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Abstract: In civil engineering, the accurate prediction of concrete compressive
strength (CS) is crucial for evaluation of material performance and structural
design. In the present study, the main objective is to optimize the performance
of three machine learning (ML) models including Support Vector Machine
(SVM), Convolutional Neural Network (CNN), Multi-Layer Perceptron Neural
Network (MLP) using Grid Search Optimization technique for improving the
prediction accuracy of CS of concrete. For doing this, a total of 236 data points
were collected from the “Red River Surface Water Plant” project, a major
infrastructure initiative in Vietnam were collected and used to create training
(70%) and testing (30%) datasets used for training and testing the models. For
validation and comparison of the models, the popular validation metrics such
as R?, RMSE, MAE, and Taylor diagram were used. In addition, the Partial
dependence plots (PDP) technique was used to validate the importance of
each input variable used in the modeling. Analysis of the results illustrates that
the optimized CNN, SVM, and MLP models significantly outperformed the
single CNN, SVM, and MLP models, especially the optimized CNN model is
the best compared with the optimized SVM and optimized MLP models,
achieving an R? of 0.92, RMSE of 3.86 (MPa), and MAE of 3.09 (MPa). PDP
analysis further revealed that key variables including cement content, coarse
aggregates, and water-cement ratio have the most influential effects on the
CS. The finding of this study highlights the advantages of combining deep
learning with systematic hyperparameter optimization to capture complex,
nonlinear relationships in concrete mix designs.

Keywords: Concrete, Compressive strength, CNN, SVM, MLP, Grid Search
Optimization, Vietnam.

1. Introduction

In civil engineering, the compressive strength
(CS) of concrete is one of the most essential

parameters which directly reflects the material’'s
ability to withstand structural loads and plays a
important role in the design, analysis, and safety
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assessment of infrastructure [1]. Thus, the
accurate prediction of the CS of concrete is crucial
for ensuring structural integrity, optimizing material
composition, reducing construction costs, and
minimizing environmental impact by avoiding
overuse of materials [2]. Traditionally, the
destructive laboratory testing methods have been
often used to estimate the CS of concrete.
Common practical techniques include destructive
compression testing of standard specimens such
as cubes or cylinders, performed at specific curing
times (e.g., 7, 14, or 28 days) [3]. Although these
techniques are reliable, they are constrained by
their cost, time requirements, and dependency on
rigorous quality control during sample preparation
and curing conditions [3]. Non-destructive
techniques, including ultrasonic pulse velocity and
rebound hammer, have also been employed,
offering faster assessments [4]. Nevertheless,
these methods suffer from issues such as
calibration complexity, sensitivity to surface
conditions, and relatively lower accuracy compared
to destructive methods. Therefore, these practical
approaches, while widely accepted, are often
limited in efficiency and real-time applicability.

To overcome these above limitations,
traditional  statistical and regression-based
modeling techniques have been developed to
predict the CS of concrete based on a set of simple
input variables [5]. Popovics and Ujhelyi [6]
developed an empirical equation indicating the
relationship between the CS of concrete and water-
cement ratio. Sanchez-Mendieta et al. [7] analyzed
the relationships between the CS of porous
concretes and various parameters such as
porosity, density and permeability. Othman et al. [8]
analyzed the relationship between the CS of
foamed concrete and density. Zhong et al. [9]
studied the correlation between the CSC and
dielectric properties based on aggregate particle
size. Abazarsa et al. [10] estimated the CS of
Portland cement concrete based on the ultrasonic
testing, synthetic aperture radar, and rebound
hammer. Chen et al. [11] evaluated the correlation

Kumar et al

of the CS of planting concrete with aggregate size
and water/cement. Even though these traditional
statistical techniques have some merits, these
techniques often fall short in capturing nonlinear
and complex relationships inherent in concrete
mixture design, limiting their generalizability across
varied datasets and conditions. Additionally, their
performance depends highly on the assumption of
linearity and multicollinearity among variables, that
are not always valid in real-world concrete
behavior.

In recent years, ML based models, which are
based on the algorithms to identify relationships
between inputs and outputs within the data [12],
were developed and used for prediction of the
properties of the materials [13, 14]. Unlike the
traditional and statistical techniques, the ML
models can handle complex, non-linear
relationships from large and high-dimensional
datasets. In addition, they are able to automatically
uncover hidden patterns and interactions among
variables, which makes them particularly well-
suited for complex problems like the prediction of
the CS of concrete [15]. In literature, there are
many ML-based models were utilized for prediction
of the CS of concrete. Shafighfard et al. [16]
developed and applied fifteen ML models including
stacked model, extremely randomized tree
regressor, recurrent neural networks, histogram-
based bradient boosting machines, adaboost,
gradient boosting machines, support vector
machine, xgboost, artificial neural networks, extra
tree regression, random forest, light gradient
boosting machine, k-nearest neighbors, catboost,
radial basis function networks, and bagging
regressor, for prediction of the CS of high-
performance alkali-activated concrete. Sun et al.
[17] predicted the CS of the coral aggregate

concrete using the hybrid model of
backpropagation neural network and genetic
algorithm. Abdellatief et al. [18] investigated

various ML models namely extreme gradient
boosting, support vector regression, and random
forest for prediction of the CS of ultra-high-
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performance geopolymer concrete. Song et al. [19]
compared different ML models such as decision
tree, artificial neural networks, gene expression
programming for prediction of the CS of self-
compacting concrete with high amount of fly ash.
Zeng et al. [20] applied convolutional neural
network and adaboost, artificial neural networks,
and support vector machines for prediction of the
CS of concrete. The mentioned literature reviews
showed that despite the promising results of these
ML models, most existing literatures either depend
on default parameters of the models or use ftrial-
and-error approaches for optimization, that might
not give the best performance of the models. It
reveals a clear research gap in applying structured
optimization strategies to enhance model
performance of the ML models.

In this study, the main aim is to improve deep
learning and ML models such as convolutional
neural network (CNN), support vector machines
(SVM), and Multi-Layer Perceptron Neural Network
(MLP)using grid search optimization technique for
prediction of the CS of concrete. The main novelty
of this work is that the grid search optimization
technique was used to tune the hyperparameters
of the models and selected the best parameters for
giving the best performance of the models. A
practical database collected from the “Red River
Surface Water Plant” project, a major infrastructure
initiative in Vietnam were used for generation of the
datasets for the modeling. For validation and
comparison, the popular validation metrics such as
R?, RMSE, MAE, and Taylor diagram were used. In
addition, the Partial dependence plots (PDP)
technique was used to validate the importance of
each input variable used in the modeling. Python
software was used for data processing and
modeling.

2. Materials and Methods
2.1. Data used

Data utilized in this study was collected from
the “Red River Surface Water Plant” project, a
major infrastructure initiative in Vietnam involving
large-scale concrete use in structural and hydraulic
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elements. From this project, a total of 236 data
points were collected. The data were compiled
from laboratory reports and quality control
documentation  maintained throughout the
construction and testing phases. All samples were
tested for the CS using standard procedures,
ensuring data reliability and uniformity in
measurement. In the data, in addition to the 28-
days CS of concrete (MPa) (output variable), a set
of input variables such as age of concrete (days),
water-to-cement ratio, crushed sand (kg/m?3),
cement content (kg/m3), natural sand (kg/m3),
coarse aggregate (kg/m?3), water content (kg/m3),
superplasticizer admixture (kg/m?3), slump ratio
(mm/mm), and aggregate-to-cement ratio were
selected for prediction of the CS. These input
variables were selected based on their known
physical and chemical influence on concrete
properties and strength development. More
specifically, age of concrete is a fundamental
parameter as concrete strength increases with time
due to continued hydration; the most significant
strength gain typically occurs within the first 28
days. Cement content directly influences the
formation of calcium silicate hydrates, the primary
binding phase in concrete, and therefore plays a
central role in strength development. Coarse
aggregate contributes to the structural skeleton of
concrete and its load-bearing capacity, while the
gradation and shape of the particles affect the
interlocking and bond characteristics. Natural sand
and crushed sand are used in varying proportions
as fine aggregates, and their characteristics impact
workability, compaction, and ultimately the strength
and durability of concrete. Crushed sand, with
angular particles, often enhances interparticle
friction and bond strength compared to smoother
natural sand. Water content is one of the most
critical parameters as it directly influences the
water-to-cement ratio, which is inversely related to
compressive strength. Excess water increases
porosity and reduces the density of the hydrated
cement matrix, leading to lower strength. On the
other hand, superplasticizer admixture enables the
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reduction of water content while maintaining or
improving  workability, allowing for stronger
concrete at lower water-to-cement ratios. Slump
ratio, a measure of concrete’s workability, indirectly
relates to water content and mixture cohesion; it
affects how well the concrete can be compacted
and how consistently it can be placed, both of
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which influence the final strength. Finally, the
aggregate-to-cement ratio is a key factor in
defining the overall balance between the binding
phase and the skeleton material; a higher ratio may
reduce cost but can dilute the cement matrix,
affecting the strength negatively if not properly
optimized.

Table 1. Initial analysis of the data used

Variables abbreviation  unit std min 25% 50% 75% max
Age of Concrete AOC (days) 15.644 11.278317 1 7 7 28
Cement content CEC (kg) 428.699 78.882 220 380 440 490

Coarse COA (kg) 1082301 57.695 997 1025 1085 1125
aggregate
Natural sand NAS (kg) 368.832 332.833 0 0 409 740
Crushed sand CRS (kg) 415.553 346.732 0 0 371 739.4
Water content WAC )] 162.676 24.35 135 146 150 180.5
Superpl.astlmzer SUA )] 4.247 1.523 0 3.42 4.28 5.47
Admixture
Slump ratio SLR (cm) 14.609 2.956 4 12 15 17
Water to WCR ; 0.412 0135 028 032 036 047
cement ratio
Aggregate .to ACR - 4.572 1.22 3.09 3.77 4.19 5.01
cement ratio
Compressive
strength of CSC (MPa) 43.466 14.3811 10.18 33.1075 45.465 55.225
concrete
Table 1 presents a detailed statistical association. Values close to 0 imply little to no

analysis of the data used in this study. It reveals a
rich and varied dataset with good representation
across all relevant mix and curing parameters. Fig.
1 presents the plots illustrating the distribution of
each variable used in the data collected, offering a
comprehensive visual summary of their statistical
characteristics and the density of their observed
values. Overall, the distribution plots show that the
data used in this study contains well-distributed
and diverse observations across all variables. Fig.
2 indicates a correlation matrix showing the
pairwise Pearson correlation coefficients between
the variables used in this study. The correlation
coefficient varies between -1 and 1. A value near 1
signifies a strong positive linear association, while
a value near -1 indicates a strong negative linear

linear relationship between the variables.

In general, the correlation matrix in Fig. 2
provides valuable insights into the variable
interactions and their influence on the CS of
concrete. The strong correlations between the CS
and certain variables (CEC, WCR, SUA, ACR)
justify their inclusion in the predictive modeling
process. Meanwhile, other variables with weak or
complex relationships (WAC, COA) highlight the
importance of using nonlinear and advanced ML
models, which can uncover intricate dependencies
that linear methods may overlook.

Database collected was divided into two
parts including training dataset (70%) used for
training the models and testing dataset (30%
remaining) used for validating the model.
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(a) Distribution of AOC

(b) Distribution of CEC
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(c) Distribution of COA
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Fig. 1. Data distribution of the variables used in the modeling

2.2. Methods used
2.2.1. Convolutional Neural Network (CNN)
CNN were originally introduced by LeCun et
al. [21]. The main principle of the CNN lies in its
ability to extract local patterns and hierarchical
representations from the input data through a
series of convolutional layers, activation functions,
pooling operations, and fully connected layers [22].
CNN can be used and applied for both
classification and regression problems. In
prediction of the CS of concrete of this study — a
type of regression problem, the one-dimensional
form of CNN is applied, where the input variables
(e.g., cement content, water-to-cement ratio,
superplasticizer dosage, etc.) are considered as a
1D feature map. The convolutional layers apply
kernels or filters that slide over the input data to
detect meaningful patterns- such as interactions

between material properties - which affect the CS
of concrete. These patterns are passed through
activation functions like the Rectified Linear Unit
(ReLU) to introduce non-linearity and then
optionally pooled to reduce dimensionality and
enhance feature generalization. The extracted
features are finally passed through fully connected
(dense) layers to compute the CS of concrete
(output). The CNN regression model can be trained
by the main mathematical formulations as below
[21]:
Convolution Operation:
z :Zk:xHH o +b (1)
=1

where x is the input feature vector, o is the kernel
(filter) weight vector, b is the bias term, and z; is

the output of the convolution at position i.
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Fig. 2. Correlation analysis of the variables used in the modeling

Activation Function (ReLU):
a, =max(0,z) 2)
ReLU introduces non-linearity by passing
only positive values and zeroing out the negative
outputs.
Pooling (e.g., Max Pooling):
P = max(al,am, ai+k—1) (3)
which reduces the size of the feature map while
retaining important features.
Fully Connected Layer:

yzzn:ai-(ni+b (4)

where a, are the flattened activations from the
previous layer, and y is the final prediction of
compressive strength.

The CNN model in this study was trained

using the Mean Squared Error (MSE) loss function,
defined as:
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0.75
0.50
0.25
0.00
-—0.25
-—0.50
-0.66
-0.75
-0.52 0.90
WCR ACR CSC
1& )
MSE =—3 (v, ~¥)) (5)

i=1
where vy, is the actual CSC and vy, is the predicted
value.

In this study, the optimization of the CNN was
performed using the Adam optimizer, and
hyperparameters such as learning rate, kernel
size, the number of filters, and batch size were fine-
tuned using grid search optimization to enhance
prediction accuracy.

2.2.2. Support Vector machines (SVM)

SVM were initially developed by Vapnik [23].
It can be applied to solve both classification and
regression problems. The main principle of SVM
for regression problems is to find a function that
approximates the relationship between input
variables and the target output (the CS), such that
the predictions fall within a specified epsilon-
insensitive margin of the actual values [24]. Unlike
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traditional regression models that minimize the
prediction error directly, SVM attempts to fit the
best possible hyperplane within a threshold (g)
while minimizing model complexity. This is
achieved by identifying a subset of training data
points, known as support vectors, which lie outside
the epsilon boundary and contribute to defining the
regression function. The SVM optimization
problem can be formulated as follows [23]:
Minimize the objective function:

min%”m"z + czn:(ai +&) (6)
subject to:

y,—(0-x +b)<e+¢

(0% +b)-y <e+§ (7)
& 20

where o is the weight vector, b is the bias term &,
and & are slack variables for deviations beyond

, and C is a regularization parameter that controls
the trade-off between the flatness of the function
and the amount up to which deviations larger than
¢ are tolerated. The decision function in SVR for a
linear case is:

f(x)=w-x+b (8)

For nonlinear relationships, which are typical
in concrete strength prediction, SVR uses a kernel

function K(x,,x;) to project the input data into a

higher-dimensional space where linear regression
is more effective. Common kernel functions include
the Radial Basis Function (RBF), polynomial, and
linear kernels. In this study, important
hyperparameters of SVM such as kernel functions,
regularization parameter C, and epsilon - gamma (
¢ ) were optimized using grid search optimization
for the best model performance.

2.2.3. Multilayer Perceptron Neural Network
(MLP)

MLP is one of the most fundamental
architectures in artificial neural networks [25]. An
MLP includes of an input layer, one or more hidden
layers, and an output layer, where each layer is
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composed of interconnected nodes or neurons.
The main principle of MLP lies in hierarchical
representation learning, where each layer
transforms the input data into increasingly abstract
representations through weighted connections and
activation functions [26]. In this study, MLP is
applied to capture the complex and nonlinear
interactions among the ten input variables to
predict the CS of concrete. Each neuron in the MLP
computes a weighted sum of its inputs, adds a bias
term, and applies a nonlinear activation function
(typically RelLU or sigmoid). The MLP model
operates based on the following main
mathematical expressions [27]:
Weighted Sum and Activation:

hj:¢(ixi-mij+ij 9)

where x; are input features, ©; are the weights
connecting input neuron i to hidden neuron j, b; is

the bias term, and ¢ is the activation function

(ReLU).
Output Computation:

y — Zh X (D(_out) + b(OUt) (1 0)

! J
=1

where h; are the outputs from the hidden layer,

Q)(_out)

. are weights from hidden to output layer, and

b is the output bias. For regression tasks, a
linear activation is typically used at the output
node.

Loss Function (Mean Squared Error):

MSE:%i(yi—iﬁ)z (11)

where vy, is the actual CSC and vy, is the predicted

value.

Weight updates are calculated using the
gradients of the loss function with respect to
weights and biases. Using gradient descent:

OMSE
Oow

(12)

O=0-1N

where 1 is the learning rate.
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In this work, the MLP architecture was
optimized using grid search optimization, allowing
the systematic tuning of key hyperparameters such
as batch size, learning rate, the number of neurons
per layer, number of hidden layers, and activation
functions. This ensures that the MLP achieves
optimal performance for the regression task,
adapting effectively to the real-world variability of
the concrete dataset.

2.2.4. Grid search optimization

Grid search optimization is a fundamental
technique in ML and statistical modeling used to
systematically tune hyperparameters in predictive
algorithms [28]. It originated from the broader field
of combinatorial optimization and has been widely
adopted due to its simplicity and effectiveness in
finding optimal model configurations [29]. The main
principle behind grid search optimization is to
exhaustively search through a manually specified
subset of the hyperparameter space, evaluating
model performance at each combination [30].

Even though grid Search does not involve
advanced mathematical formulations like gradient-
based optimization methods, its evaluation
strategy can be mathematically described. Let 6

be a vector of hyperparameters, and let I'(6) be a

loss function such as the Mean Squared Error
(MSE) computed on the validation set. Then the
optimization objective can be expressed as:

0 =argrg1ei(g11"(e) (13)

where © represents the discrete grid of all possible
hyperparameter combinations, and 8" denotes the
optimal configuration that minimizes the validation
loss.

In this work, the MSE is used as the loss
function for regression, defined as:
MSE=—3'(y,-3.) (14)
where vy, is the actual CSC and vy, is the predicted
value from the model
hyperparameter setting.

using a specific

2.2.5. Validation metrics
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In this study, the prediction of the CS of
concrete using CNN, SVM, and MLP models was
evaluated using three widely popular metrics [31-
33]: coefficient of determination (R?), Root Mean
Squared Error (RMSE), and Mean Absolute Error
(MAE), which provide comprehensive insights into
how well the predicted values from each model
match the actual observed values. More

specifically, R*measures the proportion of the
variance in the dependent variable (CS) that is
predictable from the independent variables (input
variables) [34, 35]. It provides a value between 0
and 1 (or even negative for poor models), where a
higher R? indicates better model performance. A

value of R*=1 represents perfect predictions, while
values close to zero or negative indicate poor fit.

The R? is calculated as [31]:

_Zn:(yi _9i)2

_Zn:(yi - )2

where vy, is the actual value, y, is the predicted

R,
Il

(19)

value, and 9i is the mean of the actual values.

RMSE is a metric that quantifies the square
root of the average of the squared differences
between predicted and actual values [36, 37]. This
metric is particularly useful for evaluating the
overall magnitude of prediction error and is
expressed in the same units. RMSE is defined as
[38, 39]:

RMSE = %i(yi—yi)z (16)

i=1
MAE calculates the average of the absolute
differences between predicted and actual values
[40, 41]. It gives equal weight to all errors,
regardless of their direction or magnitude, making
it more robust in the presence of outliers than
RMSE. MAE provides a direct, interpretable
measure of the average error in predictions,
indicating how far off the model typically is from
actual values. The formula for MAE is [39, 42]:

18, .
MAE =3Iy, - | (17)
i=1
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Each of these metrics has its advantages and

disadvantages. R? is intuitive and provides a clear
measure of goodness-of-fit, but it may be
misleading when used alone, especially with non-
linear models or in the presence of outliers. RMSE
is sensitive to large deviations, which is helpful for
emphasizing major prediction errors, but it can
overstate the impact of a few large outliers. On the
other hand, MAE offers a more balanced view of
average prediction error but does not differentiate
between high and low-magnitude errors as
effectively as RMSE. By using all three metrics in
combination, this study ensures a robust and multi-
faceted evaluation of model performance.

In addition to R?2, RMSE, and MAE, Taylor
diagram was also used to compare the models. It
is a powerful graphical tool introduced by Taylor
[43] to simultaneously visualize and compare the
performance of multiple models against observed
data using three key statistical metrics: R2, RMSE,
and MAE. The main principle of the Taylor diagram
lies in its ability to represent multiple statistical
properties in a single two-dimensional polar plot. In
this study, the diagram allows for a concise yet
powerful visualization of how closely each model’s
predictions match the actual CS of concrete
values, providing insights not just into accuracy but
also into the pattern similarity and spread of the
predicted data.

2.2.7. Partial Dependence Plots (PDP)

PDP is powerful tool for interpreting complex
ML models, especially when the models are
considered "black boxes". The concept of PDP was
first introduced by Jerome Friedman in the context
of generalized additive models and later
popularized in the domain of interpretable ML to
explain nonlinear, non-parametric models [44]. The
main principle of PDP lies in isolating the marginal
effect of a specific input variable on the model’s
output. For example, if the goal is to understand
how cement content affects the CS of concrete, the
PDP will show how the predicted CS changes
when cement content varies across its range while
all other input features are averaged out. This is
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particularly useful for understanding the direction,
strength, and nonlinearity of the influence of
individual features on the outcome in complex
models. In this study, PDPs were plotted for the
best model obtained from the comparison of three
optimized models (CNN, SVM, and ANN) to
assess whether they captured physically
meaningful trends.

3. Results and discussion

3.1. Optimization of the models using grid
search optimization

Each model was systematically optimized
using the grid search algorithm, which is widely
recognized for its efficiency in identifying optimal
hyperparameter  configurations through an
exhaustive search over a predefined parameter
space. The defined hyperparameter spaces and
the optimal values obtained for each model are
summarized in Tables 2 to 4.

Table 2. Hyper-parameters of SVM optimized and

selected
H -
yper Values Best
parameters values
1 kernel “?7“’ Pczly, rbf
linear']
2 C [1, 10, 50, 100] 100
3 gamma ['scale’, 'auto'] auto
Table 3. Hyper-parameters of MLP optimized and
selected
No Hyper- Values Best
parameters values
hidden_layer_s [(50,), (100,), (100,
izes (100, 50)] 50)
2 activation ['relu’, 'tanh'] relu
[0.0001,
3 Iph 0.001
alpha 0.001]
4 solver [ladam’] adam

With SVM, the optimization process explored
a variety of kernel functions (including rbf, poly, and
linear), regularization parameters (C), and kernel
coefficients (gamma). The best configuration was
determined to be an rbf kernel with C = 7100 and
gamma = auto (Table 2). For MLP underwent
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tuning across multiple architectural and training
parameters, including the hidden layer structure,
activation function, regularization parameter
(alpha), and solver type. The optimal model
featured a two-layer architecture with 100 and 50
neurons, the RelLU activation function, alpha =
0.001, and the Adam solver (Table 3). Related with
CNN, a set of hyperparameters was optimized
such as the number of filters, kernel size, number
of dense units, batch size, dropout rate, activation
function, and learning rate. The most effective CNN
architecture included 32 filters with a kernel size of
3, 128 units in the dense layer, a batch size of 4, a
dropout rate of 0.2, the ReLU activation function,
and a learning rate of 0.001 (Table 4).

Table 4. Hyper-parameters of CNN optimized and

selected
No Hyper- Values Best
parameters values
, [16, 32, 64,
1 filt 32
ilters 128]
2 kernel_size [1, 2, 3] 3
, [16, 32, 64,
12
3  dense_units 128] 8
4 batch_size [2, 4, 8, 16] 4
5 activation ['relu’, 'tanh'] relu
6 dropout_rate [0.2] 0.2
_ [0.001,
7 | t 0.001
earning_rate 0.0005]

Table 5 presents a detailed comparison of
performance metrics: R?, RMSE, and MAE both
before and after grid search optimization. The
results clearly indicate a significant improvement in
predictive performance across all models after
hyper-parameter tuning. More specifically, CNN
achieved the highest predictive performance, with
an R? score of 0.95 (training) and 0.918 (testing)
after optimization, compared to 0.89 and 0.84
before optimization. SVM, after tuning, improved its
testing R? from 0.75 to 0.9025. MLP also benefited
notably from optimization, with R? increasing from
0.84 to 0.9040 on the test set. In addition, RMSE
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and MAE values for all models were substantially
reduced following optimization, confirming better
generalization capability and lower prediction
errors. For instance, the testing RMSE for CNN
dropped from 5.34 to 3.06, and testing MAE
decreased from 4.21 to 2.30.

In  short, grid Search optimization
significantly improved the performance of all three
models, with CNN consistently outperforming SVM
and MLP. This validates the use of deep learning
combined with systematic hyperparameter tuning
as an effective approach for predicting concrete
compressive strength. More detail comparison of
the models is presented in the following sections.
3.2. Optimized
comparison

model validation and

Validation and comparison of the optimized
CNN, SVM, MLP models are further presented and
shown in Figs. 3, 4, 5, and 6 on both training and
testing datasets.

Fig. 3 illustrates the scatter plots of predicted
versus actual CS values for the SVM, MLP, and
CNN models during both training and testing
phases. Fig. 3a shows SVM achieved an R? of 0.98
during training, showing a strong fit between
predicted and actual values. However, in the
testing phase shown in Fig. 3b, the R? decreased
to 0.90, indicating a moderate drop in performance
and suggesting some level of overfitting.
Nonetheless, the testing accuracy  still
demonstrates solid predictive capability.

Figs. 3c,d indicate MLP achieved an R? of
0.97 in training and 0.90 in testing, which are
slightly lower than those of SVM in training but
equal in testing. This result suggests that MLP has
comparable generalization ability to SVM but may
be slightly more stable due to a smaller gap
between training and testing R? values. Figs. 3e,f
indicate CNN attained an R? of 0.95 in training and
the highest R? in testing at 0.92. While its training
performance is slightly lower than SVM and MLP,
CNN generalizes better to unseen data, as
evidenced by its leading testing R2.
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Table 5. Comparison of model performance using Grid search optimization

Kumar et al

Metric

Dataset

Without Grid search optimization

With Grid search optimization

SVM MLP CNN SVM MLP CNN
R? Training 0.78 0.84 0.89 0.98 0.97 0.95
Testing 0.75 0.63 0.84 0.902 0.902 0.92
RMSE Training 6.80 5.85 4.94 2.30 2.68 3.11
Testing 6.72 8.17 5.38 4.21 4.18 3.86
MAE Training 5.45 4.42 3.93 1.40 2.10 2.59
Testing 5.33 6.10 4.41 2.81 2.92 3.09
(a) SVM - Training (R?>=0.98) (b) SVM - Testing (R*=0.90)
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Fig. 3. R? values of the models: (a) SVM training, (b) SVM testing, (c) MLP training, (d) MLP testing, (e)
CNN training, and (f) CNN testing
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Fig. 4. Actual vs predicted values of the models: (a) training and (b) testing

Fig. 4 provides a visual comparison between
the actual CS of concrete values and the predicted
CS values from the SVM, MLP, and CNN models
across the training and testing datasets. In the
training phase (Fig. 4a), all three models: SVM,
MLP, and CNN closely follow the actual,
demonstrating their capacity to learn complex
relationships within the data. The MLP and CNN
curves almost overlap the actual values
consistently, while SVM shows slightly more
variation and divergence in some segments. This
suggests that MLP and CNN are better at
minimizing residual errors during training, likely
due to their higher capacity for nonlinear feature
mapping. In the testing phase (Fig. 4b), a more
distinct difference between the models emerges.
CNN remains the most faithful to the actual values
across most samples,

indicating its superior

generalization capability. MLP also shows robust
performance but with slightly larger deviations than
CNN in certain high-gradient regions. In contrast,
SVM exhibits more noticeable fluctuations and
under- or over-estimations, particularly in the mid-
range values.

Fig. 5 provides a comparative analysis of the
three models SVM, MLP, and CNN using the
values of three validation metrics: R?, RMSE, and
MAE on both training and testing datasets. Fig. 5a
illustrates the R? values, SVM exhibits the highest
training performance with an R? of 0.98, followed
closely by MLP at 0.97, and CNN at 0.95,
respectively. However, in the testing dataset, CNN
outperforms the other models with the highest R?
of 0.92, while both SVM and MLP plateau at 0.90.

Fig. 5b presents the RMSE values, where
SVM records the lowest training error (2.30)
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compared to MLP (2.68) and CNN (3.11). Yet on
the testing set, the pattern reverses: CNN achieves
the lowest RMSE (3.86), followed by MLP (4.18)
and SVM (4.21), respectively. In terms of MAE, Fig.
5¢c shows that SVM again demonstrates the

Kumar et al

smallest training error (1.40), with MLP and CNN at
210 and 2.59, respectively. However, for the
testing dataset, CNN slightly leads with a MAE of
3.09, marginally outperforming MLP (2.92) and
SVM (2.81).

(a) R?

Dataset

B Training
SVM T Testing

CNN

0.0 02 0.4

(b) RMSE

Dataset
BN Training
B Testing

Value

0.6 0.8 1.0

Value
(c) MAE

Dataset
I Training
N Testing

L1

1.40
SVM

CNN

0.0 0.3 1.0 15 2.0 25 3.0

Value

Fig. 5. Comparison of the validation metrics of the models: (a) R?, (b) RMSE, and (c) MAE

Fig. 6 presents a comprehensive Taylor
diagam analysis to visually assess and compare
the predictive performance of SVM, MLP, and CNN
models based on RMSE, MAE, and R? values for
both training and testing datasets. In the training
phase, Figs. 6a,c show that the SVM model
performs with the lowest RMSE and MAE values
(closer to the reference point), followed closely by
MLP, and with CNN slightly further out. However,
when transitioning to the testing phase (Figs. 6b, d)
CNN becomes the most accurate, exhibiting lower
RMSE and MAE values than SVM and MLP. Figs.
6e,f show the R2%based Taylor diagrams of the
models. In Fig. 6e, all models show high correlation

with actual values, with SVM achieving the closest
proximity to the reference, consistent with its higher
training R? (0.98). Conversely, in the testing phase
(Fig. 6f), CNN clearly outperforms, aligning more
closely with the reference in terms of correlation
and R? (0.92), surpassing both MLP and SVM,
which maintain an R? of 0.90.

In summary, SVM performs best on the
training set but shows signs of overfitting, while
CNN provides the most balanced and robust
performance, particularly on the testing dataset.
The results demonstrate that CNN, despite its
slightly higher training error, benefits from a deeper
architecture and optimized hyperparameters via
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grid search, resulting in superior generalization
performance in predicting the CS of concrete. The
superior performance of CNN can be attributed to
both physical and computational factors. From a
computational perspective, CNN's ability to extract
spatial hierarchies and nonlinear relationships
makes it inherently suitable for handling complex
material behavior and multivariate interactions,
especially after tuning hyperparameters such as

(a) Taylor Diagram - Train - RMSE
OO

—#— Reference

-@- SVM
MLP

—#%- CNN

180° 180°

(d) Taylor Diagram - Test - MAE
OO

315°

(b) Taylor Diagram - Test - RMSE
OU

Reference
- SVM
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filters, kernel size, and dropout rate. Physically,
concrete strength depends on the interrelated
effects of multiple ingredients (e.g.,
content, water-cement ratio, aggregate
proportions), and CNN'’s architecture is well-suited

cement

to capture these intricate patterns that may not be
fully exploited by shallower models like SVM and
MLP.

(c) Taylor Diagram - Train - MAE
00

5

90° 2701 90°
—k— Reference
-@- SVM

MLP

180°
(f) Taylor Diagram - Test - R?

90°270
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90°
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-&- SVM -®- SVM
MLP

—%%- CNN

MLP
% CNN

180°

-&- SVM
MLP
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Fig. 6. Taylor diagram analysis of the models: (a) RMSE training, (b) RMSE testing, (c) MAE training, (d)
MAE testing, (e) R? training, and (f) R?testing

3.2. PDP analysis

Validation and comparison of the models
showed that optimized CNN is the best model
compared with the optimized SVM and MLP for
prediction of the CS of concrete. Therefore, CNN
model was used for PDP analysis as shown in Fig.
7.

Fig. 7a shows a strong positive relationship
between AOC and the CS of concrete. As AOC
increases, the predicted CSC increases steadily.
This aligns well with fundamental concrete science,

where more cement contributes to higher matrix
density and bonding strength. Fig. 7b shows the
CEC exhibits a negative trend: as CEC increases,
the predicted CS of concrete decreases. This may
suggest that higher values of CEC, which possibly
associated with inefficient cement use, are
detrimental to strength. Fig. 7c shows COA initially
has a weak influence, followed by a nonlinear
increase beyond a threshold value, indicating that
adequate coarse aggregate enhances load
transfer and compressive resistance once a critical
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volume is reached. Fig. 7d a U-shaped curve for
NAS: the CS of concrete slightly decreases at first,
then increases sharply. This suggests that very low
or very high amounts of NAS can be beneficial,
likely due to its role in improving compaction and

Kumar et al

reducing voids. Fig. 7e shows CRS curve shows a
positive relationship, especially beyond a midpoint
value. It reinforces the idea that crushed sand with
angular particles may contribute to better
interlocking in the mix.

(a) PDP - AOC (b) PDP - CEC
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Fig. 7. PDP analysis of the variables using RF model: (a) G, (b) CS, (c) FS, (d) SC

WAC in Fig. 7f shows a nonlinear increase in
the CS of concrete with increasing WAC,
suggesting that optimal water content relative to
aggregate helps hydration and workability, up to a
point before oversaturation becomes detrimental.

Fig. 7g shows that SUA has a clearly positive
influence, with the CS of concrete increasing
consistently with SUA levels. These additives may
act as pozzolanic or filler materials that refine pore
structure and boost long-term strength.

SLRin Fig. 7h shows a mild U-shaped curve,
indicating that both very low and very high SLR
values are favorable, likely due to the combined
effects of silica and calcium reactions forming
additional C-S-H gel.

WCR in Fig. 7i is negatively correlated with
the CS of concrete, which is well-aligned with

established concrete theory: as WCR increases,
excess water reduces density and creates voids,
leading to lower strength.

ACR in Fig. 7j also shows a negative trend,
implying that excessive admixture use may hinder
the hydration process or introduce unfavorable
chemical interactions if not properly balanced.

In general, the PDP results highlight the
complex, nonlinear interactions between input
parameters and the CS of concrete. Variables such
as AOC, SUA, CRS, and COA contribute positively
and significantly to the CS when properly balanced,
while high values of WCR, ACR, and CEC have a
detrimental effect. These findings not only validate
the internal reasoning of the ML model but also
confirm fundamental engineering knowledge,
thereby increasing confidence in the model's
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predictive and interpretive power. Therefore, the
PDP analysis serves as a valuable tool not just for
model transparency, but also for guiding material
design decisions. It confirms that cement dosage,
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aggregate quality, supplementary materials, and
water management remain the cornerstone
variables in concrete strength prediction and
optimization.
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Fig. 7. PDP analysis of the variables using RF model: (e) O, (f) LL, (g) PL, and (h) PI

5. Conclusion

Predicting the CS of concrete remains a
critical problem in civil engineering, as it directly
influences the design, safety, and durability of
structures. In this study, three ML models: CNN,
SVM, and MLP were evaluated for the CS of
concrete prediction. Importantly, a grid search

optimization strategy was applied to fine-tune the
hyperparameters of each model, enhancing their
predictive accuracy and generalization capabilities.
Results of this study show that while all three
models benefited from hyperparameter tuning, the
CNN model outperformed SVM and MLP across all
evaluation metrics. The optimized CNN achieved
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an R2 of 0.92, RMSE of 3.86, and MAE of 3.09 on
the testing set. In contrast, although SVM achieved
the highest R? during training (0.98), its
performance dropped to 0.90 on testing, indicating
a higher tendency toward overfitting. The MLP
model offered a balance between SVM and CNN,
but was ultimately surpassed by CNN in both
accuracy and consistency. PDP analysis further
validated the model's learning behavior by
identifying key variables such as AOC, COA, and
WCR as dominant factors affecting the CS of
concrete.

While the study provides strong evidence
supporting the use of CNN with hyperparameter
optimization for CSC prediction, some limitations
should be addressed in future research. The
dataset size, though sufficient for this analysis, can
be expanded to include more diverse mix designs,
curing conditions, and regional variations.
Moreover, more sophisticated optimization
techniques such as Bayesian optimization, genetic
algorithms, or ensemble strategies could be
explored to further enhance model robustness.
Finally, integration of uncertainty quantification,
feature selection techniques, and explainable Al
methods such as SHAP or LIME could provide
more actionable insights for engineers and material
designers.

In conclusion, this study has demonstrated
the potential of deep learning, particularly CNNs
optimized via grid search, as a powerful and
interpretable tool for predicting the CS of concrete.
With further development and data enrichment,
such models could become indispensable in
modern concrete design, quality control, and
performance assessment.
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