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Abstract: The linear buckling behavior of functionally graded cylindrical shells 

with porous core stiffened by spiral stiffeners under axial compression using 

the first-order shear deformation theory is presented in this paper. The 

improved Lekhnitskii’s smeared stiffeners technique is applied for shear 

deformable spiral FGM stiffeners. Approximate analytical solutions are 

assumed to satisfy the simply supported boundary conditions and the adjacent 

equilibrium criterion is applied to obtain closed-form relations of buckling loads. 

Effects of the number of FGM stiffeners, stiffener angle, volume fraction index 

and porosity coefficient on the buckling behavior of shells are numerically 

investigated.  
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1. Introduction 

The cylindrical shell is a complex shell 

structure that is widely applied in engineering 

throughout the world. Recently, many authors have 

focused on the buckling behavior of these 

structures made by advanced composite materials. 

Porous materials such as metal foams are 

lightweight materials with excellent energy-

absorbing capability and they have received wide 

application in engineering for plates and shells. 

The linear and nonlinear buckling behavior of 

cylindrical shells made by functionally graded 

material (FGM) subjected to many load types were 

investigated by many authors in the world [1-3]. 

Recently, by using the classical thin shell theory, 

the nonlinear buckling behavior of FGM cylindrical 

shells with and without porous core stiffened by 

orthogonal and spiral stiffeners has been focused 

on by using the improved smeared stiffener 

technique [4-8]. With the same shell theory, the 

nonlinear buckling behavior of graphene platelet 

reinforced cylindrical shells stiffened by spiral 

stiffeners were investigated by Hoa et al. [9]. The 

effects of porosity on buckling behavior of 

saturated porous FGM toroidal shell segments 

were investigated by Babaei et al. [10]. 

The shear deformable sandwich FGM 

cylindrical shells with the porous core are 

considered in this present report. The shells are 

stiffened by shear deformable spiral FGM 

stiffeners. These structures have potential 

applications in many engineering designs, such as 

structures for building construction, mechanical 

engineering, and aerospace. An improved 

smeared stiffener technique is developed for shear 

deformable FGM stiffeners and the buckling 
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analysis of stiffened FGM cylindrical shells with 

porous cores subjected to axial compression is 

investigated and remarked. The adjacent 

equilibrium criterion and the first-order shear 

deformation theory (FSDT) are used to obtain the 

explicit expression of the critical buckling of shells. 

The effects of porous core, spiral FGM stiffeners, 

including the volume fraction index, porosity 

coefficient, and geometrical parameters on the 

axial buckling behavior of FGM cylindrical shells 

with porous core are investigated. 

2. Sandwich FGM cylindrical shells with porous 

core 

The considered sandwich FGM cylindrical 

shells with porous core in this paper are 

investigated with the axial compression r , the 

length L  in the longitudinal direction, the radius R 

measured to the mid-plane of the shell, and the 

thickness h including many layers. The quasi-

Cartesian coordinate system and configuration of 

the shell can be recognized in Fig 1. Considering 

that the sandwich FGM cylindrical shells with the 

porous core is stiffened by the spiral FGM stiffeners 

at the inside surface of the shell. The continuous 

condition of stiffener design between shell and 

stiffener system can be satisfied if the stiffeners are 

made by FGM with the selected distribution law. 

The material properties of shells and stiffeners are 

referred to Ref. [4]. 

Effective properties of the shell are given by 

[4] 
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where 0e  is porosity coefficient of the core, 

and .mc m cE E E= −  

In order to ensure the continuity between the 

shell and stiffeners, the effective properties of 

stiffeners are given by [4] 
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Fig. 1. Model of spiral stiffened cylindrical shells 

with porous core 
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The relations between the deformation and 

displacement at the mid-surface of the shell are 

0
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where , ,u v w  are the displacement 

components of shells; x  and y  are the rotations 

of normal. 

Hooke’s law is applied to unstiffened shells, 

as 
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and for spiral stiffeners 
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where the denotes ‘‘sh’’ and ‘‘sl’’ present the 

shell and spiral stiffeners, respectively. 

From Eq. (4), the strain components must 

satisfy the strain compatibility equation 
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The internal force-strain relations are 

determined by integrating Hooke's law equations 

for the shell and for the stiffeners, applying 

Lekhnitskii's stiffener technique, as 
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and the shear forces 
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with 5 6sK =  is the shear correction factor, and 
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where 1 0 =  is applied for unstiffened shells; 

1 1 =  is applied for stiffened shells, , sl
j jE E  are 

determined as 
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,l lb h and ld are the width, thickness and 

distance of the oblique stiffeners, respectively.  

Eq. (8) can be oppositely rewritten by 
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Substituting Eq. (10) into Eq. (6), leads to 

* * * *
11 12 11 21

* * * *
21 22 12 22

* *
66 66

,

,

,

yx
x x y

yx
y x y

yx
xy xy

M D D B N B N
x y

M D D B N B N
x y

M B N D
y x


= + − −

 


= + − −

 

 
= − + + 

  

 (11) 

where 

* * *
11 11 11 11 12 21

* * *
22 22 12 12 22 22

* * *
12 12 11 12 12 22

* * *
21 12 12 11 22 21

* *
66 66 66 66

,

,

,

,

.

D D B B B B

D D B B B B

D D B B B B

D D B B B B

D D B B

= + +

= + +

= + +

= + +

= +

 

The system of equilibrium equations of the 

shell based on FSDT is, respectively, as 
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The stress function can be introduced as 
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Substituting Eq. (19) into compatibility 
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equation (7) and Eq. (11) into three end equations 

of (12), considering Eqs. (4) and (13), lead to  
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It is assumed that equilibrium state of the 

shells is represented by displacement components 

0
u , 

0
v , 

0
w , 

0
x , 0

y  and the internal forces 
0
xN , 

0
yN , 

0
xyN , 

0
xM , 

0
yM , 

0
xyM ,

0
xQ ,

0
yQ , the adjacent 

equilibrium can be determined by the displacement 

components 

0 1 0 1 0 1

0 1 0 1

, , ,

, ,
x x x y y y

u u u v v v w w w= + = + = +

 =  +   =  + 
 (18) 

and the corresponding internal forces 

0 1

0 1

0 1

,

,

,

x x x

y y y

xy xy xy

N N N

N N N

N N N

= +

= +

= +

 (19) 

 

0 1

0 1

0 1

,

,

,

x x x

y y y

xy xy xy

M M M

M M M

M M M

= +

= +

= +

 (20) 

 

0 1

0 1

,

,

x x x

y y y

Q Q Q

Q Q Q

= +

= +
 (21) 

 

where
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1 1 1, , , ,x yu v w    and 
1 1 1, ,ij ij ijN M Q  are the 

displacement and force increments, respectively. 

Substituting Eqs. (19-21) into the Eq. (12) 

with the note that the corresponding quantities in 

the basic equilibrium state as well as in the 

neighbouring equilibrium state satisfy the equation 

equilibrium and the governing relations, leads to 
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The relations for strain increments and 

internal force increments are also of the form (10) 

and (11), performing the transformation steps as 

above to get Eqs. (14-17), finally get the equations 
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Consider the state before instability as the 

membrane state of simply supported cylindrical 

shells, where the axial force and moment 

components are determined by 
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The boundary condition (27) considered in 

this case corresponds to increments is in the form
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where m  and n  are the half waves in x  and 

y directions. 

3. Solution procedure 

Substituting Eq. (29) into Eq. (26), solving the 

resulting equation to get the stress function, as 
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Substituting Eqs. (35) and (36) into Eq. (32), 

neglecting the solution 0mnW = , the critical 

buckling load of shell can be determined as 

(
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4. Validation and numerical investigations 

Table 1. Comparisons of critical buckling 

compression crr  (in kN) for perfect FGM 

cylindrical shells ( 40R h = , 
2

500L Rh = ) 

 Shen [2] Present 

0k =  118516.6(5;5) 126548.22(5;5) 

0 2.k =  110800.8(5;5) 117025.15(5;5) 

1k =  96918.5(5;5) 99942.76(5;5) 

2k =  90853.3(5;5) 92722.28(5;5) 

5k =  84853.4(5;5) 86620.73(5;5) 

To validate the present approach, the critical 

buckling loads of the present study with those of 

Shen [2] for FGM cylindrical shells in Table 1. As 

can be observed, good agreements are obtained.  

Fig. 2 presents the effects of stiffener angle 

on the critical buckling load of shells. Clearly, the 

critical buckling loads of shells increase when the 

stiffener angle increases, and it decreases after a 

maximum point. The most effective stiffener angle 

in these investigations was achieved in the range 

of 34 degrees.  

 

Fig. 2. Effects of stiffener angle on the critical 

buckling load of shells 
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Fig. 3. Effects of height of stiffeners on the critical 

buckling load of shells 

 

Fig. 4. Effects of R/h ratio on the critical buckling 

load of shells 

 
Fig. 5. Effects of L/R ratio on the critical buckling 

load of shells 

 

Fig. 6. Effects of porosity coefficients e0 on the 

critical buckling load of shells ( 0.2coh h = ) 

 

Fig. 7. Effects of porosity coefficients e0 on the 

critical buckling load of shells ( 0.8coh h = ) 

The height of stiffeners also greatly affects 

the critical buckling load of the shell. As can be 

seen in Fig. 3, the critical buckling load of shells 

greatly increases when the height of the stiffener 

increases. It is obvious that when the stiffener 

height is large, the eccentricity of the stiffener is 

also large, leading to a larger total stiffnesses of 

stiffened shells. 

The effects of the R/h ratio on the critical 

buckling of shells are presented in Fig. 4. Clearly, 

the critical buckling load decreases when the R/h 

ratio increases. In other words, the thinner the 

shell, the lower the load-carrying capacity of the 

shell. 

Similarly, the strong effects of the L/R ratio 

on the critical buckling load of shells are presented 
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in Fig. 5. The decreasing trend of the critical 

buckling load as L/R increases is shown at all 

values of the volume fraction indexes. In other 

words, the longer the shell, the lower the load-

carrying capacity of the shell. Effects of porosity 

coefficients e0 on the critical buckling load of shells 

are presented in Figs. 6 and 7 with 0.2coh h =  and 

0.8coh h = , respectively. With small value of 

coh h  in Fig. 6, the porosity coefficient has a small 

influence on the critical buckling load of the shell.  

Oppositely, the large effects of porosity coefficients 

e0 on the critical buckling load of shells can be 

observed in Fig. 7 with the large value of coh h . 

5. Conclusion 

Based on the FSDT, the improved smeared 

stiffeners technique for spiral stiffeners, and the 

adjacent equilibrium criterion, the closed-form of 

the critical buckling load of stiffened sandwich FGM 

cylindrical shell with porous core under axial 

compression is presented in this paper. The 

numerical results present the strong effects of 

stiffeners, geometrical and material properties of 

shells, and the light effects of porosity coefficients 

on the critical buckling load of shells. 
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