.884 400.000 47.797 1.431 

I2 f’c 16.000 30.000 33.172 61.500 10.575 0.553 

I3 bf 10.000 40.000 44.391 150.000 24.874 1.328 

I4 tf 0.080 0.413 0.670 3.400 0.555 0.431 

I5 Ef 22.500 210.000 191.998 300.000 59.532 -0.453 

I6 L 50.000 147.500 156.628 500.000 83.921 1.537 

Y Pu 4.110 11.560 14.921 54.680 10.194 1.489 

 

 

Fig. 3. Multi-correlation graph of input and output variables used in this study.
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Table 1 details the input and output 

parameters' notation, roles, and statistical analysis 

(minimum, maximum, mean, median, and 

standard deviation). The data distribution of input 

and output parameters and their occurrence 

frequency in the dataset, and the correlation 

relationship between the parameters are shown in 

Figure 3. The dotted line in Figure 3 shows the 

correlation graph between the pairs of parameters. 

Besides, the specific correlation values between 

the pairs of parameters are also shown. The 

parameters in the collected data set have low 

correlation (correlation value is less than 0.6), 

some pairs of parameters have very low 

correlation (correlation value is close to 0). The six 

input parameters of the dataset could thus be 

considered independent variables. 

4. Results and Discussion 

4.1. Prediction capability 

The ANFIS model and the ANFIS-PSO 

model are suggested in this work to forecast FRP-

to-concrete bond strength. The process of building 

models depends on the selection of 

hyperparameters to obtain reliable and highly 

accurate outputs. Besides, the accuracy of ANFIS, 

or any machine learning algorithm, is highly 

dependent on the selection process of samples in 

the training dataset. In this step, the training 

dataset is divided into ten parts and subjected to a 

cross-validation process. With 10 simulations 

combined with trial and error, the final parameters 

selected for the ANFIS model and the PSO 

optimization algorithm are shown in Table 2. 

The average performance of the chosen models 

on the training and testing datasets is computed 

and reported in Figure 4. It is found that the 

ANFIS-PSO hybrid machine learning model 

exhibits better predictive performance than the 

ANFIS model. This is reflected in the higher R-

value of the ANFIS-PSO model and lower RMSE 

and MAE values compared to the ANFIS model, 

for both training and testing datasets. Specifically, 

with the training dataset, the RMSE value 

fluctuates in the range of [2.15; 4.6] for the ANFIS-

PSO model and [3.85; 4.85] for the ANFIS model. 

The MAE values corresponding to the ANFIS-PSO 

and ANFIS models vary in the ranges of [1.5; 3.55] 

and [2.75; 3.6], respectively. The values of R vary 

in the range of [0.885; 0.976] and [0.87; 0.926] for 

ANFIS-PSO and ANFIS models, respectively. 

With the testing dataset, the RMSE, MAE and R 

values corresponding to the ANFIS-PSO model 

range from [3.15; 5.45], [1.98; 3.4] and [0.865; 

0.953], while with the ANFIS model, these values 

are in the range [4.1; 6.05], [3.2; 4.9] and [0.825; 

0.89], respectively. The collected findings 

demonstrate that the two suggested models 

effectively predict the bond strength of FRP panels 

in concrete. Additionally, the results of 10-fold 

cross-validation demonstrate that the two models 

were constructed with a high degree of accuracy 

and dependability. 
 

Table 2. ANFIS and PSO parameters used in 

this study. 

Values and Description 

ANFIS parameters  

Input numbers 6 

Output number 1 

Type of membership function Gaussian 

Parameters per membership 

function 
2 

Membership function per input 8 

Nonlinear parameter numbers 96 

Linear parameter number 56 

Total parameters 152 

PSO parameters  

Swarm size 30 

Maximum number of iterations 1000 

Inertia weight 0.4 

Personal learning coefficient 1 

Global learning coefficient 2 

Maximum velocity 5 

Minimum velocity -5 
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Fig.4.Predictive performance results of ANFIS and ANFIS-PSO models correspond to 10 fold 

cross-validation based on the following criteria: (a) RMSE, (b) MAE, and (c) R. 

 

4.2. Typical prediction results 

This section presents typical prediction 

results of ANFIS-PSO and ANFIS models, which 

are extracted from the models that have been built, 

validated, and verified in the previous section. 

Figure 5 illustrates the actual and anticipated bond 

strengths of FRP slabs in concrete when 

employing the ANFIS-PSO and ANFIS models, 

where solid lines indicate the experimental values 

and red and black dashed lines, respectively, 

reflect the expected values. As can be shown, the 

target values for 169 samples in the training 

dataset are very near to the observed values 

(Figure 5a). The remaining samples (73 

experimental outcomes) in the testing dataset are 

likewise predicted with minimal errors (Figure 5b). 

The regression graphs for the training and 

testing datasets, predicted by ANFIS-PSO and 

ANFIS are shown in Figure 6. It is shown that they 

are two perfect machine learning models to predict 

the bond strength of FRP-to-concrete with high 

accuracy. Specifically, the ANFIS-PSO model 

achieves R = 0.976, RMSE = 2,155, and MAE = 

1.482 for the training dataset, and R = 0.953, 

RMSE = 3.381, and MAE = 2,373 for the test 

dataset. In addition, the ANFIS model achieves R 

= 0.926, RMSE = 3,734, and MAE = 10.91 for the 

training dataset, and R = 0.89, RMSE = 5.021, and 

MAE = 3.923 for the testing dataset. The results 

show that the ANFIS-PSO exhibits higher R 

values, lower MAE and RMSE values compared 

with ANFIS, which clearly shows the superior 
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predictive performance of ANFIS-PSO model. 

Both presented models, however, are strong 

predictive models and perform well in general 

when estimating the bond strength of FRP to 

concrete.  

Finally, in order to be more specific, Figure 7 

shows the simulation error distribution of the 

ANFIS (Figure 7a) and ANFIS-PSO models 

(Figure 7b) through the training and testing 

datasets. As can be observed, both models' errors 

are highly clustered around the 0 kN location, 

which corresponds to the training and testing data 

sets. Only a few data with errors outside the range 

 10 kN are observed. The findings demonstrate 

that the proposed ANFIS and ANFIS-PSO models 

accurately predict the bond strength of FRP-to-

concrete. 

 
 

 

Fig.5.Comparison of the performance of ANFIS and ANFIS-PSO with the actual values of Pu in 

function of 

(a) training dataset, (b) testing dataset 

 

5. Conclusion 

In this work, an Adaptive Neuro-Based 

Fuzzy Inference System (ANFIS) and a Particle 

Swarm Optimization (PSO) method are utilized to 

forecast the bond strength between the concrete 

surface and FRP sheets without using direct pull 

out stress. The ANFIS and ANFIS-PSO models 

are built utilizing a dataset of 242 test specimens 

obtained from different sources. Six input 

parameters are used to create the model: beam 

width, concrete compressive strength, FRP 

thickness, FRP modulus of elasticity, FRP length, 

and FRP width. Common statistical measures 

such as R, RMSE, and MAE are used to evaluate 

the performance of ANFIS and ANFIS-PSO 

models. This model predicts the bond strength 
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with good dependability (R = 0.953, RMSE = 

3.381, and MAE = 2.373 for the ANFIS-PSO 

model, R = 0.89, RMSE = 5.021, and MAE = 3.923 

for the ANFIS model). The findings of this study 

would enable engineers to easily forecast the bond 

strength of FRP to concrete, which is beneficial 

throughout the calculation and design stages. 

  

  

Fig.6. Regression graphs showing the correlation between the target and output values for (a) ANFIS 

training dataset, (b) ANFIS testing dataset, (c) ANFIS-PSO training dataset, and (d) ANFIS-PSO 

testing dataset 

  

Fig.7. Error distribution results of two models for training and testing dataset (a) ANFIS model 
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(b) ANFIS-PSO model. 
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