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Abstract: The linear buckling behavior of functionally graded cylindrical shells
with porous core stiffened by spiral stiffeners under axial compression using
the first-order shear deformation theory is presented in this paper. The
improved Lekhnitskii's smeared stiffeners technique is applied for shear
deformable spiral FGM stiffeners. Approximate analytical solutions are
assumed to satisfy the simply supported boundary conditions and the adjacent
equilibrium criterion is applied to obtain closed-form relations of buckling loads.
Effects of the number of FGM stiffeners, stiffener angle, volume fraction index
and porosity coefficient on the buckling behavior of shells are numerically
investigated.
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1. Introduction

on by using the improved smeared stiffener
technique [4-8]. With the same shell theory, the

The cylindrical shell is a complex shell
structure that is widely applied in engineering
throughout the world. Recently, many authors have
focused on the buckling behavior of these
structures made by advanced composite materials.
Porous materials such as metal foams are
lightweight materials with excellent energy-
absorbing capability and they have received wide
application in engineering for plates and shells.

The linear and nonlinear buckling behavior of
cylindrical shells made by functionally graded
material (FGM) subjected to many load types were
investigated by many authors in the world [1-3].
Recently, by using the classical thin shell theory,
the nonlinear buckling behavior of FGM cylindrical
shells with and without porous core stiffened by
orthogonal and spiral stiffeners has been focused

nonlinear buckling behavior of graphene platelet
reinforced cylindrical shells stiffened by spiral
stiffeners were investigated by Hoa et al. [9]. The
effects of porosity on buckling behavior of
saturated porous FGM toroidal shell segments
were investigated by Babaei et al. [10].

The shear deformable sandwich FGM
cylindrical shells with the porous core are
considered in this present report. The shells are
stiffened by shear deformable spiral FGM
stiffeners. These structures have potential
applications in many engineering designs, such as
structures for building construction, mechanical
engineering, and aerospace. An improved
smeared stiffener technique is developed for shear
deformable FGM stiffeners and the buckling
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analysis of stiffened FGM cylindrical shells with
porous cores subjected to axial compression is
investigated and remarked. The adjacent
equilibrium criterion and the first-order shear
deformation theory (FSDT) are used to obtain the
explicit expression of the critical buckling of shells.
The effects of porous core, spiral FGM stiffeners,
including the volume fraction index, porosity
coefficient, and geometrical parameters on the
axial buckling behavior of FGM cylindrical shells
with porous core are investigated.

2. Sandwich FGM cylindrical shells with porous
core

The considered sandwich FGM cylindrical
shells with porous core in this paper are
investigated with the axial compression 7", the

length L in the longitudinal direction, the radius R
measured to the mid-plane of the shell, and the
thickness h including many layers. The quasi-
Cartesian coordinate system and configuration of
the shell can be recognized in Fig 1. Considering
that the sandwich FGM cylindrical shells with the
porous core is stiffened by the spiral FGM stiffeners
at the inside surface of the shell. The continuous
condition of stiffener design between shell and
stiffener system can be satisfied if the stiffeners are
made by FGM with the selected distribution law.
The material properties of shells and stiffeners are
referred to Ref. [4].

Effective properties of the shell are given by

[4]
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where e, is porosity coefficient of the core,
and E,. =E,, - E..

In order to ensure the continuity between the
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shell and stiffeners, the effective properties of
stiffeners are given by [4]
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The strain components of any point in the
shell at a distance z from the mid-surface are

%y
e, 82 OX
0 %y
€ =<¢€ +Zy— ,
y y oy
0
Pl U] oe, oy ©
oy ox

0

{vxz} Tre
L

Yyz Tyz

Fig. 1. Model of spiral stiffened cylindrical shells
with porous core
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The relations between the deformation and
displacement at the mid-surface of the shell are

a_u
0
SX ax 0 ¢X + %
o|_Jov w Yxz | OX
Yy R[]0 [ ow [’ (4)
0 sz (I)y +—
ny 8_u N 6_V ay
oy OoX
where uyv,w are the displacement

components of shells; ¢, and ¢, are the rotations
of normal.

Hooke’s law is applied to unstiffened shells,

as
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and for spiral stiffeners
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where the denotes “sh” and “sl” present the
shell and spiral stiffeners, respectively.

From Eq. (4), the strain components must
satisfy the strain compatibility equation

20 20 20

0%, O, 07, 152W_ .
St —— +=—5=0. (7)
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The internal force-strain relations are
determined by integrating Hooke's law equations
for the shell and for the stiffeners, applying
Lekhnitskii's stiffener technique, as
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and the shear forces

Q
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with K¢ =5/6 is the shear correction factor, and
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where p, = 0 is applied for unstiffened shells;

w, =1 is applied for stiffened shells, EJ-,EJ-SI are

determined as
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b,,h andd, are the width, thickness and
distance of the oblique stiffeners, respectively.

Eq. (8) can be oppositely rewritten by
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where
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Substituting Eqg. (10) into Eq. (6), leads to
a0y
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where
Dy; = Dyy +ByiBry + BoByy,
D2, = Dy +By,B, + BBy,
D, =Dy, +B;4By, + BBy,
D2y = Dy +By,Byy + BBy,
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The system of equilibrium equations of the
shell based on FSDT is, respectively, as
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The stress function can be introduced as
2 2 2
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Substituting Eq. (19)

(13)

into compatibility
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equation (7) and Eqg. (11) into three end equations

of (12), considering Egs. (4) and (13), lead to
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It is assumed that equilibrium state of the
shells is represented by displacement components

Ug,

NS, Ngy M2, MO, %,,QS,QS, the adjacent

equilibrium can be determined by the displacement

components

U=Ug+Uy, V=V, +V, W=W, +W,,
_ 40 1 _ 40 1
(I)X _¢X+¢X' (I)y _(I)y +(|)y"

and the corresponding internal forces

(14)
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17)

Vo, Wo, ¢y, ¢y and the internal forces N,

(18)
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0 1
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RN 1
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whereu;,vy,wy,¢5,¢; and Ni,M;.Qj are the

displacement and force increments, respectively.

Substituting Eqgs. (19-21) into the Eq. (12)
with the note that the corresponding quantities in
the basic equilibrium state as well as in the
neighbouring equilibrium state satisfy the equation
equilibrium and the governing relations, leads to
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The relations for strain increments and
internal force increments are also of the form (10)
and (11), performing the transformation steps as
above to get Eqgs. (14-17), finally get the equations
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(26)

Consider the state before instability as the
membrane state of simply supported cylindrical
shells, where the axial force and moment
components are determined by

NS = —rh,
0 _nO _
N9 =N, =0,

(27)
MQ =M =M =0,

QU =QY=

The boundary condition (27) considered in
this case corresponds to increments is in the form

w; =My =Ny =Ny =0, at x =0;L. (28)
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Boundary condition (28) can be satisfied if
the solution is chosen by

w, = ZZWmn sin m:X sin%,
m n

ZZ(D”‘” smﬁy

y

qu)mn =

where m and n are the half waves in x and
y directions.

3. Solution procedure
Substituting Eq. (29) into Eq. (26), solving the
resulting equation to get the stress function, as
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Putting expressions (29) and (30) into Egs.
(23-25), leads to
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Egs. (31), (32) and (33) are satisfied vs. x,y
, 1.e.
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From Egs. (33) and (34), the relations
between ®F", ®J and W,,, are obtained as
oM™ — 505 — 30y,
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Substituting Egs. (35) and (36) into Eq. (32),
neglecting the solution W, =0, the critical

Winn (37)
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buckling load of shell can be determined as

-a,.b.,C

Fer :—(a by,C 11P13C12

11712713
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2
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4. Validation and numerical investigations

Table 1. Comparisons of critical buckling
compression r,, (in kN) for perfect FGM

cylindrical shells (R/h = 40, L/Rh =500)

Shen [2] Present
k=0 118516.6(5;5) 126548.22(5;5)
k=0.2 110800.8(5;5) 117025.15(5;5)
k=1 96918.5(5;5) 99942.76(5;5)
k=2 90853.3(5;5) 92722.28(5;5)
k=5 84853.4(5;5) 86620.73(5;5)

To validate the present approach, the critical
buckling loads of the present study with those of
Shen [2] for FGM cylindrical shells in Table 1. As
can be observed, good agreements are obtained.

Fig. 2 presents the effects of stiffener angle
on the critical buckling load of shells. Clearly, the
critical buckling loads of shells increase when the
stiffener angle increases, and it decreases after a
maximum point. The most effective stiffener angle
in these investigations was achieved in the range
of 34 degrees.

20 —ak=w
h=0005m; Rh=30: LR=15¢,=03; | =—b:k=5
heoth =0.2; heg = (h-h,)/2 —ck=1

—d:k=05

a —e k=02

E/—b
S)
Eb ¢
10/ d
k

2 /T \
hy= 0.01m; b= 0.005m

d; = 0.040?,' Hy— 20, J'(j =

20 30 40 50 60
0()
Fig. 2. Effects of stiffener angle on the critical
buckling load of shells
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Fig. 3. Effects of height of stiffeners on the critical
buckling load of shells
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Fig. 4. Effects of R/h ratio on the critical buckling
load of shells
16 —_— k=
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-1
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mwh T
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12 e
11 . . . .
1.5 1.6 L7 1.8 1.9 2
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Fig. 5. Effects of L/R ratio on the critical buckling
load of shells
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Fig. 6. Effects of porosity coefficients eq on the
critical buckling load of shells (h,,/h =0.2)

= 0.005m; Rh = 30; IR = 1.5;
he/h = 0.8; heG = (b= he)2

o
/
=

e o o
=
ool
= o -
i bn

)/

0T 1, < 0.01m, b~ 0.005m; \
0= 31°92" d; = 0.04m; \

n=20:k=k

0 0.1 02 o 03 0.4 0.5
0

Fig. 7. Effects of porosity coefficients eq on the
critical buckling load of shells (h., /h =0.8)

The height of stiffeners also greatly affects
the critical buckling load of the shell. As can be
seen in Fig. 3, the critical buckling load of shells
greatly increases when the height of the stiffener
increases. It is obvious that when the stiffener
height is large, the eccentricity of the stiffener is
also large, leading to a larger total stiffnesses of
stiffened shells.

The effects of the R/h ratio on the critical
buckling of shells are presented in Fig. 4. Clearly,
the critical buckling load decreases when the R/h
ratio increases. In other words, the thinner the
shell, the lower the load-carrying capacity of the
shell.

Similarly, the strong effects of the L/R ratio
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on the critical buckling load of shells are presented
in Fig. 5. The decreasing trend of the critical
buckling load as L/R increases is shown at all
values of the volume fraction indexes. In other
words, the longer the shell, the lower the load-
carrying capacity of the shell. Effects of porosity
coefficients eo on the critical buckling load of shells
are presented in Figs. 6 and 7 with h,,/h =0.2 and

heo/h =0.8, respectively. With small value of
he, /h in Fig. 6, the porosity coefficient has a small

influence on the critical buckling load of the shell.
Oppositely, the large effects of porosity coefficients
eo on the critical buckling load of shells can be
observed in Fig. 7 with the large value of h,,/h .

5. Conclusion

Based on the FSDT, the improved smeared
stiffeners technique for spiral stiffeners, and the
adjacent equilibrium criterion, the closed-form of
the critical buckling load of stiffened sandwich FGM
cylindrical shell with porous core under axial
compression is presented in this paper. The
numerical results present the strong effects of
stiffeners, geometrical and material properties of
shells, and the light effects of porosity coefficients
on the critical buckling load of shells.
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