Journal of Science and Transport Technology Vol. 5 No. 4, 218-237

S I I Journal of Science and Transport Technology
Journal homepage: https://jstt.vn/index.php/en

AND TRANSPORT TECHNOLOGY

Article info
Type of article:
Original research paper

DOI:
https://doi.org/10.58845/jstt.utt.2

025.en.5.4.218-237

"Corresponding author:
Email address:
chienmv@utt.edu.vn

Received: 29/09/2025
Received in Revised Form:
27/11/2025

Accepted: 15/12/2025

Mechanics-Aware Machine Learning
Classification of Reinforced Concrete Shear
Wall Failure Modes Using Dimensional and

Non-Dimensional Features

Anh Le The', Chien Mai Van2’, Phien Vu Dinh2, Khuyen Truong Manh', Cuong
Dan Quoc?®

'Faculty of Civil Engineering, Hanoi Architectural University.
anhlt@hau.edu.vn, khuyentm@hau.edu.vn

2Advanced Materials and Intelligent Systems for Infrastructure and High-Speed
Rail (AMIS-HSR) research group, University of Transport Technology, Hanoi,
Vietnam.

chienmv@utt.edu.vn, phienvd@utt.edu.vn

3Faculty of Information Technology, Hanoi Architectural University.
cuongdg@hau.edu.vn

Abstract: Accurate classification of failure modes in reinforced concrete (RC)
shear walls is essential for performance-based seismic design, yet current
code-based criteria rely mainly on simple geometric indicators and cannot fully
capture the nonlinear interaction among geometry, axial load, reinforcement,
and boundary confinement. This study develops a mechanics-aware machine
learning (ML) framework to classify four experimentally observed failure modes
flexural (F), flexure shear (FS), shear (S), and sliding (SL) using both
dimensional and non-dimensional feature spaces. The experimental data used
in this study are analysed through two complementary representations: a
dimensional dataset (CSDL1, 435 specimens) based on conventional
geometric and material parameters, and a non-dimensional, mechanics-
informed dataset (CSDL2, 569 specimens) expressed in terms of physically
motivated ratios (Av/Ag, Iw/tw, P/(fc'Ag), pr/fe’), both constructed from the same
body of published experimental studies. Three representative tree-based
algorithms—Decision Tree, Random Forest, and XGBoost were trained and
evaluated using 70/30 train—test splits, 10-fold cross-validation, confusion
matrices, and AUC-ROC metrics. All models achieved strong multi-class
performance with average AUC values above 0.85. Random Forest provided
the most stable generalisation across both feature representations, while
XGBoost attained comparable accuracy. More importantly, the non-
dimensional feature space enhanced physical interpretability: SHAP analysis
consistently identified the boundary-to-gross area ratio (Aw/Ag) and wall
slenderness (lw/tw) as the dominant predictors for all failure modes, followed by
reinforcement and axial-load ratios. The ML-derived transition thresholds
(Ao/Ag= 0.08-0.12, lw/tw= 8-12, M/(VIw) = 0.4, and P/(fc'Ag) = 0.1) align well with
conceptual limits in ACI 318 and Eurocode 8. The study therefore
demonstrates that mechanics-informed, non-dimensional features not only

JSTT 2025, 5 (4), 218-237

Published online 25/12/2025


https://jstt.vn/index.php/en
https://doi.org/10.58845/jstt.utt.2025.en.5.4.218-237
https://doi.org/10.58845/jstt.utt.2025.en.5.4.218-237
mailto:chienmv@utt.edu.vn
mailto:anhlt@hau.edu.vn
mailto:khuyentm@hau.edu.vn
mailto:chienmv@utt.edu.vn
mailto:phienvd@utt.edu.vn

Journal of Science and Transport Technology Vol. 5 No. 4, 218-237

Journal of Science and Transport Technology

AND TRANSPORT TECHNOLOGY

Journal homepage: https://jstt.vn/index.php/en

Abstract: (continued) sustain high predictive accuracy but also recover the
underlying physics of wall behaviour, enabling design-oriented summary tables
and a quick failure-mode classification checklist for practical seismic design

and assessment.

Keywords: Reinforced concrete shear walls, failure mode classification,
machine learning, dimensional analysis, non-dimensional features, XGBoost,
Random Forest, SHAP, feature importance, seismic design.

1. Introduction

Reinforced concrete (RC) shear walls are
fundamental lateral load resisting components in
modern reinforced concrete structures, particularly
in regions of high seismicity. Under combined axial
compression and in plane lateral loading, these
walls may fail through distinct mechanisms
depending on their geometric proportions,
reinforcement configuration, axial load level, and
boundary confinement conditions [1],[2],[3].
Accurate prediction of failure mechanismsflexural
(F), flexure—shear (FS), shear (S), and sliding (SL)
is essential for performance-based seismic design,
as these modes exhibit markedly different ductility,
energy dissipation capacity, and post yield
behavior [4].

Existing design standards such as ACI 318-
19, Eurocode 8 (EN 1998-1:2023), and CSAA23.3-
19 classify wall behavior primarily based on
geometric indicators like aspect ratio (h,,/l,,) or
empirical limits on shear-to-flexural strength ratios
[5],[6]1,[7]. However, such simplified criteria fail to
capture the complex, nonlinear, and
multidimensional interactions among geometry,
material properties, and load effects that govern
wall behavior [8],[9]. Experimental investigations
have consistently demonstrated that the transition
between different failure modubu es is not
governed by a single variable but by the combined
influence of axial load ratio, reinforcement
detailing, and boundary confinement [1],[3].

In recent years, machine learning (ML) has
emerged as a powerful approach for predicting
structural behavior, capable of learning nonlinear,
high dimensional relationships from experimental
data without relying on explicit constitutive models.
Applications in structural engineering have
included concrete strength prediction [10],
structural damage detection [11], and seismic
response modeling [12],[13],[14],[15]. For RC
shear walls, several studies have developed ML-
based models to predict shear strength [16], but
failure mode classification a critical factor
determining drift capacity and design detailing has
received limited attention. Integrating both strength
prediction and mode classification provides a
comprehensive basis for understanding the
seismic performance of RC walls.

A key limitation of existing ML approaches
lies in their reliance on dimensional features (e.g.,
mm, kN, MPa), which are sensitive to unit systems,
scale effects, and lack physical interpretability. In
contrast, non-dimensional (dimensionless)
parameters such as aspect ratio (a/d),
reinforcement indices (p;, p;), and axial load ratio
(P/f.Ag) are widely recognized in structural
mechanics  for  representing  fundamental
behavioral ratios that remain invariant to scale [17].
Such normalized variables can enhance the
generalization and physical interpretability of ML
models, particularly in problems governed by
mechanical similitude.
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Accordingly, this study aims to develop and
compare machine learning models for predicting
shear strength and classifying failure modes of RC
shear walls using both dimensional and non-
dimensional feature spaces. Two comprehensive
experimental databases were compiled and
harmonized: (i) CSDL1 (435 specimens) with
dimensional parameters, and (ii) CSDL2 (569
specimens) with normalized mechanical ratios.
Three representative ML algorithms Decision Tree,
Random Forest, and XGBoost are employed to
evaluate the influence of feature representation on
model performance, generalization, and
interpretability.

Beyond predictive capability, this research
emphasizes model explainability through the
SHAP (SHapley Additive Explanations) framework,
enabling the identification of the most influential
features and their physical significance. By linking
statistical feature importance to mechanical
principles, the study bridges data-driven prediction
with structural interpretation, ensuring that ML
models not only predict accurately but also remain
consistent with the underlying physics of wall
behavior.

The anticipated contributions of this study are
threefold:

(1) Establishing a systematic comparison
between dimensional and non-dimensional
datasets for ML-based prediction of RC shear wall
behavior;

(2) Developing a physics-informed
interpretive framework that integrates SHAP-
based feature analysis with structural mechanics
concepts; and

(3) Providing insights to support data-driven
calibration of design equations and seismic design
guidelines.

2. Background and Theoretical Basis
21. RC Shear Wall Failure Modes and
Mechanical Characteristics

When subjected to combined axial
compression and in-plane lateral loading,
reinforced concrete (RC) shear walls may fail
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through four principal mechanisms as shown in
Fig. 1, including: flexural (F), flexure—shear (FS),
shear (S), and sliding (SL). Each failure mode
reflects a distinct internal stress redistribution and
deformation pattern, and is recognised in major
seismic design standards such as [5],[6],[7],[18].
These mechanisms are governed by the relative
dominance of flexural, shear, or sliding actions, as
well as the contribution of vertical and horizontal
reinforcement to energy dissipation and ductility
capacity [1],[3],[4].

(a) Flexural Failure (F)

Flexural failure typically occurs in slender
walls (hw/lv > 3.0) where bending deformation
dominates over shear distortion. The response is
governed by flexural yielding of longitudinal
reinforcement at the wall boundaries, accompanied
by concrete crushing in the compression toe,
forming a well-defined plastic hinge at the base [5],
[6].[19].

Vertical reinforcement primarily resists the
bending moment and controls vertical cracking,
while horizontal reinforcement confines the
boundary region and prevents bar buckling. The
behavior is ductile, characterized by stable post-
yield stiffness, large lateral drift capacity (6 > 2%),
and high hysteretic energy dissipation [4]. This
mode is regarded as the desired ductile
mechanism in seismic design because it allows
controlled plastic hinge formation before strength
degradation.

(b) Flexure—Shear Failure (FS)

The flexure—shear mode represents a
hybrid transition mechanism that occurs in
moderately slender walls (1.5 < hw/lw < 3.0) where
both flexural and shear deformations are
significant. Initially, vertical flexural cracks form
near the wall base, followed by the development of
inclined diagonal cracks in the web once the
principal tensile stress exceeds the concrete
tensile strength.

This behavior reflects a gradual transition
from flexure-dominated to shear-dominated
response, accompanied by stiffness degradation
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and mixed deformation patterns [5],[6],[19]. The
interaction between flexural yielding and diagonal
shear cracking results in moderate ductility (1% <
0 < 2%), with energy dissipation reduced compared
to pure flexural behavior. The horizontal
reinforcement enhances shear transfer and limits
crack widening, while vertical reinforcement
maintains ductility and delays brittle diagonal
failure [1],[20].

(c) Shear Failure (S)

Shear failure occurs predominantly in squat
walls (hw/lv < 1.5) with high shear demand or
insufficient horizontal web reinforcement. The
failure mechanism is governed by diagonal tension
cracking and diagonal compression strut crushing,
which cause abrupt loss of strength and stiffness
[5L.L7].

When the shear stress v = V/(b,,d) exceeds
approximately 0.25\/f_c’(in MPa), brittle failure may
occur. The horizontal reinforcement provides the
primary resistance against diagonal tension and
prevents crack propagation, while the vertical
reinforcement  enhances confinement and

-
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anchorage at the wall boundaries. The overall
behavior is brittle, characterized by low ductility (&
< 1%), sudden strength degradation, and small drift
capacity [3],[4].

(d) Sliding Shear Failure (SL)

Sliding shear failure is governed by
horizontal slip along a base interface or
construction joint, often after extensive flexural
cracking and vyielding have degraded the shear
transfer mechanisms. It is characterized by the
formation of a dominant horizontal crack at or near
the wall base, followed by relative displacement
between upper and lower wall segments [5],[6],
[19]. This mechanism is controlled by aggregate
interlock, dowel action of vertical bars, and
frictional resistance along the sliding plane. Vertical
reinforcement improves dowel action and frictional
resistance, while horizontal reinforcement provides
clamping action and enhances shear resistance.
Sliding failure is typically observed in walls with
insufficient shear keys or weak construction joints,
and exhibits abrupt strength loss and limited
energy dissipation [1],[20].
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Fig. 1. Schematic illustrations of the four failure modes with typical crack patterns and deformed shapes

2.2. Physical Interpretation of Dimensional and
Non-Dimensional Parameters

Experimental data for RC shear walls are
typically recorded in dimensional form with physical
units (e.g., kN for forces, MPa for stresses, mm for
dimensions). While these measurements directly
reflect laboratory observations, dimensional
parameters are inherently scale-dependent and
sensitive to unit systems, which limits their ability to
represent the fundamental physics governing

structural behaviour across different specimen
sizes and configurations. Non-dimensional
parameters, derived through normalisation by
characteristic mechanical quantities, capture the
essential physics while being invariant to unit
systems and specimen scale. This transformation
from dimensional to non-dimensional space is
grounded in dimensional analysis principles [21]
and has been standard practice in mechanics for
over a century. For RC shear walls, appropriate
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non-dimensional parameters arise naturally from

relationships.

Le et al

The transformation can be

equilibrium,  compatibility, and  constitutive expressed conceptually as:
Table 1. Non-dimensional parameters and their physical significance
No Symbol Physical Interpretation Mechanical Significance
Reflects the d f int tion bet
Ratio between the bending moment and etiects the degree o |.n era.c |o.n .eween
flexural and shear actions, indicating the
1 M/NVl the product of shear force and wall oo
tendency of the wall to fail in flexure or
length.
shear.
Represents the geometric slenderness of
2 It Ratio between wall height and wall the wall — slender walls tend to flexural
wi tw

thickness.

behavior, while squat walls are shear-
dominated.

3 pvfyv/ fck

Ratio between the product of longitudinal
reinforcement ratio and steel yield
strength to concrete compressive
strength.

Indicates the contribution of longitudinal
reinforcement to the flexural capacity and
the ability to resist combined flexure—
shear behavior.

4 phfyh/ fck

Ratio between the product of horizontal
web reinforcement ratio and steel yield
strength to concrete compressive
strength.

Characterizes the ability of horizontal
reinfforcement to restrain  diagonal
cracking and enhance shear resistance of
the wall web.

5 pufyffe

Ratio between the product of boundary
longitudinal reinforcement ratio and steel
yield strength to concrete compressive
strength.

Represents the role of boundary elements
in improving flexural confinement and
delaying the onset of boundary crushing
failure.

Ratio between axial load and nominal

Reflects the influence of axial load on the
interaction between shear and flexural

6 P/faA compressive capacity of the cross-
o9 P pactty responses, affecting failure = mode
section. .
transitions.
Shape of Geometric shape of the wall cross- Defines the sectional type, which governs
7 p section (B: Barbell; R: Rectangular; E: the stress distribution, stiffness, and
Section L.
Flanged). strength characteristics of the wall.
. . Quantifies the concentration of boundary
Ratio between boundary reinforcement , ,
8 Av/Ag , reinforcement, closely related to the wall’s
area and gross cross-sectional area. _ ,
shear strength and confinement capacity.
Dimensional data — Normalisation by  aligned with dimensionless groups that appear

characteristic mechanical
dimensional parameters.

quantites — Non-

naturally in theoretical formulations and code
provisions.

This  physics-informed  feature

Table 1 summarises the key non-dimensional
parameters employed in this study, their
mechanical interpretation, and their relationship to
failure mode transitions.

By expressing all features in non-
dimensional form, the models become physically
meaningful, scale-independent, and directly

engineering is hypothesised to enhance both

model generalisation and interpretability.

3. Experimental Database and

Engineering

3.1. Data Sources and Collection Methodology
The experimental data used in this study are

drawn from a common pool of published RC shear

Feature
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wall tests and are analysed using two
complementary feature representations: a
dimensional dataset (CSDL1) and a non-
dimensional, mechanics-informed dataset
(CSDL2):

CSDL1 (435 specimens): A dataset

originally assembled by [22], [23], [24], [25], [26],
[27, p. 31], [27], [28], [29], [30], [31], [32], covering
tests published between 1970 and 2020 from peer-
reviewed journals and conference proceedings.
This database includes a wide range of wall
geometries, reinforcement configurations, and
loading protocols.

CSDL2 (569 specimens): An independently
compiled dataset focusing on more recent
experimental campaigns (1970-2020) [22], [23],
[24], [25], [26], [27, p. 31], [27], [28], [29], [30], [31],
[32], with enhanced representation of modern high-
strength concrete walls and non-conventional
reinforcement layouts.

Each specimen record includes: Geometric
parameters: wall height (hw), length (lv), web
thickness (tw), flange dimensions (bs, t;), cross-
sectional shape (rectangular, barbell, flanged);
Material properties: concrete compressive strength
(f'c), vertical web reinforcement ratio (py) and yield
strength (fy,v), horizontal web reinforcement ratio
(pn) and yield strength (fyn), boundary element
longitudinal reinforcement ratio (p.) and vyield
strength (f,.); Loading conditions: applied axial load
(P), experimental shear strength (Vexp), applied
moment (M). Observed failure mode: classified as
F, FS, S, or SL based on experimental observations
and reported cracking patterns.

3.2. Data Harmonisation and Quality Control

A critical challenge in assembling multi-
source databases is ensuring consistency in failure
mode classification, as different researchers may
apply varying criteria or subjective judgements. To
address this issue, the following harmonisation
procedure was implemented:

Step 1 — Literature Review: Original test
reports and publications were retrieved and
reviewed to verify reported failure modes based on

Le et al

photographic evidence, crack pattern descriptions,
and load-displacement responses.

Step 2 — Classification Criteria: Consistent
classification rules were applied based on:

- Flexural (F): Yielding of boundary
reinforcement, concrete crushing at compression
toe, vertical cracks predominantly near wall edges

- Flexure-Shear (FS): Initial flexural cracking
followed by diagonal shear cracks in web region,
partial yielding of boundary reinforcement

- Shear (S): Diagonal tension or
compression failure, extensive web cracking,
limited boundary yielding

- Sliding (SL): Dominant horizontal crack at
base, significant slip displacement along crack
plane

Step 3 — Ambiguous Cases: For specimens
where failure mode classification was uncertain or
conflicting between sources, the following tie-
breaking procedure was applied: (a) prioritise
classifications from original investigators, (b) cross-
reference with photographic evidence when
available, (c) exclude specimens with insufficient
documentation.

Step 4 — Data Cleaning: Specimens with
missing critical parameters, obvious reporting
errors, or inconsistent units were removed. A total
of more than 100 specimens were excluded during
this quality control phase.

3.3. Class Distribution and Dataset
Characteristics
Both datasets exhibit significant class

imbalance, reflecting the empirical reality that
shear and flexural failures are more commonly
observed in RC shear wall testing programmes
than sliding failures. Table 2 summarises the class
distribution for both databases.

The class imbalance presents challenges for
ML model training, as algorithms may develop bias
toward majority classes. To address this issue,
stratified sampling procedures and class-weighted
loss functions were employed during model
training (detailed in Section 5).

The statistical distribution of the input
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variables by failure mode, as illustrated in Fig. 2,
and Table 3, 4 reveals significant differences
between the dimensional and non-dimensional

Le et al

feature spaces in terms of their mechanical
characteristics.
(1) Geometric Parameters

Table 2. Failure mode class distribution in CSDL1 and CSDL2 datasets

CSDL1
(n=435 samples)

Failure Mode

CSDL2
(n=569 samples)

Flexural (F) 108 (24.83%) 172 (39.54%)
Flexure-Shear (FS) 51 (11.72%) 99 (22.76%)
Shear (S) 252 (57.93%) 275 (63.22%)
Sliding (SL) 14 (3.22%) 23 (5.29%)

Table 3. Features of shear stren

gth database for RC walls of CSDL1

Features Mean Standard deviation Minimum 25% 50% 75% Maximum
hw (mm)  1349,08 983,35 145,00 600,00 1200,00 1750,00 4572,00
lw(mm)  1299,35 780,48 420,00 700,00 1000,00 1720,00 3960,00
tw(mm) 96,19 49,35 10,00 67,00 100,00 125,00 203,00
tr (mm) 69,65 79,00 0,00 0,00 60,00 102,00 360,00
br (mm) 324,84 398,88 42,00 100,00 160,00 400,00 3045,00
fo (MPa) 37,34 20,72 13,70 23,50 32,80 43,40 130,80
pv (%) 0,82 0,84 0,00 0,38 0,60 1,01 6,24
fv (MPa) 429,62 104,57 235,00 352,00 422,00 477,85 792,00
pr (%) 0,70 0,48 0,00 0,33 0,57 0,92 3,67
fyn (MPa) 430,37 108,83 235,00 350,00 405,00 504,00 806,00
pL (%) 3,01 2,02 0,35 1,32 2,41 4,70 9,91
f. (MPa) 512,98 156,34 235,00 382,20 533,20 640,00 980,00
P (kN) 434,92 534,93 0,00 0,00 135,00 859,00 2364,00
Vexp (KN) 755,18 969,69 0,00 125,50 368,00 899,50 7060,00
Table 4. Features of shear strength database for RC walls of CSDL2

Features Mean Standard deviation Minimum 25% 50% 75% Maximum

M/VIy 1,22 0,69 0,25 066 1,00 1,76 4,10

[w/tw 14,92 8,30 4,35 10,00 13,33 18,68 57,00

pv fy/fex 0,09 0,07 0,00 0,04 0,07 0,11 0,49

Pn* fyn/fex 0,08 0,06 0,00 0,04 0,07 0,11 0,33

pL*fyL/fex 0,34 0,33 0,00 0,14 0,25 0,42 2,65

Plfe*Ag 0,07 0,10 0,00 0,00 0,03 0,09 0,50

Au/Ag 0,14 0,13 0,00 0,00 0,17 0,26 0,44

The results indicate that classes FS and SL
exhibit higher median wall lengths (l,,) compared
to other classes, while class S shows the widest
interquartile range (IQR) and the largest absolute

wall lengths. This reflects the tendency of shear—
sliding failures to occur in taller and more slender
walls. In contrast, class F has the lowest median
ly, representing flexural failures typical of short
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walls with lower aspect ratios. After normalization
by the wall thickness (l,,/t./), the medians across
classes become closer and the IQRs significantly
narrower, indicating that the influence of absolute
geometric scale has been removed. This highlights
the role of slenderness as a key descriptor
governing the failure mechanism. However, class
S still maintains high variability and numerous
outliers, suggesting that geometric dimensions
alone cannot fully explain the differences in failure
modes without considering the combined effects of
axial load and reinforcement ratio.

(2) Axial Load Parameters

CSDL 1- Data 435 samples

Distribution of /,, in classes
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In the dimensional dataset, class F exhibits
the highest median axial load (P), reflecting the
higher compressive capacity of flexural-type walls.
Class S presents the widest distribution range,
consistent with the sensitivity of shear failures to
variations in axial compression. After normalization
into P/(fckAg), the data become more compact with
smaller IQRs, but a greater number of outliers
appear particularly in class F. This suggests that
normalized axial load ratios vary notably among
specimens, capturing the relative sensitivity of
flexural mechanisms to axial load intensity
compared with material strength.

CSDL 2- Data 569 samples
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Fig. 2. Grap the box plot of CSDL 1 and CSDL 2

(3) Reinforcement Parameters
For vertical reinforcement in the wall web

(py), the median values are generally similar
across failure classes, although some samples in
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classes S and F exhibit higher values, reflecting
local reinforcement enhancement to improve
bending and shear resistance. When normalized
as pyfyy/fe, class medians converge, but the
number of outliers increases significantly,
indicating the combined influence of material
strength and relative reinforcement levels.
Regarding horizontal reinforcement (py,), all
classes show comparable medians, but class S
has a wider IQR and more outliers, corresponding
to its role in resisting diagonal cracking and
enhancing shear strength. In the non-dimensional
space (pnfyn/fek), the IQRs of all classes increase
and more outliers appear, reflecting the diversity in
the relationship between stirrup strength and
concrete compressive strength. For boundary
longitudinal reinforcement (p;), the dimensional
dataset shows higher median values for classes
FS and SL compared to classes F and S, indicating
strengthened boundary regions in walls subjected
to flexure—shear and shear-sliding actions.

CSDL 1- Data 435 samples

Distribution of pj, in classes

—_— 4 1 [s]
-c\?‘
L
Q (=] Q
2 1 o [=]
T 8
. O T H
0 i ; . ;
< < S S
Distribution of p; in classes
. 10 ) o
a?‘ [e]
"_: [
® 5l 8
0L —F ‘

Le et al

However, in the normalized dataset (pyfy1./fck), the
medians become closer, IQRs narrow, and outlier
counts rise, demonstrating that relative
reinforcement and material strength effects
become more pronounced once geometric scaling
is removed.

Normalization effectively eliminates the
influence of absolute geometric scale and
highlights the relative interplay among geometry,
axial load, and material-reinforcement properties.
The non-dimensional variables show convergence
in median values but an increase in outlier
frequency, reflecting the inherent variability in the
interaction between material strength and
reinforcement ratios. Overall, the distinctions
among failure modes are not governed solely by
geometry or load intensity, but are strongly
influenced by the combined interaction of geometry
materialreinforcement characteristics, which
becomes more evident in the non-dimensional data
space.

CSDL 2- Data 569 samples
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Fig. 2. (continued)

4. Machine Learning Methodology
In this study, three representative machine
learning models were selected to evaluate and

compare their capability in classifying failure
modes of reinforced concrete (RC) shear walls:
Decision Tree (DT), Random Forest (RF), and
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Extreme Gradient Boosting (XGBoost).The
Decision Tree and Random Forest algorithms are
widely recognised for their interpretability and have
been extensively applied in structural engineering
to predict material strength, identify failure modes,
and model nonlinear structural behaviour [10], [12].
In contrast, XGBoost represents a more advanced
gradient boosting approach capable of capturing
highly nonlinear and interactive relationships
among geometric, material, and load-related
parameters, while maintaining high prediction
accuracy and stability in multi-class classification
problems [33].

These three models were selected to achieve
a balance between interpretability and predictive
performance, enabling both mechanics-based
feature interpretation through SHAP analysis and
robust evaluation of model accuracy and
generalisation in RC shear wall failure mode
classification.
4.1. Decision Tree (DT)

The Decision Tree is a non-parametric
supervised learning algorithm that recursively
divides the dataset into non-overlapping
subregions through hierarchical binary decisions
[34]. Each internal node represents a split based
on a specific input variable, while each terminal
node (leaf) corresponds to a predicted output
class. Tree induction involves two stages: (1) Tree
building, where data are partitioned using impurity
metrics such as the Gini Index or information gain,
and (2). Tree pruning, where redundant branches
are removed to prevent overfitting [35]. In this
study, cost—complexity pruning was applied, and
the pruning parameter was optimized via 10-fold
cross-validation to achieve the best generalisation
performance.

4.2. Random Forest (RF)

The Random Forest algorithm, proposed by
[36], is an ensemble learning technique that
constructs multiple decision trees using bootstrap
samples and random feature subsets [37]. Each
tree independently contributes a classification
result, and the final output is determined by
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majority voting. This combination reduces
overfitting, enhances robustness, and allows the
model to capture complex nonlinear relationships.
Moreover, Random Forest provides feature
importance estimates, derived from either impurity
reduction (Gini importance) or permutation-based
measures, enabling physical interpretation of the
influence of each variable on the predicted failure
mode.

4.3. Extreme Gradient Boosting (XGBoost)

The XGBoost algorithm [33] is a powerful
extension of the gradient boosting framework that
builds an ensemble of weak learners (typically
shallow trees) in a sequential manner. At each
iteration, a new tree is trained to minimize the
residual errors (negative gradients) of the previous
model, thus improving classification accuracy.
XGBoost incorporates regularization terms (L1 and
Lo) to control model complexity and employs
parallelized computation for high efficiency.
Compared with Random Forest, XGBoost focuses
on sequential gradient optimization rather than
independent bagging, making it particularly
effective for modeling nonlinear and coupled
structural behaviors, such as interactions among
axial load, geometry, and reinforcement ratios in
RC shear walls.

5. Identification of Failure
Machine Learning Models

The machine learning (ML) algorithms
described in the previous section were employed
to classify the failure modes of reinforced concrete
(RC) shear walls using two complementary feature
representations derived from the same
experimental literature. The models were
implemented using the open-source Python library
Scikit-learn [38].

For each feature representation, 70% of the
specimens were randomly selected for model
training, while the remaining 30% were reserved as
an independent test set for final performance
evaluation. Within the training set, 10-fold cross-
validation combined with Gaussian-process-based
Bayesian optimisation was used exclusively for

Modes Using
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hyperparameter tuning, whereas the test set did

not participate in either tuning or model selection.
The classification performance of the ML
models was evaluated using confusion matrices,
as illustrated in Figs. 3 and 4 and summarised in
Table 5. Each element Cj(i,j = 1,2,3,4) represents
the number of specimens with the actual failure
mode ipredicted as mode j. The diagonal elements
(C;;) indicate correctly classified cases, while the
off-diagonal elements correspond to
Predicted class

Predicted class

Le et al

misclassifications. Model performance was
quantified using Accuracy, Precision, Recall, and
F1-score.

Accuracy measures the overall proportion of
correct predictions across all classes. Precision
represents the proportion of samples predicted to
belong to a given class that truly belong to that
class. Recall denotes the proportion of actual
samples in a given class that are correctly
identified by the model.

Predicted class
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Fig. 3. Confusion matrix of classification models of various machine learning techniques using the
training set and testing set for CSDL1: a) Decision Tree, b) Random Forest, g) XGBoost

In addition, to provide a more comprehensive
evaluation of classification performance, the Area
Under the ROC Curve (AUC) was calculated for
each failure mode, as shown in Fig. 5. Higher AUC
values indicate Dbetter class separability and
greater model robustness across both datasets.

The confusion matrices for the two datasets
— CSDL1 (dimensional) and CSDL2 (non-
dimensional) — reveal distinct differences in model

generalization and stability. For CSDL1, all three
models achieved high accuracy, with Random
Forest (RF) performing best (Accuracy = 0.88 on
the testing set) owing to its strong capability in
capturing nonlinear interactions among geometric,
loading, and reinforcement parameters. XGBoost
(XGB) ranked second (Accuracy = 0.87), exhibiting
consistent predictions across classes, particularly
for Flexural (F) and Shear (S) failures where Recall
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was nearly 100%. Conversely, Decision Tree (DT),
though highly interpretable, showed mild

Le et al

overfitting, reducing its accuracy for transitional
classes such as FS and SL.
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Fig. 4. Confusion matrix of classification models of various machine learning techniques using the
training set and testing set for CSDL2: a) Decision Tree, b) Random Forest, g) XGBoost

For CSDL2 (non-dimensional), the overall
model stability improved as normalization
eliminated the effects of units and scale. Random
Forest remained the most stable model (Accuracy
= 0.86), maintaining consistent classification
across failure types and minimal deviation between
training and testing sets. XGBoost also performed
well (Accuracy = 0.84) but showed greater Recall
variation in the SL class, reflecting sensitivity to
class imbalance. Decision Tree, on the other hand,
showed lower accuracy and reduced robustness
due to its reliance on sample distribution.

Overall, Random Forest demonstrated
superior generalization and robustness across
both datasets, while XGBoost achieved the highest
accuracy on CSDL1 and maintained competitive
performance on CSDL2. However, a closer look at

the Precision—Recall results indicates that the
discrepancies between intermediate classes (FS,
SL) were more pronounced in the non-dimensional
dataset than in the dimensional one. This
phenomenon can be attributed to the loss of
absolute physical scaling (moment, shear, axial
load, wall height, and thickness) during
normalization, which blurs the mechanical
boundaries between flexure—shear and sliding
mechanisms. As a result, when all features are
represented as relative ratios, the models’ ability to
distinguish transitional behaviors diminishes,
leading to greater variability in Precision and
Recall.

In summary, the non-dimensional data
representation enhances statistical consistency
and generalization capability but simultaneously
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reduces the mechanical separability of overlapping
failure mechanisms, particularly between FS and
SL modes.

The AUC-ROC results demonstrate that all
three models—Decision Tree, Random Forest, and
XGBoost achieved strong classification
performance, with average AUC values exceeding
0.85, indicating reliable discrimination of RC shear
wall failure modes. For CSDL1 (dimensional data),
both Random Forest and XGBoost exhibited
superior separation capability with AUC values
ranging from 0.87 to 0.99, particularly stable for S
and SL classes, while Decision Tree performed
less consistently, especially for the transitional FS
class (AUC = 0.77). This suggests that ensemble
and boosting methods can capture nonlinear

Le et al

relationships among geometric, loading, and
reinforcement parameters more effectively than
single-tree models. In CSDL2 (non-dimensional
data), the ensemble models showed slightly
improved stability and generalization. Random
Forest maintained the highest overall AUC (0.91-
0.98), while XGBoost remained competitive (AUC
= 0.90-0.97) with minor variation in the FS class
due to class imbalance. Although normalization
improved statistical robustness, it slightly blurred
the physical distinctiveness of variables, making
the mechanical boundaries between FS and SL
less pronounced. Overall, Random Forest proved
to be the most stable and consistent model across
both datasets, while XGBoost delivered the highest
discrimination accuracy among the failure modes.

Table 5. Summary table of prediction results on the test sets of the two databases

Testing - CSDL1 (435 samples)

No Models Class Precision Recall Fi-score Accuracy
F 78% 82% 80%
FS 64% 56% 60%

1 DT 85%
S 93%  93% 93% °
SL 75% 75% 75%
F 86% 82% 84%
FS 67% 62% 65%

2 RF 88%
S 93%  99% 96% °
SL 67% 50% 57%
F 89% 82% 85%
FS 58% 69% 63%

3 XGB 879
S 93% 96% 95% &
SL 100% 50% 67%

Testing - CSDL2 (569 samples)

No Models Class Precision Recall Fq-score Accuracy
F 86% 85% 85%
FS 67% 57% 62%

1 DT 829
S 90% 89% 89% &
SL 33% 100% 50%
F 89% 90% 90%
FS 73% 68% 70%

2 RF 86%
S 91%  90% 90% °
SL 40% 67% 50%
F 89% 90% 90%
FS 64% 64% 64%

3 XGB 849
S 92% 88% 90% %
SL 17% 33% 22%
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Fig. 5. Evaluation of Decision Tree, Random Forest, and XGBoost models based on AUC-ROC metrics
for (CSDL1) and (CSDL2) datasets
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6. SHAP-Based Feature Interpretation and
Consistency with Structural Mechanics

The SHAP-based feature importance
analysis provides valuable insights into how each
geometric, material, and reinforcement parameter
contributes to predicting the failure modes of RC
shear walls. When these results are compared with
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the underlying physical mechanisms, it becomes
evident that the machine-learning models correctly
identify the dominant structural factors governing
each failure mode. The results of the analysis are
shown in Figs. 6 and 7 for the two datasets CSDL1
and CSDL2.
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Fig. 6. The percentage importance of each feature for classification model — Random forest of CSDL1

The results demonstrate that transforming
the dataset into a non-dimensional feature space is
essential for accurately capturing the mechanics of
failure in reinforced concrete shear walls. Unlike
dimensional features which introduce scale
dependence and lead the machine-learning model
to overemphasize absolute geometric quantities

the non-dimensional representation enables the
Random Forest classifier to recover the correct
physical behavior across all four primary failure
modes: flexural (F), flexural-shear (FS), shear (S),
and sliding-shear (SL). Notably, two parameters
consistently emerge as the dominant predictors in
every failure mode: the boundary area ratio
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Ap/Ag and the wall slenderness ratio 1y, /t,,. This

finding aligns closely with structural mechanics:
boundary elements dictate flexural capacity and
ductility, while wall slenderness governs the
transition between flexural-dominated and shear-
dominated responses. Reinforcement stress ratios
such as p,f,/f¢ and pyfyy/f play secondary but
meaningful roles
increasing ductility.

in controlling cracking and

A direct comparison with [12] highlights a key
methodological improvement. In their study,
boundary properties were encoded using a
discrete section-type variable (R/F/B), which does
not quantify the actual extent of boundary
elements. Consequently, the importance of
tecontinuous boundary ratio A,/A, with broad

variability across specimens, enabling the ML
model to correctly capture the link between
boundary confinement, flexural capacity, and the
transition from flexural to shear or sliding failures.
As a result, A,/A; becomes the most influential
variable in all failure modes (30—40%), consistent
with the governing role of boundary elements in [5],
[6].

These observations confirm that the non-
dimensional dataset not only eliminates scale
artifacts but also highlights the intrinsic physical
relationships governing behavior: walls with strong
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boundary elements and large slenderness ratios
tend to fail in flexure (F); walls with moderate
boundaries and slenderness undergo flexural—-
shear (FS); squat walls with limited boundary
reinforcement fail in shear (S); and when both
boundary capacity and slenderness are low,
sliding-shear (SL) becomes likely due to large base
slip and frictional mechanisms. The transition
thresholds identified by the ML modelsuch as
Ap/Ag > 012, 1,,/t,, > 12, or P/(f¢Ag) < 0.1 align
well with codified detailing limits in ACI 318 and
Eurocode 8 as well as experimental observations.

Based on these findings, the study proposes
design-oriented summary Table 6 and a quick
classification checklist to assist engineers in
predicting failure modes prior to nonlinear analysis.
These tables consolidate the mechanical
signatures of each failure mode, provide physical
interpretations, and recommend specific detailing
measures such as enhancing confinement for
flexural failures, adding stirrups or diagonal
reinforcement for flexural-shear behavior,
increasing horizontal reinforcement for shear
failures, and improving base friction or adding
anchors for sliding-shear cases. These
recommendations provide a foundation for
developing machine-learning-informed  design
guidelines that may be incorporated into future
structural standards in Vietham.
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Fig. 7. The percentage importance of each feature for classification model — Random forest of CSDL2
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Fig. 7. (continued)
Table 6. ML thresholds, code limits, and recommended values
Variable Threshold from Code Limit (ACI/ECS8) Recommended
ML Threshold
(Av/Ag) 0.08-0.12 0.08-0.10 (ACI boundary element 0.08-0.12
requirement)
(Iw/tw) 8-12 =~ 10-12 (slender wall criterion, EC8) 8-12
(M/(V 1w)) = 0.4 (flexure—shear transition in nonlinear 0.4
0.3-0.4
EC8)

(P/(f':Ag)) 0.05-0.1 0.1 (typical axial load ratio, ACI) 0.1

7. Conclusion

This paper presented a mechanics-aware
machine learning framework for classifying failure
modes of reinforced concrete shear walls using
both dimensional and non-dimensional feature
spaces. A harmonised database was assembled
from two sources and carefully checked for
consistency in failure-mode labelling and
parameter definitions. Three tree-based classifiers
Decision Tree, Random Forest, and XGBoost were
trained and validated through stratified train, test
splits, k-fold cross-validation, confusion matrices,
and AUC-ROC metrics. All models delivered
strong performance, with average AUC values
above 0.85, confirming that data-driven methods
can reliably discriminate among flexural, flexure
shear, shear, and sliding failures when provided
with sufficiently rich experimental data. Random
Forest exhibited the most stable generalisation

across both datasets, whereas XGBoost achieved

competitive  accuracy, particularly for the
dimensional feature set.
The comparison between dimensional

(CSDL1) and non-dimensional (CSDL2) feature
spaces highlights a crucial distinction. While
dimensional variables allow slightly higher
accuracy in some classes, they tend to bias the
models toward absolute geometric scales and
obscure the underlying mechanics. In contrast, the
non-dimensional representation yields comparable
accuracy but significantly improves physical
interpretability. SHAP-based feature analysis
consistently identifies the boundary-to-gross area
ratio A,/Ag; and wall slenderness l,/tyas the
dominant predictors for all failure modes,
supported by reinforcement and axial-load ratios.
These findings are fully consistent with
experimental observations and with the role of
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boundary elements and aspect ratio emphasised in
ACI 318 and Eurocode 8.

By analysing SHAP value transitions, the
study proposes quantitative thresholds A,/Ag ~
0.08 —0.12, 1,/t, ~8—12, M/(Vl,) ~ 0.4, and
P/(f{Ag) = 0.1 that delineate the transition from
flexural to flexure—shear, shear, and sliding-shear
behaviour. These limits are consistent with code
provisions and previous research yet are obtained
independently from the data, providing a
mechanics-informed validation of existing design
criteria. The results are summarised in design-
oriented tables and a quick classification checklist
that link predicted failure modes to detailing
recommendations, offering a practical tool for
preliminary seismic assessment and design.

Despite these promising outcomes, several
limitations remain. Class imbalance, particularly for
sliding failure, may still influence the robustness of
the models; future work should explore resampling
strategies and larger experimental datasets.
Moreover, the present models are developed for
monotonic or quasi-static cyclic tests; extension to
realistic earthquake loading histories and three-
dimensional wall systems is a natural next step.
Nonetheless, the study demonstrates the potential
of mechanics-informed ML to bridge experimental

databases, code provisions, and engineering
judgement, and provides a foundation for future
data-driven  calibration of seismic design
guidelines, including prospective updates to

Vietnamese standards.
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