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Abstract: In civil engineering, the accurate prediction of concrete compressive 

strength (CS) is crucial for evaluation of material performance and structural 

design. In the present study, the main objective is to optimize the performance 

of three machine learning (ML) models including Support Vector Machine 

(SVM), Convolutional Neural Network (CNN), Multi-Layer Perceptron Neural 

Network (MLP) using Grid Search Optimization technique for improving the 

prediction accuracy of CS of concrete. For doing this, a total of 236 data points 

were collected from the “Red River Surface Water Plant” project, a major 

infrastructure initiative in Vietnam were collected and used to create training 

(70%) and testing (30%) datasets used for training and testing the models. For 

validation and comparison of the models, the popular validation metrics such 

as R², RMSE, MAE, and Taylor diagram were used. In addition, the Partial 

dependence plots (PDP) technique was used to validate the importance of 

each input variable used in the modeling. Analysis of the results illustrates that 

the optimized CNN, SVM, and MLP models significantly outperformed the 

single CNN, SVM, and MLP models, especially the optimized CNN model is 

the best compared with the optimized SVM and optimized MLP models, 

achieving an R² of 0.92, RMSE of 3.86 (MPa), and MAE of 3.09 (MPa). PDP 

analysis further revealed that key variables including cement content, coarse 

aggregates, and water-cement ratio have the most influential effects on the 

CS. The finding of this study highlights the advantages of combining deep 

learning with systematic hyperparameter optimization to capture complex, 

nonlinear relationships in concrete mix designs. 

Keywords: Concrete, Compressive strength, CNN, SVM, MLP, Grid Search 

Optimization, Vietnam. 

 

 

1. Introduction 

In civil engineering, the compressive strength 

(CS) of concrete is one of the most essential 

parameters which directly reflects the material’s 

ability to withstand structural loads and plays a 

important role in the design, analysis, and safety 
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assessment of infrastructure [1]. Thus, the 

accurate prediction of the CS of concrete is crucial 

for ensuring structural integrity, optimizing material 

composition, reducing construction costs, and 

minimizing environmental impact by avoiding 

overuse of materials [2]. Traditionally, the 

destructive laboratory testing methods have been 

often used to estimate the CS of concrete. 

Common practical techniques include destructive 

compression testing of standard specimens such 

as cubes or cylinders, performed at specific curing 

times (e.g., 7, 14, or 28 days) [3]. Although these 

techniques are reliable, they are constrained by 

their cost, time requirements, and dependency on 

rigorous quality control during sample preparation 

and curing conditions [3]. Non-destructive 

techniques, including ultrasonic pulse velocity and 

rebound hammer, have also been employed, 

offering faster assessments [4]. Nevertheless, 

these methods suffer from issues such as 

calibration complexity, sensitivity to surface 

conditions, and relatively lower accuracy compared 

to destructive methods. Therefore, these practical 

approaches, while widely accepted, are often 

limited in efficiency and real-time applicability.  

To overcome these above limitations, 

traditional statistical and regression-based 

modeling techniques have been developed to 

predict the CS of concrete based on a set of simple 

input variables [5]. Popovics and Ujhelyi [6] 

developed an empirical equation indicating the 

relationship between the CS of concrete and water-

cement ratio. Sánchez-Mendieta et al. [7] analyzed 

the relationships between the CS of porous 

concretes and various parameters such as 

porosity, density and permeability. Othman et al. [8] 

analyzed the relationship between the CS of 

foamed concrete and density. Zhong et al. [9] 

studied the correlation between the CSC and 

dielectric properties based on aggregate particle 

size. Abazarsa et al. [10] estimated the CS of 

Portland cement concrete based on the ultrasonic 

testing, synthetic aperture radar, and rebound 

hammer. Chen et al. [11] evaluated the correlation 

of the CS of planting concrete with aggregate size 

and water/cement. Even though these traditional 

statistical techniques have some merits, these 

techniques often fall short in capturing nonlinear 

and complex relationships inherent in concrete 

mixture design, limiting their generalizability across 

varied datasets and conditions. Additionally, their 

performance depends highly on the assumption of 

linearity and multicollinearity among variables, that 

are not always valid in real-world concrete 

behavior. 

In recent years, ML based models, which are 

based on the algorithms to identify relationships 

between inputs and outputs within the data [12], 

were developed and used for prediction of the 

properties of the materials [13, 14]. Unlike the 

traditional and statistical techniques, the ML 

models can handle complex, non-linear 

relationships from large and high-dimensional 

datasets. In addition, they are able to automatically 

uncover hidden patterns and interactions among 

variables, which makes them particularly well-

suited for complex problems like the prediction of 

the CS of concrete [15]. In literature, there are 

many ML-based models were utilized for prediction 

of the CS of concrete. Shafighfard et al. [16] 

developed and applied fifteen ML models including 

stacked model, extremely randomized tree 

regressor, recurrent neural networks, histogram-

based bradient boosting machines, adaboost, 

gradient boosting machines, support vector 

machine, xgboost, artificial neural networks, extra 

tree regression, random forest, light gradient 

boosting machine, k-nearest neighbors, catboost, 

radial basis function networks, and bagging 

regressor, for prediction of the CS of high-

performance alkali-activated concrete. Sun et al. 

[17] predicted the CS of the coral aggregate 

concrete using the hybrid model of 

backpropagation neural network and genetic 

algorithm. Abdellatief et al. [18] investigated 

various ML models namely extreme gradient 

boosting, support vector regression, and random 

forest for prediction of the CS of ultra-high-
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performance geopolymer concrete. Song et al. [19] 

compared different ML models such as decision 

tree, artificial neural networks, gene expression 

programming for prediction of the CS of self-

compacting concrete with high amount of fly ash. 

Zeng et al. [20] applied convolutional neural 

network and adaboost, artificial neural networks, 

and support vector machines for prediction of the 

CS of concrete. The mentioned literature reviews 

showed that despite the promising results of these 

ML models, most existing literatures either depend 

on default parameters of the models or use trial-

and-error approaches for optimization, that might 

not give the best performance of the models. It 

reveals a clear research gap in applying structured 

optimization strategies to enhance model 

performance of the ML models. 

In this study, the main aim is to improve deep 

learning and ML models such as convolutional 

neural network (CNN), support vector machines 

(SVM), and Multi-Layer Perceptron Neural Network 

(MLP)using grid search optimization technique for 

prediction of the CS of concrete. The main novelty 

of this work is that the grid search optimization 

technique was used to tune the hyperparameters 

of the models and selected the best parameters for 

giving the best performance of the models. A 

practical database collected from the “Red River 

Surface Water Plant” project, a major infrastructure 

initiative in Vietnam were used for generation of the 

datasets for the modeling. For validation and 

comparison, the popular validation metrics such as 

R², RMSE, MAE, and Taylor diagram were used. In 

addition, the Partial dependence plots (PDP) 

technique was used to validate the importance of 

each input variable used in the modeling. Python 

software was used for data processing and 

modeling.  

2. Materials and Methods 

2.1. Data used 

Data utilized in this study was collected from 

the “Red River Surface Water Plant” project, a 

major infrastructure initiative in Vietnam involving 

large-scale concrete use in structural and hydraulic 

elements. From this project, a total of 236 data 

points were collected. The data were compiled 

from laboratory reports and quality control 

documentation maintained throughout the 

construction and testing phases. All samples were 

tested for the CS using standard procedures, 

ensuring data reliability and uniformity in 

measurement. In the data, in addition to the 28-

days CS of concrete (MPa) (output variable), a set 

of input variables such as age of concrete (days), 

water-to-cement ratio, crushed sand (kg/m³), 

cement content (kg/m³), natural sand (kg/m³), 

coarse aggregate (kg/m³), water content (kg/m³), 

superplasticizer admixture (kg/m³), slump ratio 

(mm/mm), and aggregate-to-cement ratio were 

selected for prediction of the CS. These input 

variables were selected based on their known 

physical and chemical influence on concrete 

properties and strength development. More 

specifically, age of concrete is a fundamental 

parameter as concrete strength increases with time 

due to continued hydration; the most significant 

strength gain typically occurs within the first 28 

days. Cement content directly influences the 

formation of calcium silicate hydrates, the primary 

binding phase in concrete, and therefore plays a 

central role in strength development. Coarse 

aggregate contributes to the structural skeleton of 

concrete and its load-bearing capacity, while the 

gradation and shape of the particles affect the 

interlocking and bond characteristics. Natural sand 

and crushed sand are used in varying proportions 

as fine aggregates, and their characteristics impact 

workability, compaction, and ultimately the strength 

and durability of concrete. Crushed sand, with 

angular particles, often enhances interparticle 

friction and bond strength compared to smoother 

natural sand. Water content is one of the most 

critical parameters as it directly influences the 

water-to-cement ratio, which is inversely related to 

compressive strength. Excess water increases 

porosity and reduces the density of the hydrated 

cement matrix, leading to lower strength. On the 

other hand, superplasticizer admixture enables the 
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reduction of water content while maintaining or 

improving workability, allowing for stronger 

concrete at lower water-to-cement ratios. Slump 

ratio, a measure of concrete’s workability, indirectly 

relates to water content and mixture cohesion; it 

affects how well the concrete can be compacted 

and how consistently it can be placed, both of 

which influence the final strength. Finally, the 

aggregate-to-cement ratio is a key factor in 

defining the overall balance between the binding 

phase and the skeleton material; a higher ratio may 

reduce cost but can dilute the cement matrix, 

affecting the strength negatively if not properly 

optimized.  

Table 1. Initial analysis of the data used 

Variables abbreviation unit std min 25% 50% 75% max 

Age of Concrete AOC (days) 15.644 11.278317 1 7 7 28 

Cement content CEC (kg) 428.699 78.882 220 380 440 490 

Coarse 

aggregate 
COA (kg) 1082.301 57.695 997 1025 1085 1125 

Natural sand NAS (kg) 368.832 332.833 0 0 409 740 

Crushed sand CRS (kg) 415.553 346.732 0 0 371 739.4 

Water content WAC (l) 162.676 24.35 135 146 150 180.5 

Superplasticizer 

Admixture 
SUA (l) 4.247 1.523 0 3.42 4.28 5.47 

Slump ratio SLR (cm) 14.609 2.956 4 12 15 17 

Water to 

cement ratio 
WCR - 0.412 0.135 0.28 0.32 0.36 0.47 

Aggregate to 

cement ratio 
ACR - 4.572 1.22 3.09 3.77 4.19 5.01 

Compressive 

strength of 

concrete 

CSC (MPa) 43.466 14.3811 10.18 33.1075 45.465 55.225 

Table 1 presents a detailed statistical 

analysis of the data used in this study. It reveals a 

rich and varied dataset with good representation 

across all relevant mix and curing parameters. Fig. 

1 presents the plots illustrating the distribution of 

each variable used in the data collected, offering a 

comprehensive visual summary of their statistical 

characteristics and the density of their observed 

values. Overall, the distribution plots show that the 

data used in this study contains well-distributed 

and diverse observations across all variables. Fig. 

2 indicates a correlation matrix showing the 

pairwise Pearson correlation coefficients between 

the variables used in this study. The correlation 

coefficient varies between -1 and 1. A value near 1 

signifies a strong positive linear association, while 

a value near -1 indicates a strong negative linear 

association. Values close to 0 imply little to no 

linear relationship between the variables.  

In general, the correlation matrix in Fig. 2 

provides valuable insights into the variable 

interactions and their influence on the CS of 

concrete. The strong correlations between the CS 

and certain variables (CEC, WCR, SUA, ACR) 

justify their inclusion in the predictive modeling 

process. Meanwhile, other variables with weak or 

complex relationships (WAC, COA) highlight the 

importance of using nonlinear and advanced ML 

models, which can uncover intricate dependencies 

that linear methods may overlook.  

Database collected was divided into two 

parts including training dataset (70%) used for 

training the models and testing dataset (30% 

remaining) used for validating the model. 
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Fig. 1. Data distribution of the variables used in the modeling 

2.2. Methods used 

2.2.1. Convolutional Neural Network (CNN) 

CNN were originally introduced by LeCun et 

al. [21]. The main principle of the CNN lies in its 

ability to extract local patterns and hierarchical 

representations from the input data through a 

series of convolutional layers, activation functions, 

pooling operations, and fully connected layers [22]. 

CNN can be used and applied for both 

classification and regression problems. In 

prediction of the CS of concrete of this study – a 

type of regression problem, the one-dimensional 

form of CNN is applied, where the input variables 

(e.g., cement content, water-to-cement ratio, 

superplasticizer dosage, etc.) are considered as a 

1D feature map. The convolutional layers apply 

kernels or filters that slide over the input data to 

detect meaningful patterns- such as interactions 

between material properties - which affect the CS 

of concrete. These patterns are passed through 

activation functions like the Rectified Linear Unit 

(ReLU) to introduce non-linearity and then 

optionally pooled to reduce dimensionality and 

enhance feature generalization. The extracted 

features are finally passed through fully connected 

(dense) layers to compute the CS of concrete 

(output). The CNN regression model can be trained 

by the main mathematical formulations as below 

[21]: 

Convolution Operation: 

+ −

=

=  +
k

i i j 1 j

j 1

z x b                               (1) 

where x  is the input feature vector,   is the kernel 

(filter) weight vector, b  is the bias term, and iz   is 

the output of the convolution at position i. 
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Fig. 2. Correlation analysis of the variables used in the modeling 

Activation Function (ReLU): 

( )=i ia max 0,z                               (2) 

ReLU introduces non-linearity by passing 

only positive values and zeroing out the negative 

outputs. 

Pooling (e.g., Max Pooling): 

( )+ + −
=i i i 1 i k 1p max a ,a ,...,a         (3) 

which reduces the size of the feature map while 

retaining important features. 

Fully Connected Layer: 

=

=  +
n

i i

i 1

y a b                               (4) 

where ia  are the flattened activations from the 

previous layer, and y  is the final prediction of 

compressive strength. 

The CNN model in this study was trained 

using the Mean Squared Error (MSE) loss function, 

defined as: 

( )
=

= −
n

2

i i

i 1

1
ˆMSE y y

n
         (5) 

where iy  is the actual CSC and iŷ  is the predicted 

value.  

In this study, the optimization of the CNN was 

performed using the Adam optimizer, and 

hyperparameters such as learning rate, kernel 

size, the number of filters, and batch size were fine-

tuned using grid search optimization to enhance 

prediction accuracy.  

2.2.2. Support Vector machines (SVM) 

SVM were initially developed by Vapnik [23]. 

It can be applied to solve both classification and 

regression problems. The main principle of SVM 

for regression problems is to find a function that 

approximates the relationship between input 

variables and the target output (the CS), such that 

the predictions fall within a specified epsilon-

insensitive margin of the actual values [24]. Unlike 
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traditional regression models that minimize the 

prediction error directly, SVM attempts to fit the 

best possible hyperplane within a threshold (ε) 

while minimizing model complexity. This is 

achieved by identifying a subset of training data 

points, known as support vectors, which lie outside 

the epsilon boundary and contribute to defining the 

regression function. The SVM optimization 

problem can be formulated as follows [23]: 

Minimize the objective function: 

( )
=

 +  + 
n

2 *

i i

i 1

1
min C

2
        (6) 

subject to:  

( )

( )

−   +   + 

  + −   + 

  

i i i

*

i i i

*

i i

y x b

x b y

, 0

         (7) 

where   is the weight vector, b  is the bias term  i  

and *

i  are slack variables for deviations beyond 

, and C is a regularization parameter that controls 

the trade-off between the flatness of the function 

and the amount up to which deviations larger than 

  are tolerated. The decision function in SVR for a 

linear case is: 

( ) =   +f x x b          (8) 

For nonlinear relationships, which are typical 

in concrete strength prediction, SVR uses a kernel 

function ( )i jK x ,x  to project the input data into a 

higher-dimensional space where linear regression 

is more effective. Common kernel functions include 

the Radial Basis Function (RBF), polynomial, and 

linear kernels. In this study, important 

hyperparameters of SVM such as kernel functions, 

regularization parameter C, and epsilon - gamma (

 ) were optimized using grid search optimization 

for the best model performance.  

2.2.3. Multilayer Perceptron Neural Network 

(MLP) 

MLP is one of the most fundamental 

architectures in artificial neural networks [25]. An 

MLP includes of an input layer, one or more hidden 

layers, and an output layer, where each layer is 

composed of interconnected nodes or neurons. 

The main principle of MLP lies in hierarchical 

representation learning, where each layer 

transforms the input data into increasingly abstract 

representations through weighted connections and 

activation functions [26]. In this study, MLP is 

applied to capture the complex and nonlinear 

interactions among the ten input variables to 

predict the CS of concrete. Each neuron in the MLP 

computes a weighted sum of its inputs, adds a bias 

term, and applies a nonlinear activation function 

(typically ReLU or sigmoid). The MLP model 

operates based on the following main 

mathematical expressions [27]: 

Weighted Sum and Activation: 

=

 
=   + 

 


n

j i ij j

i 1

h x b          (9) 

where ix  are input features, ij  are the weights 

connecting input neuron i to hidden neuron j, jb  is 

the bias term, and   is the activation function 

(ReLU). 

Output Computation: 

( ) ( )

=

=  +
m

out out

i j

j 1

y h b        (10) 

where jh  are the outputs from the hidden layer, 

( )


out

j  are weights from hidden to output layer, and 

( )out
b  is the output bias. For regression tasks, a 

linear activation is typically used at the output 

node. 

Loss Function (Mean Squared Error): 

( )
=

= −
n

2

i i

i 1

1
ˆMSE y y

n
       (11) 

where iy  is the actual CSC and iŷ  is the predicted 

value.  

Weight updates are calculated using the 

gradients of the loss function with respect to 

weights and biases. Using gradient descent: 


 = − 



MSE
       (12) 

where   is the learning rate. 
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In this work, the MLP architecture was 

optimized using grid search optimization, allowing 

the systematic tuning of key hyperparameters such 

as batch size, learning rate, the number of neurons 

per layer, number of hidden layers, and activation 

functions. This ensures that the MLP achieves 

optimal performance for the regression task, 

adapting effectively to the real-world variability of 

the concrete dataset. 

2.2.4. Grid search optimization 

Grid search optimization is a fundamental 

technique in ML and statistical modeling used to 

systematically tune hyperparameters in predictive 

algorithms [28]. It originated from the broader field 

of combinatorial optimization and has been widely 

adopted due to its simplicity and effectiveness in 

finding optimal model configurations [29]. The main 

principle behind grid search optimization is to 

exhaustively search through a manually specified 

subset of the hyperparameter space, evaluating 

model performance at each combination [30].  

Even though grid Search does not involve 

advanced mathematical formulations like gradient-

based optimization methods, its evaluation 

strategy can be mathematically described. Let   

be a vector of hyperparameters, and let ( )   be a 

loss function such as the Mean Squared Error 

(MSE) computed on the validation set. Then the 

optimization objective can be expressed as: 

( )


 =  * argmin        (13) 

where   represents the discrete grid of all possible 

hyperparameter combinations, and *  denotes the 

optimal configuration that minimizes the validation 

loss. 

In this work, the MSE is used as the loss 

function for regression, defined as: 

( )
=

= −
n

2

i i

i 1

1
ˆMSE y y

n
       (14) 

where iy  is the actual CSC and iŷ  is the predicted 

value from the model using a specific 

hyperparameter setting. 

2.2.5. Validation metrics 

In this study, the prediction of the CS of 

concrete using CNN, SVM, and MLP models was 

evaluated using three widely popular metrics [31-

33]: coefficient of determination (R²), Root Mean 

Squared Error (RMSE), and Mean Absolute Error 

(MAE), which provide comprehensive insights into 

how well the predicted values from each model 

match the actual observed values. More 

specifically, 2R measures the proportion of the 

variance in the dependent variable (CS) that is 

predictable from the independent variables (input 

variables) [34, 35]. It provides a value between 0 

and 1 (or even negative for poor models), where a 

higher R² indicates better model performance. A 

value of 
2R =1 represents perfect predictions, while 

values close to zero or negative indicate poor fit. 

The 
2R  is calculated as [31]: 

( )

( )

=

=

−

=

−





n
2

i i
2 i 1

n
2

i i

i 1

ˆy y

R

y y

       (15) 

where iy  is the actual value, iŷ  is the predicted 

value, and iŷ  is the mean of the actual values.  

RMSE is a metric that quantifies the square 

root of the average of the squared differences 

between predicted and actual values [36, 37]. This 

metric is particularly useful for evaluating the 

overall magnitude of prediction error and is 

expressed in the same units. RMSE is defined as 

[38, 39]: 

( )
=

= −
n

2

i i

i 1

1
ˆRMSE y y

n
      (16) 

MAE calculates the average of the absolute 

differences between predicted and actual values 

[40, 41]. It gives equal weight to all errors, 

regardless of their direction or magnitude, making 

it more robust in the presence of outliers than 

RMSE. MAE provides a direct, interpretable 

measure of the average error in predictions, 

indicating how far off the model typically is from 

actual values. The formula for MAE is [39, 42]: 

=

= −
n

i i

i 1

1
ˆMAE y y

n
       (17) 
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Each of these metrics has its advantages and 

disadvantages. 2R  is intuitive and provides a clear 

measure of goodness-of-fit, but it may be 

misleading when used alone, especially with non-

linear models or in the presence of outliers. RMSE 

is sensitive to large deviations, which is helpful for 

emphasizing major prediction errors, but it can 

overstate the impact of a few large outliers. On the 

other hand, MAE offers a more balanced view of 

average prediction error but does not differentiate 

between high and low-magnitude errors as 

effectively as RMSE. By using all three metrics in 

combination, this study ensures a robust and multi-

faceted evaluation of model performance.  

In addition to R2, RMSE, and MAE, Taylor 

diagram was also used to compare the models. It 

is a powerful graphical tool introduced by Taylor 

[43] to simultaneously visualize and compare the 

performance of multiple models against observed 

data using three key statistical metrics: R2, RMSE, 

and MAE. The main principle of the Taylor diagram 

lies in its ability to represent multiple statistical 

properties in a single two-dimensional polar plot. In 

this study, the diagram allows for a concise yet 

powerful visualization of how closely each model’s 

predictions match the actual CS of concrete 

values, providing insights not just into accuracy but 

also into the pattern similarity and spread of the 

predicted data.  

2.2.7. Partial Dependence Plots (PDP) 

PDP is powerful tool for interpreting complex 

ML models, especially when the models are 

considered "black boxes". The concept of PDP was 

first introduced by Jerome Friedman in the context 

of generalized additive models and later 

popularized in the domain of interpretable ML to 

explain nonlinear, non-parametric models [44]. The 

main principle of PDP lies in isolating the marginal 

effect of a specific input variable on the model’s 

output. For example, if the goal is to understand 

how cement content affects the CS of concrete, the 

PDP will show how the predicted CS changes 

when cement content varies across its range while 

all other input features are averaged out. This is 

particularly useful for understanding the direction, 

strength, and nonlinearity of the influence of 

individual features on the outcome in complex 

models. In this study, PDPs were plotted for the 

best model obtained from the comparison of three 

optimized models (CNN, SVM, and ANN) to 

assess whether they captured physically 

meaningful trends. 

3. Results and discussion 

3.1. Optimization of the models using grid 

search optimization 

Each model was systematically optimized 

using the grid search algorithm, which is widely 

recognized for its efficiency in identifying optimal 

hyperparameter configurations through an 

exhaustive search over a predefined parameter 

space. The defined hyperparameter spaces and 

the optimal values obtained for each model are 

summarized in Tables 2 to 4. 

Table 2. Hyper-parameters of SVM optimized and 

selected 

No 
Hyper-

parameters 
Values 

Best 

values 

1 kernel 
['rbf', 'Poly', 

'linear'] 
rbf 

2 C [1, 10, 50, 100] 100 

3 gamma ['scale', 'auto'] auto 

Table 3. Hyper-parameters of MLP optimized and 

selected 

No 
Hyper-

parameters 
Values 

Best 

values 

1 
hidden_layer_s

izes 

[(50,), (100,), 

(100, 50)] 

(100, 

50) 

2 activation ['relu', 'tanh'] relu 

3 alpha 
[0.0001, 

0.001] 
0.001 

4 solver ['adam'] adam 

With SVM, the optimization process explored 

a variety of kernel functions (including rbf, poly, and 

linear), regularization parameters (C), and kernel 

coefficients (gamma). The best configuration was 

determined to be an rbf kernel with C = 100 and 

gamma = auto (Table 2). For MLP underwent 
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tuning across multiple architectural and training 

parameters, including the hidden layer structure, 

activation function, regularization parameter 

(alpha), and solver type. The optimal model 

featured a two-layer architecture with 100 and 50 

neurons, the ReLU activation function, alpha = 

0.001, and the Adam solver (Table 3). Related with 

CNN, a set of hyperparameters was optimized 

such as the number of filters, kernel size, number 

of dense units, batch size, dropout rate, activation 

function, and learning rate. The most effective CNN 

architecture included 32 filters with a kernel size of 

3, 128 units in the dense layer, a batch size of 4, a 

dropout rate of 0.2, the ReLU activation function, 

and a learning rate of 0.001 (Table 4).  

Table 4. Hyper-parameters of CNN optimized and 

selected 

No 
Hyper-

parameters 
Values 

Best 

values 

1 filters 
[16, 32, 64, 

128] 
32 

2 kernel_size [1, 2, 3] 3 

3 dense_units 
[16, 32, 64, 

128] 
128 

4 batch_size [2, 4, 8, 16] 4 

5 activation ['relu', 'tanh'] relu 

6 dropout_rate [0.2] 0.2 

7 learning_rate 
[0.001, 

0.0005] 
0.001 

Table 5 presents a detailed comparison of 

performance metrics: R², RMSE, and MAE both 

before and after grid search optimization. The 

results clearly indicate a significant improvement in 

predictive performance across all models after 

hyper-parameter tuning. More specifically, CNN 

achieved the highest predictive performance, with 

an R² score of 0.95 (training) and 0.918 (testing) 

after optimization, compared to 0.89 and 0.84 

before optimization. SVM, after tuning, improved its 

testing R² from 0.75 to 0.9025. MLP also benefited 

notably from optimization, with R² increasing from 

0.84 to 0.9040 on the test set. In addition, RMSE 

and MAE values for all models were substantially 

reduced following optimization, confirming better 

generalization capability and lower prediction 

errors. For instance, the testing RMSE for CNN 

dropped from 5.34 to 3.06, and testing MAE 

decreased from 4.21 to 2.30.  

In short, grid Search optimization 

significantly improved the performance of all three 

models, with CNN consistently outperforming SVM 

and MLP. This validates the use of deep learning 

combined with systematic hyperparameter tuning 

as an effective approach for predicting concrete 

compressive strength. More detail comparison of 

the models is presented in the following sections. 

3.2. Optimized model validation and 

comparison 

Validation and comparison of the optimized 

CNN, SVM, MLP models are further presented and 

shown in Figs. 3, 4, 5, and 6 on both training and 

testing datasets.  

Fig. 3 illustrates the scatter plots of predicted 

versus actual CS values for the SVM, MLP, and 

CNN models during both training and testing 

phases. Fig. 3a shows SVM achieved an R² of 0.98 

during training, showing a strong fit between 

predicted and actual values. However, in the 

testing phase shown in Fig. 3b, the R² decreased 

to 0.90, indicating a moderate drop in performance 

and suggesting some level of overfitting. 

Nonetheless, the testing accuracy still 

demonstrates solid predictive capability.  

Figs. 3c,d indicate MLP achieved an R² of 

0.97 in training and 0.90 in testing, which are 

slightly lower than those of SVM in training but 

equal in testing. This result suggests that MLP has 

comparable generalization ability to SVM but may 

be slightly more stable due to a smaller gap 

between training and testing R² values. Figs. 3e,f 

indicate CNN attained an R² of 0.95 in training and 

the highest R² in testing at 0.92. While its training 

performance is slightly lower than SVM and MLP, 

CNN generalizes better to unseen data, as 

evidenced by its leading testing R².  
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Table 5. Comparison of model performance using Grid search optimization 

Metric Dataset 
Without Grid search optimization With Grid search optimization 

SVM MLP CNN SVM MLP CNN 

R2 Training 0.78 0.84 0.89 0.98 0.97 0.95 

 Testing 0.75 0.63 0.84 0.902 0.902 0.92 

RMSE Training 6.80 5.85 4.94 2.30 2.68 3.11 

 Testing 6.72 8.17 5.38 4.21 4.18 3.86 

MAE Training 5.45 4.42 3.93 1.40 2.10 2.59 

 Testing 5.33 6.10 4.41 2.81 2.92 3.09 

 
Fig. 3. R2 values of the models: (a) SVM training, (b) SVM testing, (c) MLP training, (d) MLP testing, (e) 

CNN training, and (f) CNN testing 
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Fig. 4. Actual vs predicted values of the models: (a) training and (b) testing 

Fig. 4 provides a visual comparison between 

the actual CS of concrete values and the predicted 

CS values from the SVM, MLP, and CNN models 

across the training and testing datasets. In the 

training phase (Fig. 4a), all three models: SVM, 

MLP, and CNN closely follow the actual, 

demonstrating their capacity to learn complex 

relationships within the data. The MLP and CNN 

curves almost overlap the actual values 

consistently, while SVM shows slightly more 

variation and divergence in some segments. This 

suggests that MLP and CNN are better at 

minimizing residual errors during training, likely 

due to their higher capacity for nonlinear feature 

mapping. In the testing phase (Fig. 4b), a more 

distinct difference between the models emerges. 

CNN remains the most faithful to the actual values 

across most samples, indicating its superior 

generalization capability. MLP also shows robust 

performance but with slightly larger deviations than 

CNN in certain high-gradient regions. In contrast, 

SVM exhibits more noticeable fluctuations and 

under- or over-estimations, particularly in the mid-

range values. 

Fig. 5 provides a comparative analysis of the 

three models SVM, MLP, and CNN using the 

values of three validation metrics: R², RMSE, and 

MAE on both training and testing datasets. Fig. 5a 

illustrates the R² values, SVM exhibits the highest 

training performance with an R² of 0.98, followed 

closely by MLP at 0.97, and CNN at 0.95, 

respectively. However, in the testing dataset, CNN 

outperforms the other models with the highest R² 

of 0.92, while both SVM and MLP plateau at 0.90. 

Fig. 5b presents the RMSE values, where 

SVM records the lowest training error (2.30) 
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compared to MLP (2.68) and CNN (3.11). Yet on 

the testing set, the pattern reverses: CNN achieves 

the lowest RMSE (3.86), followed by MLP (4.18) 

and SVM (4.21), respectively. In terms of MAE, Fig. 

5c shows that SVM again demonstrates the 

smallest training error (1.40), with MLP and CNN at 

2.10 and 2.59, respectively. However, for the 

testing dataset, CNN slightly leads with a MAE of 

3.09, marginally outperforming MLP (2.92) and 

SVM (2.81).  

 

 
Fig. 5. Comparison of the validation metrics of the models: (a) R2, (b) RMSE, and (c) MAE 

Fig. 6 presents a comprehensive Taylor 

diagam analysis to visually assess and compare 

the predictive performance of SVM, MLP, and CNN 

models based on RMSE, MAE, and R² values for 

both training and testing datasets. In the training 

phase, Figs. 6a,c show that the SVM model 

performs with the lowest RMSE and MAE values 

(closer to the reference point), followed closely by 

MLP, and with CNN slightly further out. However, 

when transitioning to the testing phase (Figs. 6b, d) 

CNN becomes the most accurate, exhibiting lower 

RMSE and MAE values than SVM and MLP.  Figs. 

6e,f show the R²-based Taylor diagrams of the 

models. In Fig. 6e, all models show high correlation 

with actual values, with SVM achieving the closest 

proximity to the reference, consistent with its higher 

training R² (0.98). Conversely, in the testing phase 

(Fig. 6f), CNN clearly outperforms, aligning more 

closely with the reference in terms of correlation 

and R² (0.92), surpassing both MLP and SVM, 

which maintain an R² of 0.90. 

In summary, SVM performs best on the 

training set but shows signs of overfitting, while 

CNN provides the most balanced and robust 

performance, particularly on the testing dataset. 

The results demonstrate that CNN, despite its 

slightly higher training error, benefits from a deeper 

architecture and optimized hyperparameters via 
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grid search, resulting in superior generalization 

performance in predicting the CS of concrete. The 

superior performance of CNN can be attributed to 

both physical and computational factors. From a 

computational perspective, CNN's ability to extract 

spatial hierarchies and nonlinear relationships 

makes it inherently suitable for handling complex 

material behavior and multivariate interactions, 

especially after tuning hyperparameters such as 

filters, kernel size, and dropout rate. Physically, 

concrete strength depends on the interrelated 

effects of multiple ingredients (e.g., cement 

content, water-cement ratio, aggregate 

proportions), and CNN’s architecture is well-suited 

to capture these intricate patterns that may not be 

fully exploited by shallower models like SVM and 

MLP.  

 

 

Fig. 6. Taylor diagram analysis of the models: (a) RMSE training, (b) RMSE testing, (c) MAE training, (d) 

MAE testing, (e) R2 training, and (f) R2 testing 

3.2. PDP analysis 

Validation and comparison of the models 

showed that optimized CNN is the best model 

compared with the optimized SVM and MLP for 

prediction of the CS of concrete. Therefore, CNN 

model was used for PDP analysis as shown in Fig. 

7.  

Fig. 7a shows a strong positive relationship 

between AOC and the CS of concrete. As AOC 

increases, the predicted CSC increases steadily. 

This aligns well with fundamental concrete science, 

where more cement contributes to higher matrix 

density and bonding strength. Fig. 7b shows the 

CEC exhibits a negative trend: as CEC increases, 

the predicted CS of concrete decreases. This may 

suggest that higher values of CEC, which possibly 

associated with inefficient cement use, are 

detrimental to strength. Fig. 7c shows COA initially 

has a weak influence, followed by a nonlinear 

increase beyond a threshold value, indicating that 

adequate coarse aggregate enhances load 

transfer and compressive resistance once a critical 
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volume is reached. Fig. 7d a U-shaped curve for 

NAS: the CS of concrete slightly decreases at first, 

then increases sharply. This suggests that very low 

or very high amounts of NAS can be beneficial, 

likely due to its role in improving compaction and 

reducing voids. Fig. 7e shows CRS curve shows a 

positive relationship, especially beyond a midpoint 

value. It reinforces the idea that crushed sand with 

angular particles may contribute to better 

interlocking in the mix.  

 

Fig. 7. PDP analysis of the variables using RF model: (a) G, (b) CS, (c) FS, (d) SC 

WAC in Fig. 7f shows a nonlinear increase in 

the CS of concrete with increasing WAC, 

suggesting that optimal water content relative to 

aggregate helps hydration and workability, up to a 

point before oversaturation becomes detrimental.  

Fig. 7g shows that SUA has a clearly positive 

influence, with the CS of concrete increasing 

consistently with SUA levels. These additives may 

act as pozzolanic or filler materials that refine pore 

structure and boost long-term strength.  

SLR in Fig. 7h shows a mild U-shaped curve, 

indicating that both very low and very high SLR 

values are favorable, likely due to the combined 

effects of silica and calcium reactions forming 

additional C-S-H gel.  

WCR in Fig. 7i is negatively correlated with 

the CS of concrete, which is well-aligned with 

established concrete theory: as WCR increases, 

excess water reduces density and creates voids, 

leading to lower strength. 

ACR in Fig. 7j also shows a negative trend, 

implying that excessive admixture use may hinder 

the hydration process or introduce unfavorable 

chemical interactions if not properly balanced. 

In general, the PDP results highlight the 

complex, nonlinear interactions between input 

parameters and the CS of concrete. Variables such 

as AOC, SUA, CRS, and COA contribute positively 

and significantly to the CS when properly balanced, 

while high values of WCR, ACR, and CEC have a 

detrimental effect. These findings not only validate 

the internal reasoning of the ML model but also 

confirm fundamental engineering knowledge, 

thereby increasing confidence in the model's 
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predictive and interpretive power. Therefore, the 

PDP analysis serves as a valuable tool not just for 

model transparency, but also for guiding material 

design decisions. It confirms that cement dosage, 

aggregate quality, supplementary materials, and 

water management remain the cornerstone 

variables in concrete strength prediction and 

optimization. 

 

Fig. 7. PDP analysis of the variables using RF model: (e) O, (f) LL, (g) PL, and (h) PI 

5. Conclusion 

Predicting the CS of concrete remains a 

critical problem in civil engineering, as it directly 

influences the design, safety, and durability of 

structures. In this study, three ML models: CNN, 

SVM, and MLP were evaluated for the CS of 

concrete prediction. Importantly, a grid search 

optimization strategy was applied to fine-tune the 

hyperparameters of each model, enhancing their 

predictive accuracy and generalization capabilities. 

Results of this study show that while all three 

models benefited from hyperparameter tuning, the 

CNN model outperformed SVM and MLP across all 

evaluation metrics. The optimized CNN achieved 
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an R² of 0.92, RMSE of 3.86, and MAE of 3.09 on 

the testing set. In contrast, although SVM achieved 

the highest R² during training (0.98), its 

performance dropped to 0.90 on testing, indicating 

a higher tendency toward overfitting. The MLP 

model offered a balance between SVM and CNN, 

but was ultimately surpassed by CNN in both 

accuracy and consistency. PDP analysis further 

validated the model’s learning behavior by 

identifying key variables such as AOC, COA, and 

WCR as dominant factors affecting the CS of 

concrete.  

While the study provides strong evidence 

supporting the use of CNN with hyperparameter 

optimization for CSC prediction, some limitations 

should be addressed in future research. The 

dataset size, though sufficient for this analysis, can 

be expanded to include more diverse mix designs, 

curing conditions, and regional variations. 

Moreover, more sophisticated optimization 

techniques such as Bayesian optimization, genetic 

algorithms, or ensemble strategies could be 

explored to further enhance model robustness. 

Finally, integration of uncertainty quantification, 

feature selection techniques, and explainable AI 

methods such as SHAP or LIME could provide 

more actionable insights for engineers and material 

designers. 

In conclusion, this study has demonstrated 

the potential of deep learning, particularly CNNs 

optimized via grid search, as a powerful and 

interpretable tool for predicting the CS of concrete. 

With further development and data enrichment, 

such models could become indispensable in 

modern concrete design, quality control, and 

performance assessment.  
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