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Abstract: Accurate classification of failure modes in reinforced concrete (RC) 

shear walls is essential for performance-based seismic design, yet current 

code-based criteria rely mainly on simple geometric indicators and cannot fully 

capture the nonlinear interaction among geometry, axial load, reinforcement, 

and boundary confinement. This study develops a mechanics-aware machine 

learning (ML) framework to classify four experimentally observed failure modes 

flexural (F), flexure shear (FS), shear (S), and sliding (SL) using both 

dimensional and non-dimensional feature spaces. The experimental data used 

in this study are analysed through two complementary representations: a 

dimensional dataset (CSDL1, 435 specimens) based on conventional 

geometric and material parameters, and a non-dimensional, mechanics-

informed dataset (CSDL2, 569 specimens) expressed in terms of physically 

motivated ratios (Ab/Ag, lw/tw, P/(fc′Ag), ρfy/fc′), both constructed from the same 

body of published experimental studies. Three representative tree-based 

algorithms—Decision Tree, Random Forest, and XGBoost were trained and 

evaluated using 70/30 train–test splits, 10-fold cross-validation, confusion 

matrices, and AUC–ROC metrics. All models achieved strong multi-class 

performance with average AUC values above 0.85. Random Forest provided 

the most stable generalisation across both feature representations, while 

XGBoost attained comparable accuracy. More importantly, the non-

dimensional feature space enhanced physical interpretability: SHAP analysis 

consistently identified the boundary-to-gross area ratio (Ab/Ag) and wall 

slenderness (lw/tw) as the dominant predictors for all failure modes, followed by 

reinforcement and axial-load ratios. The ML-derived transition thresholds 

(Ab/Ag ≈ 0.08–0.12, lw/tw ≈ 8–12, M/(Vlw) ≈ 0.4, and P/(fc′Ag) ≈ 0.1) align well with 

conceptual limits in ACI 318 and Eurocode 8. The study therefore              

demonstrates that mechanics-informed, non-dimensional features not only 
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Abstract: (continued) sustain high predictive accuracy but also recover the 

underlying physics of wall behaviour, enabling design-oriented summary tables 

and a quick failure-mode classification checklist for practical seismic design 

and assessment. 

Keywords: Reinforced concrete shear walls, failure mode classification, 

machine learning, dimensional analysis, non-dimensional features, XGBoost, 

Random Forest, SHAP, feature importance, seismic design. 

 

 

1. Introduction 

Reinforced concrete (RC) shear walls are 

fundamental lateral load resisting components in 

modern reinforced concrete structures, particularly 

in regions of high seismicity. Under combined axial 

compression and in plane lateral loading, these 

walls may fail through distinct mechanisms 

depending on their geometric proportions, 

reinforcement configuration, axial load level, and 

boundary confinement conditions [1],[2],[3]. 

Accurate prediction of failure mechanismsflexural 

(F), flexure–shear (FS), shear (S), and sliding (SL) 

is essential for performance-based seismic design, 

as these modes exhibit markedly different ductility, 

energy dissipation capacity, and post yield 

behavior [4].   

Existing design standards such as ACI 318-

19, Eurocode 8 (EN 1998-1:2023), and CSA A23.3-

19 classify wall behavior primarily based on 

geometric indicators like aspect ratio (hw/lw) or 

empirical limits on shear-to-flexural strength ratios 

[5],[6],[7]. However, such simplified criteria fail to 

capture the complex, nonlinear, and 

multidimensional interactions among geometry, 

material properties, and load effects that govern 

wall behavior [8],[9]. Experimental investigations 

have consistently demonstrated that the transition 

between different failure modubu es is not 

governed by a single variable but by the combined 

influence of axial load ratio, reinforcement 

detailing, and boundary confinement [1],[3]. 

In recent years, machine learning (ML) has 

emerged as a powerful approach for predicting 

structural behavior, capable of learning nonlinear, 

high dimensional relationships from experimental 

data without relying on explicit constitutive models. 

Applications in structural engineering have 

included concrete strength prediction [10], 

structural damage detection [11], and seismic 

response modeling [12],[13],[14],[15]. For RC 

shear walls, several studies have developed ML-

based models to predict shear strength [16], but 

failure mode classification a critical factor 

determining drift capacity and design detailing has 

received limited attention. Integrating both strength 

prediction and mode classification provides a 

comprehensive basis for understanding the 

seismic performance of RC walls.  

A key limitation of existing ML approaches 

lies in their reliance on dimensional features (e.g., 

mm, kN, MPa), which are sensitive to unit systems, 

scale effects, and lack physical interpretability. In 

contrast, non-dimensional (dimensionless) 

parameters such as aspect ratio (a/d), 

reinforcement indices (ρl, ρt), and axial load ratio 

(P/fcAg) are widely recognized in structural 

mechanics for representing fundamental 

behavioral ratios that remain invariant to scale [17]. 

Such normalized variables can enhance the 

generalization and physical interpretability of ML 

models, particularly in problems governed by 

mechanical similitude. 

https://jstt.vn/index.php/en
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Accordingly, this study aims to develop and 

compare machine learning models for predicting 

shear strength and classifying failure modes of RC 

shear walls using both dimensional and non-

dimensional feature spaces. Two comprehensive 

experimental databases were compiled and 

harmonized: (i) CSDL1 (435 specimens) with 

dimensional parameters, and (ii) CSDL2 (569 

specimens) with normalized mechanical ratios. 

Three representative ML algorithms Decision Tree, 

Random Forest, and XGBoost are employed to 

evaluate the influence of feature representation on 

model performance, generalization, and 

interpretability.  

Beyond predictive capability, this research 

emphasizes model explainability through the 

SHAP (SHapley Additive Explanations) framework, 

enabling the identification of the most influential 

features and their physical significance. By linking 

statistical feature importance to mechanical 

principles, the study bridges data-driven prediction 

with structural interpretation, ensuring that ML 

models not only predict accurately but also remain 

consistent with the underlying physics of wall 

behavior.  

The anticipated contributions of this study are 

threefold: 

(1) Establishing a systematic comparison 

between dimensional and non-dimensional 

datasets for ML-based prediction of RC shear wall 

behavior; 

(2) Developing a physics-informed 

interpretive framework that integrates SHAP-

based feature analysis with structural mechanics 

concepts; and 

(3) Providing insights to support data-driven 

calibration of design equations and seismic design 

guidelines. 

2. Background and Theoretical Basis 

2.1. RC Shear Wall Failure Modes and 

Mechanical Characteristics 

 When subjected to combined axial 

compression and in-plane lateral loading, 

reinforced concrete (RC) shear walls may fail 

through four principal mechanisms as shown in 

Fig. 1, including: flexural (F), flexure–shear (FS), 

shear (S), and sliding (SL). Each failure mode 

reflects a distinct internal stress redistribution and 

deformation pattern, and is recognised in major 

seismic design standards such as [5],[6],[7],[18]. 

These mechanisms are governed by the relative 

dominance of flexural, shear, or sliding actions, as 

well as the contribution of vertical and horizontal 

reinforcement to energy dissipation and ductility 

capacity [1],[3],[4]. 

(a) Flexural Failure (F) 

 Flexural failure typically occurs in slender 

walls (hw/lw > 3.0) where bending deformation 

dominates over shear distortion. The response is 

governed by flexural yielding of longitudinal 

reinforcement at the wall boundaries, accompanied 

by concrete crushing in the compression toe, 

forming a well-defined plastic hinge at the base [5], 

[6],[19]. 

Vertical reinforcement primarily resists the 

bending moment and controls vertical cracking, 

while horizontal reinforcement confines the 

boundary region and prevents bar buckling. The 

behavior is ductile, characterized by stable post-

yield stiffness, large lateral drift capacity (δ > 2%), 

and high hysteretic energy dissipation [4]. This 

mode is regarded as the desired ductile 

mechanism in seismic design because it allows 

controlled plastic hinge formation before strength 

degradation. 

(b) Flexure–Shear Failure (FS) 

 The flexure–shear mode represents a 

hybrid transition mechanism that occurs in 

moderately slender walls (1.5 < hw/lw < 3.0) where 

both flexural and shear deformations are 

significant. Initially, vertical flexural cracks form 

near the wall base, followed by the development of 

inclined diagonal cracks in the web once the 

principal tensile stress exceeds the concrete 

tensile strength.  

This behavior reflects a gradual transition 

from flexure-dominated to shear-dominated 

response, accompanied by stiffness degradation 
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and mixed deformation patterns [5],[6],[19]. The 

interaction between flexural yielding and diagonal 

shear cracking results in moderate ductility (1% < 

δ < 2%), with energy dissipation reduced compared 

to pure flexural behavior. The horizontal 

reinforcement enhances shear transfer and limits 

crack widening, while vertical reinforcement 

maintains ductility and delays brittle diagonal 

failure [1],[20]. 

(c) Shear Failure (S) 

Shear failure occurs predominantly in squat 

walls (hw/lw < 1.5) with high shear demand or 

insufficient horizontal web reinforcement. The 

failure mechanism is governed by diagonal tension 

cracking and diagonal compression strut crushing, 

which cause abrupt loss of strength and stiffness 

[5],[7]. 

When the shear stress v = V/(bwd) exceeds 

approximately 0.25√fc
′ (in MPa), brittle failure may 

occur. The horizontal reinforcement provides the 

primary resistance against diagonal tension and 

prevents crack propagation, while the vertical 

reinforcement enhances confinement and 

anchorage at the wall boundaries. The overall 

behavior is brittle, characterized by low ductility (δ 

< 1%), sudden strength degradation, and small drift 

capacity [3],[4]. 

(d) Sliding Shear Failure (SL) 

Sliding shear failure is governed by 

horizontal slip along a base interface or 

construction joint, often after extensive flexural 

cracking and yielding have degraded the shear 

transfer mechanisms. It is characterized by the 

formation of a dominant horizontal crack at or near 

the wall base, followed by relative displacement 

between upper and lower wall segments [5],[6], 

[19]. This mechanism is controlled by aggregate 

interlock, dowel action of vertical bars, and 

frictional resistance along the sliding plane. Vertical 

reinforcement improves dowel action and frictional 

resistance, while horizontal reinforcement provides 

clamping action and enhances shear resistance. 

Sliding failure is typically observed in walls with 

insufficient shear keys or weak construction joints, 

and exhibits abrupt strength loss and limited 

energy dissipation [1],[20]. 
 

    
Fig. 1. Schematic illustrations of the four failure modes with typical crack patterns and deformed shapes 

2.2. Physical Interpretation of Dimensional and 

Non-Dimensional Parameters 

Experimental data for RC shear walls are 

typically recorded in dimensional form with physical 

units (e.g., kN for forces, MPa for stresses, mm for 

dimensions). While these measurements directly 

reflect laboratory observations, dimensional 

parameters are inherently scale-dependent and 

sensitive to unit systems, which limits their ability to 

represent the fundamental physics governing 

structural behaviour across different specimen 

sizes and configurations. Non-dimensional 

parameters, derived through normalisation by 

characteristic mechanical quantities, capture the 

essential physics while being invariant to unit 

systems and specimen scale. This transformation 

from dimensional to non-dimensional space is 

grounded in dimensional analysis principles [21] 

and has been standard practice in mechanics for 

over a century. For RC shear walls, appropriate 
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non-dimensional parameters arise naturally from 

equilibrium, compatibility, and constitutive 

relationships. The transformation can be 

expressed conceptually as: 

Table 1. Non-dimensional parameters and their physical significance 

No Symbol Physical Interpretation Mechanical Significance 

1 M/Vlw 

Ratio between the bending moment and 

the product of shear force and wall 

length. 

Reflects the degree of interaction between 

flexural and shear actions, indicating the 

tendency of the wall to fail in flexure or 

shear. 

2 lw/tw 
Ratio between wall height and wall 

thickness. 

Represents the geometric slenderness of 

the wall – slender walls tend to flexural 

behavior, while squat walls are shear-

dominated. 

3 ρvfyv/fck 

Ratio between the product of longitudinal 

reinforcement ratio and steel yield 

strength to concrete compressive 

strength. 

Indicates the contribution of longitudinal 

reinforcement to the flexural capacity and 

the ability to resist combined flexure–

shear behavior. 

4 ρhfyh/fck 

Ratio between the product of horizontal 

web reinforcement ratio and steel yield 

strength to concrete compressive 

strength. 

Characterizes the ability of horizontal 

reinforcement to restrain diagonal 

cracking and enhance shear resistance of 

the wall web. 

5 ρLfyL/fck 

Ratio between the product of boundary 

longitudinal reinforcement ratio and steel 

yield strength to concrete compressive 

strength. 

Represents the role of boundary elements 

in improving flexural confinement and 

delaying the onset of boundary crushing 

failure. 

6 P/fckAg 

Ratio between axial load and nominal 

compressive capacity of the cross-

section. 

Reflects the influence of axial load on the 

interaction between shear and flexural 

responses, affecting failure mode 

transitions. 

7 
Shape of 

Section 

Geometric shape of the wall cross-

section (B: Barbell; R: Rectangular; E: 

Flanged). 

Defines the sectional type, which governs 

the stress distribution, stiffness, and 

strength characteristics of the wall. 

8 Ab/Ag 
Ratio between boundary reinforcement 

area and gross cross-sectional area. 

Quantifies the concentration of boundary 

reinforcement, closely related to the wall’s 

shear strength and confinement capacity. 

Dimensional data → Normalisation by 

characteristic mechanical quantities → Non-

dimensional parameters. 

Table 1 summarises the key non-dimensional 

parameters employed in this study, their 

mechanical interpretation, and their relationship to 

failure mode transitions. 

By expressing all features in non-

dimensional form, the models become physically 

meaningful, scale-independent, and directly 

aligned with dimensionless groups that appear 

naturally in theoretical formulations and code 

provisions. This physics-informed feature 

engineering is hypothesised to enhance both 

model generalisation and interpretability. 

3. Experimental Database and Feature 

Engineering 

3.1. Data Sources and Collection Methodology 

The experimental data used in this study are 

drawn from a common pool of published RC shear 
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wall tests and are analysed using two 

complementary feature representations: a 

dimensional dataset (CSDL1) and a non-

dimensional, mechanics-informed dataset 

(CSDL2): 

CSDL1 (435 specimens): A dataset 

originally assembled by [22], [23], [24], [25], [26], 

[27, p. 31], [27], [28], [29], [30], [31], [32], covering 

tests published between 1970 and 2020 from peer-

reviewed journals and conference proceedings. 

This database includes a wide range of wall 

geometries, reinforcement configurations, and 

loading protocols. 

CSDL2 (569 specimens): An independently 

compiled dataset focusing on more recent 

experimental campaigns (1970-2020) [22], [23], 

[24], [25], [26], [27, p. 31], [27], [28], [29], [30], [31], 

[32], with enhanced representation of modern high-

strength concrete walls and non-conventional 

reinforcement layouts.  

Each specimen record includes: Geometric 

parameters: wall height (hw), length (lw), web 

thickness (tw), flange dimensions (bf, tf), cross-

sectional shape (rectangular, barbell, flanged); 

Material properties: concrete compressive strength 

(f'c), vertical web reinforcement ratio (ρv) and yield 

strength (fyv), horizontal web reinforcement ratio 

(ρh) and yield strength (fyh), boundary element 

longitudinal reinforcement ratio (ρL) and yield 

strength (fyL); Loading conditions: applied axial load 

(P), experimental shear strength (Vexp), applied 

moment (M). Observed failure mode: classified as 

F, FS, S, or SL based on experimental observations 

and reported cracking patterns. 

3.2. Data Harmonisation and Quality Control 

A critical challenge in assembling multi-

source databases is ensuring consistency in failure 

mode classification, as different researchers may 

apply varying criteria or subjective judgements. To 

address this issue, the following harmonisation 

procedure was implemented: 

Step 1 – Literature Review: Original test 

reports and publications were retrieved and 

reviewed to verify reported failure modes based on 

photographic evidence, crack pattern descriptions, 

and load-displacement responses. 

Step 2 – Classification Criteria: Consistent 

classification rules were applied based on: 

- Flexural (F): Yielding of boundary 

reinforcement, concrete crushing at compression 

toe, vertical cracks predominantly near wall edges 

- Flexure-Shear (FS): Initial flexural cracking 

followed by diagonal shear cracks in web region, 

partial yielding of boundary reinforcement 

- Shear (S): Diagonal tension or 

compression failure, extensive web cracking, 

limited boundary yielding 

- Sliding (SL): Dominant horizontal crack at 

base, significant slip displacement along crack 

plane 

Step 3 – Ambiguous Cases: For specimens 

where failure mode classification was uncertain or 

conflicting between sources, the following tie-

breaking procedure was applied: (a) prioritise 

classifications from original investigators, (b) cross-

reference with photographic evidence when 

available, (c) exclude specimens with insufficient 

documentation. 

Step 4 – Data Cleaning: Specimens with 

missing critical parameters, obvious reporting 

errors, or inconsistent units were removed. A total 

of more than 100 specimens were excluded during 

this quality control phase. 

3.3. Class Distribution and Dataset 

Characteristics 

Both datasets exhibit significant class 

imbalance, reflecting the empirical reality that 

shear and flexural failures are more commonly 

observed in RC shear wall testing programmes 

than sliding failures. Table 2 summarises the class 

distribution for both databases. 

The class imbalance presents challenges for 

ML model training, as algorithms may develop bias 

toward majority classes. To address this issue, 

stratified sampling procedures and class-weighted 

loss functions were employed during model 

training (detailed in Section 5). 

The statistical distribution of the input 
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variables by failure mode, as illustrated in Fig. 2, 

and Table 3, 4 reveals significant differences 

between the dimensional and non-dimensional 

feature spaces in terms of their mechanical 

characteristics. 

(1) Geometric Parameters 

Table 2. Failure mode class distribution in CSDL1 and CSDL2 datasets 

Failure Mode 
CSDL1  

(n=435 samples) 

CSDL2  

(n=569 samples) 

Flexural (F) 108 (24.83%) 172 (39.54%) 

Flexure-Shear (FS) 51 (11.72%) 99 (22.76%) 

Shear (S) 252 (57.93%) 275 (63.22%) 

Sliding (SL) 14 (3.22%) 23 (5.29%) 

Table 3. Features of shear strength database for RC walls of CSDL1 

Features Mean Standard deviation Minimum 25% 50% 75% Maximum 

hw (mm) 1349,08 983,35 145,00 600,00 1200,00 1750,00 4572,00 

lw (mm) 1299,35 780,48 420,00 700,00 1000,00 1720,00 3960,00 

tw(mm) 96,19 49,35 10,00 67,00 100,00 125,00 203,00 

tf (mm) 69,65 79,00 0,00 0,00 60,00 102,00 360,00 

bf (mm) 324,84 398,88 42,00 100,00 160,00 400,00 3045,00 

fck (MPa) 37,34 20,72 13,70 23,50 32,80 43,40 130,80 

ρv (%) 0,82 0,84 0,00 0,38 0,60 1,01 6,24 

fyv (MPa) 429,62 104,57 235,00 352,00 422,00 477,85 792,00 

ρℎ (%) 0,70 0,48 0,00 0,33 0,57 0,92 3,67 

fyh (MPa) 430,37 108,83 235,00 350,00 405,00 504,00 806,00 

ρL (%) 3,01 2,02 0,35 1,32 2,41 4,70 9,91 

fyL (MPa) 512,98 156,34 235,00 382,20 533,20 640,00 980,00 

P (kN) 434,92 534,93 0,00 0,00 135,00 859,00 2364,00 

Vexp (kN) 755,18 969,69 0,00 125,50 368,00 899,50 7060,00 

Table 4. Features of shear strength database for RC walls of CSDL2 

Features Mean Standard deviation Minimum 25% 50% 75% Maximum 

M/Vlw  1,22 0,69 0,25 0,66 1,00 1,76 4,10 

lw/tw   14,92 8,30 4,35 10,00 13,33 18,68 57,00 

ρv*fyv/fck  0,09 0,07 0,00 0,04 0,07 0,11 0,49 

ρh*fyh/fck  0,08 0,06 0,00 0,04 0,07 0,11 0,33 

ρL*fyL/fck 0,34 0,33 0,00 0,14 0,25 0,42 2,65 

P/fck*Ag 0,07 0,10 0,00 0,00 0,03 0,09 0,50 

Ab/Ag 0,14 0,13 0,00 0,00 0,17 0,26 0,44 
 

The results indicate that classes FS and SL 

exhibit higher median wall lengths (lw) compared 

to other classes, while class S shows the widest 

interquartile range (IQR) and the largest absolute 

wall lengths. This reflects the tendency of shear–

sliding failures to occur in taller and more slender 

walls. In contrast, class F has the lowest median 

lw, representing flexural failures typical of short 
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walls with lower aspect ratios. After normalization 

by the wall thickness (lw/tw), the medians across 

classes become closer and the IQRs significantly 

narrower, indicating that the influence of absolute 

geometric scale has been removed. This highlights 

the role of slenderness as a key descriptor 

governing the failure mechanism. However, class 

S still maintains high variability and numerous 

outliers, suggesting that geometric dimensions 

alone cannot fully explain the differences in failure 

modes without considering the combined effects of 

axial load and reinforcement ratio. 

(2) Axial Load Parameters 

In the dimensional dataset, class F exhibits 

the highest median axial load (P), reflecting the 

higher compressive capacity of flexural-type walls. 

Class S presents the widest distribution range, 

consistent with the sensitivity of shear failures to 

variations in axial compression. After normalization 

into P/(fckAg), the data become more compact with 

smaller IQRs, but a greater number of outliers 

appear particularly in class F. This suggests that 

normalized axial load ratios vary notably among 

specimens, capturing the relative sensitivity of 

flexural mechanisms to axial load intensity 

compared with material strength. 
 

CSDL 1- Data 435 samples CSDL 2- Data 569 samples 

  

  

  

Fig. 2. Grap the box plot of CSDL 1 and CSDL 2 

(3) Reinforcement Parameters 

For vertical reinforcement in the wall web 

(ρv), the median values are generally similar 

across failure classes, although some samples in 
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classes S and F exhibit higher values, reflecting 

local reinforcement enhancement to improve 

bending and shear resistance. When normalized 

as ρvfyv/fck, class medians converge, but the 

number of outliers increases significantly, 

indicating the combined influence of material 

strength and relative reinforcement levels. 

Regarding horizontal reinforcement (ρh), all 

classes show comparable medians, but class S 

has a wider IQR and more outliers, corresponding 

to its role in resisting diagonal cracking and 

enhancing shear strength. In the non-dimensional 

space (ρhfyh/fck), the IQRs of all classes increase 

and more outliers appear, reflecting the diversity in 

the relationship between stirrup strength and 

concrete compressive strength. For boundary 

longitudinal reinforcement (ρL), the dimensional 

dataset shows higher median values for classes 

FS and SL compared to classes F and S, indicating 

strengthened boundary regions in walls subjected 

to flexure–shear and shear–sliding actions. 

However, in the normalized dataset (ρLfyL/fck), the 

medians become closer, IQRs narrow, and outlier 

counts rise, demonstrating that relative 

reinforcement and material strength effects 

become more pronounced once geometric scaling 

is removed. 

Normalization effectively eliminates the 

influence of absolute geometric scale and 

highlights the relative interplay among geometry, 

axial load, and material–reinforcement properties. 

The non-dimensional variables show convergence 

in median values but an increase in outlier 

frequency, reflecting the inherent variability in the 

interaction between material strength and 

reinforcement ratios. Overall, the distinctions 

among failure modes are not governed solely by 

geometry or load intensity, but are strongly 

influenced by the combined interaction of geometry 

materialreinforcement characteristics, which 

becomes more evident in the non-dimensional data 

space. 

CSDL 1- Data 435 samples CSDL 2- Data 569 samples 

  

 
 

Fig. 2. (continued) 

4. Machine Learning Methodology 

In this study, three representative machine 

learning models were selected to evaluate and 

compare their capability in classifying failure 

modes of reinforced concrete (RC) shear walls: 

Decision Tree (DT), Random Forest (RF), and 
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Extreme Gradient Boosting (XGBoost).The 

Decision Tree and Random Forest algorithms are 

widely recognised for their interpretability and have 

been extensively applied in structural engineering 

to predict material strength, identify failure modes, 

and model nonlinear structural behaviour [10], [12]. 

In contrast, XGBoost represents a more advanced 

gradient boosting approach capable of capturing 

highly nonlinear and interactive relationships 

among geometric, material, and load-related 

parameters, while maintaining high prediction 

accuracy and stability in multi-class classification 

problems [33]. 

These three models were selected to achieve 

a balance between interpretability and predictive 

performance, enabling both mechanics-based 

feature interpretation through SHAP analysis and 

robust evaluation of model accuracy and 

generalisation in RC shear wall failure mode 

classification. 

4.1. Decision Tree (DT) 

 The Decision Tree is a non-parametric 

supervised learning algorithm that recursively 

divides the dataset into non-overlapping 

subregions through hierarchical binary decisions 

[34]. Each internal node represents a split based 

on a specific input variable, while each terminal 

node (leaf) corresponds to a predicted output 

class. Tree induction involves two stages: (1) Tree 

building, where data are partitioned using impurity 

metrics such as the Gini Index or information gain, 

and (2). Tree pruning, where redundant branches 

are removed to prevent overfitting [35]. In this 

study, cost–complexity pruning was applied, and 

the pruning parameter was optimized via 10-fold 

cross-validation to achieve the best generalisation 

performance. 

4.2. Random Forest (RF) 

 The Random Forest algorithm, proposed by 

[36], is an ensemble learning technique that 

constructs multiple decision trees using bootstrap 

samples and random feature subsets [37]. Each 

tree independently contributes a classification 

result, and the final output is determined by 

majority voting. This combination reduces 

overfitting, enhances robustness, and allows the 

model to capture complex nonlinear relationships. 

Moreover, Random Forest provides feature 

importance estimates, derived from either impurity 

reduction (Gini importance) or permutation-based 

measures, enabling physical interpretation of the 

influence of each variable on the predicted failure 

mode. 

4.3. Extreme Gradient Boosting (XGBoost) 

The XGBoost algorithm [33] is a powerful 

extension of the gradient boosting framework that 

builds an ensemble of weak learners (typically 

shallow trees) in a sequential manner. At each 

iteration, a new tree is trained to minimize the 

residual errors (negative gradients) of the previous 

model, thus improving classification accuracy. 

XGBoost incorporates regularization terms (L1 and 

L2) to control model complexity and employs 

parallelized computation for high efficiency. 

Compared with Random Forest, XGBoost focuses 

on sequential gradient optimization rather than 

independent bagging, making it particularly 

effective for modeling nonlinear and coupled 

structural behaviors, such as interactions among 

axial load, geometry, and reinforcement ratios in 

RC shear walls. 

5. Identification of Failure Modes Using 

Machine Learning Models 

 The machine learning (ML) algorithms 

described in the previous section were employed 

to classify the failure modes of reinforced concrete 

(RC) shear walls using two complementary feature 

representations derived from the same 

experimental literature. The models were 

implemented using the open-source Python library 

Scikit-learn [38]. 

For each feature representation, 70% of the 

specimens were randomly selected for model 

training, while the remaining 30% were reserved as 

an independent test set for final performance 

evaluation. Within the training set, 10-fold cross-

validation combined with Gaussian-process-based 

Bayesian optimisation was used exclusively for 
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hyperparameter tuning, whereas the test set did 

not participate in either tuning or model selection. 

The classification performance of the ML 

models was evaluated using confusion matrices, 

as illustrated in Figs. 3 and 4 and summarised in 

Table 5. Each element Cij(i, j = 1,2,3,4) represents 

the number of specimens with the actual failure 

mode ipredicted as mode j. The diagonal elements 

(Cii) indicate correctly classified cases, while the 

off-diagonal elements correspond to 

misclassifications. Model performance was 

quantified using Accuracy, Precision, Recall, and 

F1-score. 

Accuracy measures the overall proportion of 

correct predictions across all classes. Precision 

represents the proportion of samples predicted to 

belong to a given class that truly belong to that 

class. Recall denotes the proportion of actual 

samples in a given class that are correctly 

identified by the model. 
 

   
Average Accuracy (10-Fold CV 

on training set): 0.8783 

Average Accuracy (10-Fold CV 

on training set): 0.8946 

Average Accuracy (10-Fold CV 

on training set): 0.9080 

a) Decision Tree – training set b) Random Forest - training c) XGBoost - training 

   

d) Decision Tree – testing set e) Random Forest – testing set f) XGBoost – testing set 

Fig. 3. Confusion matrix of classification models of various machine learning techniques using the 

training set and testing set for CSDL1: a) Decision Tree, b) Random Forest, g) XGBoost 

In addition, to provide a more comprehensive 

evaluation of classification performance, the Area 

Under the ROC Curve (AUC) was calculated for 

each failure mode, as shown in Fig. 5. Higher AUC 

values indicate better class separability and 

greater model robustness across both datasets. 

The confusion matrices for the two datasets 

– CSDL1 (dimensional) and CSDL2 (non-

dimensional) – reveal distinct differences in model 

generalization and stability. For CSDL1, all three 

models achieved high accuracy, with Random 

Forest (RF) performing best (Accuracy = 0.88 on 

the testing set) owing to its strong capability in 

capturing nonlinear interactions among geometric, 

loading, and reinforcement parameters. XGBoost 

(XGB) ranked second (Accuracy = 0.87), exhibiting 

consistent predictions across classes, particularly 

for Flexural (F) and Shear (S) failures where Recall 
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was nearly 100%. Conversely, Decision Tree (DT), 

though highly interpretable, showed mild 

overfitting, reducing its accuracy for transitional 

classes such as FS and SL. 
 

   

Average Accuracy (10-Fold CV 

on training set): 0.7938 

Average Accuracy (10-Fold CV 

on training set): 0.8468 

Average Accuracy (10-Fold CV 

on training set): 0.8242 

a) Decision Tree - training b) Random Forest - training c) XGBoost - training 

   

d) Decision Tree – testing set e) Random Forest – testing set f) XGBoost – testing set 

Fig. 4. Confusion matrix of classification models of various machine learning techniques using the 

training set and testing set for CSDL2: a) Decision Tree, b) Random Forest, g) XGBoost 

For CSDL2 (non-dimensional), the overall 

model stability improved as normalization 

eliminated the effects of units and scale. Random 

Forest remained the most stable model (Accuracy 

= 0.86), maintaining consistent classification 

across failure types and minimal deviation between 

training and testing sets. XGBoost also performed 

well (Accuracy = 0.84) but showed greater Recall 

variation in the SL class, reflecting sensitivity to 

class imbalance. Decision Tree, on the other hand, 

showed lower accuracy and reduced robustness 

due to its reliance on sample distribution. 

Overall, Random Forest demonstrated 

superior generalization and robustness across 

both datasets, while XGBoost achieved the highest 

accuracy on CSDL1 and maintained competitive 

performance on CSDL2. However, a closer look at 

the Precision–Recall results indicates that the 

discrepancies between intermediate classes (FS, 

SL) were more pronounced in the non-dimensional 

dataset than in the dimensional one. This 

phenomenon can be attributed to the loss of 

absolute physical scaling (moment, shear, axial 

load, wall height, and thickness) during 

normalization, which blurs the mechanical 

boundaries between flexure–shear and sliding 

mechanisms. As a result, when all features are 

represented as relative ratios, the models’ ability to 

distinguish transitional behaviors diminishes, 

leading to greater variability in Precision and 

Recall. 

In summary, the non-dimensional data 

representation enhances statistical consistency 

and generalization capability but simultaneously 
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reduces the mechanical separability of overlapping 

failure mechanisms, particularly between FS and 

SL modes. 

The AUC–ROC results demonstrate that all 

three models—Decision Tree, Random Forest, and 

XGBoost achieved strong classification 

performance, with average AUC values exceeding 

0.85, indicating reliable discrimination of RC shear 

wall failure modes. For CSDL1 (dimensional data), 

both Random Forest and XGBoost exhibited 

superior separation capability with AUC values 

ranging from 0.87 to 0.99, particularly stable for S 

and SL classes, while Decision Tree performed 

less consistently, especially for the transitional FS 

class (AUC = 0.77). This suggests that ensemble 

and boosting methods can capture nonlinear 

relationships among geometric, loading, and 

reinforcement parameters more effectively than 

single-tree models. In CSDL2 (non-dimensional 

data), the ensemble models showed slightly 

improved stability and generalization. Random 

Forest maintained the highest overall AUC (0.91–

0.98), while XGBoost remained competitive (AUC 

≈ 0.90–0.97) with minor variation in the FS class 

due to class imbalance. Although normalization 

improved statistical robustness, it slightly blurred 

the physical distinctiveness of variables, making 

the mechanical boundaries between FS and SL 

less pronounced. Overall, Random Forest proved 

to be the most stable and consistent model across 

both datasets, while XGBoost delivered the highest 

discrimination accuracy among the failure modes. 

Table 5. Summary table of prediction results on the test sets of the two databases 

Testing - CSDL1 (435 samples) 

No Models Class Precision Recall F1 - score Accuracy 

1 DT 

F 78% 82% 80% 

85% 
FS 64% 56% 60% 

S 93% 93% 93% 

SL 75% 75% 75% 

2 RF 

F 86% 82% 84% 

88% 
FS 67% 62% 65% 

S 93% 99% 96% 

SL 67% 50% 57% 

3 XGB 

F 89% 82% 85% 

87% 
FS 58% 69% 63% 

S 93% 96% 95% 

SL 100% 50% 67% 

Testing - CSDL2 (569 samples) 

No Models Class Precision Recall F1 - score Accuracy 

1 DT 

F 86% 85% 85% 

82% 
FS 67% 57% 62% 

S 90% 89% 89% 

SL 33% 100% 50% 

2 RF 

F 89% 90% 90% 

86% 
FS 73% 68% 70% 

S 91% 90% 90% 

SL 40% 67% 50% 

3 XGB 

F 89% 90% 90% 

84% 
FS 64% 64% 64% 

S 92% 88% 90% 

SL 17% 33% 22% 
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a) Decision Tree - CSDL1 b) Random Forest - CSDL1 

  

c) XGBoost  - CSDL1 d) Decision Tree – CSDL2 

  

e) Random Forest – CSDL2 f) XGBoost - CSDL2 

Fig. 5. Evaluation of Decision Tree, Random Forest, and XGBoost models based on AUC–ROC metrics 

for (CSDL1) and (CSDL2) datasets 
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6. SHAP-Based Feature Interpretation and 

Consistency with Structural Mechanics 

The SHAP-based feature importance 

analysis provides valuable insights into how each 

geometric, material, and reinforcement parameter 

contributes to predicting the failure modes of RC 

shear walls. When these results are compared with 

the underlying physical mechanisms, it becomes 

evident that the machine-learning models correctly 

identify the dominant structural factors governing 

each failure mode. The results of the analysis are 

shown in Figs. 6 and 7 for the two datasets CSDL1 

and CSDL2. 

 

  

  

Fig. 6. The percentage importance of each feature for classification model – Random forest of CSDL1 

The results demonstrate that transforming 

the dataset into a non-dimensional feature space is 

essential for accurately capturing the mechanics of 

failure in reinforced concrete shear walls. Unlike 

dimensional features which introduce scale 

dependence and lead the machine-learning model 

to overemphasize absolute geometric quantities 

the non-dimensional representation enables the 

Random Forest classifier to recover the correct 

physical behavior across all four primary failure 

modes: flexural (F), flexural–shear (FS), shear (S), 

and sliding-shear (SL). Notably, two parameters 

consistently emerge as the dominant predictors in 

every failure mode: the boundary area ratio 
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Ab/Ag and the wall slenderness ratio lw/tw. This 

finding aligns closely with structural mechanics: 

boundary elements dictate flexural capacity and 

ductility, while wall slenderness governs the 

transition between flexural-dominated and shear-

dominated responses. Reinforcement stress ratios 

such as ρvfyv/fc
′ and ρhfyh/fc

′ play secondary but 

meaningful roles in controlling cracking and 

increasing ductility. 

A direct comparison with [12] highlights a key 

methodological improvement. In their study, 

boundary properties were encoded using a 

discrete section-type variable (R/F/B), which does 

not quantify the actual extent of boundary 

elements. Consequently, the importance of 

tecontinuous boundary ratio Ab/Ag with broad 

variability across specimens, enabling the ML 

model to correctly capture the link between 

boundary confinement, flexural capacity, and the 

transition from flexural to shear or sliding failures. 

As a result, Ab/Ag becomes the most influential 

variable in all failure modes (30–40%), consistent 

with the governing role of boundary elements in [5], 

[6]. 

These observations confirm that the non-

dimensional dataset not only eliminates scale 

artifacts but also highlights the intrinsic physical 

relationships governing behavior: walls with strong 

boundary elements and large slenderness ratios 

tend to fail in flexure (F); walls with moderate 

boundaries and slenderness undergo flexural–

shear (FS); squat walls with limited boundary 

reinforcement fail in shear (S); and when both 

boundary capacity and slenderness are low, 

sliding-shear (SL) becomes likely due to large base 

slip and frictional mechanisms. The transition 

thresholds identified by the ML modelsuch as 

Ab/Ag > 0.12, lw/tw > 12, or P/(fc
′Ag) < 0.1 align 

well with codified detailing limits in ACI 318 and 

Eurocode 8 as well as experimental observations. 

Based on these findings, the study proposes 

design-oriented summary Table 6 and a quick 

classification checklist to assist engineers in 

predicting failure modes prior to nonlinear analysis. 

These tables consolidate the mechanical 

signatures of each failure mode, provide physical 

interpretations, and recommend specific detailing 

measures such as enhancing confinement for 

flexural failures, adding stirrups or diagonal 

reinforcement for flexural–shear behavior, 

increasing horizontal reinforcement for shear 

failures, and improving base friction or adding 

anchors for sliding-shear cases. These 

recommendations provide a foundation for 

developing machine-learning-informed design 

guidelines that may be incorporated into future 

structural standards in Vietnam. 
 

  

Fig. 7. The percentage importance of each feature for classification model – Random forest of CSDL2 
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Fig. 7. (continued) 

Table 6.  ML thresholds, code limits, and recommended values 

Variable Threshold from 

ML 

Code Limit (ACI/EC8) Recommended 

Threshold 

(Ab/Ag) 0.08–0.12 0.08–0.10 (ACI boundary element 

requirement) 

0.08–0.12 

(lw/tw) 8–12 ≈ 10–12 (slender wall criterion, EC8) 8–12 

(M/(V lw)) 
0.3–0.4 

≈ 0.4 (flexure–shear transition in nonlinear 

EC8) 

0.4 

(P/(f'cAg)) 0.05–0.1 0.1 (typical axial load ratio, ACI) 0.1 
 

7. Conclusion 

 This paper presented a mechanics-aware 

machine learning framework for classifying failure 

modes of reinforced concrete shear walls using 

both dimensional and non-dimensional feature 

spaces. A harmonised database was assembled 

from two sources and carefully checked for 

consistency in failure-mode labelling and 

parameter definitions. Three tree-based classifiers 

Decision Tree, Random Forest, and XGBoost were 

trained and validated through stratified train, test 

splits, k-fold cross-validation, confusion matrices, 

and AUC–ROC metrics. All models delivered 

strong performance, with average AUC values 

above 0.85, confirming that data-driven methods 

can reliably discriminate among flexural, flexure 

shear, shear, and sliding failures when provided 

with sufficiently rich experimental data. Random 

Forest exhibited the most stable generalisation 

across both datasets, whereas XGBoost achieved 

competitive accuracy, particularly for the 

dimensional feature set. 

The comparison between dimensional 

(CSDL1) and non-dimensional (CSDL2) feature 

spaces highlights a crucial distinction. While 

dimensional variables allow slightly higher 

accuracy in some classes, they tend to bias the 

models toward absolute geometric scales and 

obscure the underlying mechanics. In contrast, the 

non-dimensional representation yields comparable 

accuracy but significantly improves physical 

interpretability. SHAP-based feature analysis 

consistently identifies the boundary-to-gross area 

ratio Ab/Ag and wall slenderness lw/twas the 

dominant predictors for all failure modes, 

supported by reinforcement and axial-load ratios. 

These findings are fully consistent with 

experimental observations and with the role of 
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boundary elements and aspect ratio emphasised in 

ACI 318 and Eurocode 8.  

By analysing SHAP value transitions, the 

study proposes quantitative thresholds Ab/Ag ≈

0.08 − 0.12, lw/tw ≈ 8 − 12, M/(Vlw) ≈ 0.4, and 

P/(fc
′Ag) ≈ 0.1 that delineate the transition from 

flexural to flexure–shear, shear, and sliding-shear 

behaviour. These limits are consistent with code 

provisions and previous research yet are obtained 

independently from the data, providing a 

mechanics-informed validation of existing design 

criteria. The results are summarised in design-

oriented tables and a quick classification checklist 

that link predicted failure modes to detailing 

recommendations, offering a practical tool for 

preliminary seismic assessment and design. 

Despite these promising outcomes, several 

limitations remain. Class imbalance, particularly for 

sliding failure, may still influence the robustness of 

the models; future work should explore resampling 

strategies and larger experimental datasets. 

Moreover, the present models are developed for 

monotonic or quasi-static cyclic tests; extension to 

realistic earthquake loading histories and three-

dimensional wall systems is a natural next step. 

Nonetheless, the study demonstrates the potential 

of mechanics-informed ML to bridge experimental 

databases, code provisions, and engineering 

judgement, and provides a foundation for future 

data-driven calibration of seismic design 

guidelines, including prospective updates to 

Vietnamese standards. 
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