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Abstract: Predicting the brittle response of reinforced concrete (RC) frames 

remains an active research problem. Different industries and research tools 

predict brittle responses with varying accuracy and analysis times, due to their 

inherent limitations. Also, the sophisticated Finite Element Tools, i.e., 

(ABAQUS, ANSYS, and DIANA), require costly computational costs and deep 

knowledge of defining material compared to the industry tool (SAP 2000). An 

Artificial Neural Network Finite Element Analysis (ANN-FEA) method is 

proposed to address this issue without incurring additional computational 

costs. This ANN-FEA method is designed for the analysis and design of both 

new and existing RC structures, such as Double-story single-bay (DSSB) 

Frames. For this study, one experimental control model (ECM) frame with three 

additional finite element models (FEM) is examined. The additional FEM 

models have: (i) Half Diameter of Stirrups in the Beam (HDB), (ii) Half Diameter 

of Stirrups in both Beam and Columns (HDBC), and (iii) Double Spacing of 

Stirrups in Beam and Columns (DSBC), as compared to the experimental 

model. This assessment focused on measuring the influence of critical design 

parameters, such as transverse reinforcement ratio (ρt), on the load-carrying 

capacity of DSSB, especially in a brittle manner. The findings confirmed that 

all the new FEA models and ANN-FEA exhibited less lateral load than CM, with 

reductions of 4.45% for HDB, 13.8% for HDBC, and 5.2% for DSBC. 

Keywords: RC Frames, DSSB, Hybrid FEA-ANN, Structural Analysis Tools, 

Artificial Neural Network. 

1. Introduction 

Since the mid-1950s, the construction boom 

of multi-story buildings has significantly expanded 

the roles and expertise required of structural 

engineers. These professionals are now tasked 

with ensuring the safety, durability, and cost-

effectiveness of reinforced concrete (RC) multi-

story structures [1-7]. Over the years, the field of 

structural engineering has introduced a variety of 

complex analytical methodologies to meet these 

demands [8-11]. Today, advanced tools are 

employed to design new structures in line with 

updated guidelines and to evaluate existing RC 

structures against contemporary standards [12-

17]. This evolution has led to increasingly 

sophisticated and detailed analyses, requiring 
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greater computational resources and time 

investments. Current requirements emphasize the 

importance of utilizing tools that can provide 

accurate predictions, particularly regarding brittle 

failure modes [18-24]. 

Over recent decades, extensive efforts have 

been made to develop models that accurately 

predict the brittle response of RC frame elements. 

Such analysis tools are essential for (i) designing 

new RC structures, (ii) assessing old RC structures 

in line with current guidelines, (iii) evaluating the 

strength, safety, and integrity of damaged or 

deteriorated structures, (iv) addressing issues 

arising post-construction or due to changes in the 

use or function of existing structures, and (v) 

investigating the causes of structural failures or 

collapses [1-7].  

To tackle the challenges faced in the 

construction industry, structural engineers must 

assess the performance and response of 

reinforced concrete (RC) structures under extreme 

loading conditions [8-11]. This evaluation involves 

examining the load-carrying capacity of RC 

structures, with a particular emphasis on their 

brittle behavior and the failure mechanisms that 

may lead to catastrophic collapse. Presently, 

engineers employ nonlinear analysis methods to 

explore the brittle characteristics of RC structures, 

which require complex calculations. Nonlinear 

finite element analysis (NLFEA) software 

packages, such as ABAQUS [8] and ADINA [9], are 

primarily used for research purposes. In contrast, 

industry-standard software tools like (i.e., SAP 

2000 and ETABS) [11] are generally effective at 

predicting flexural failure modes; however, they 

often struggle with accurately forecasting shear 

(brittle) failure modes. Given that shear failures 

tend to be abrupt and catastrophic, occurring with 

little warning, it is crucial for structural analysis 

tools to predict these failure modes with precision 

[1-7]. Accurate predictions are essential for 

developing safe and cost-effective design solutions 

that uphold the structural integrity and resilience of 

RC frame structures. Inaccurate forecasts can 

result in unsafe designs by overestimating the 

load-carrying capacity and ductility of structural 

components. 

In structural engineering practice, various 

standards such as ACI-318 [12], EC2 [13], JSCE 

[14], NZ [15], KBSC [16], and CSA [17], are 

commonly applied to assess the response of RC 

frames under lateral loads. These guidelines 

typically rely on truss models and strut-and-tie 

frameworks to represent RC behavior at the ULS, 

with analyses traditionally performed using 

sectional methodologies. While these code-based 

predictions tend to correspond well with 

experimental results for flexural strength, 

discrepancies in shear resistance have been 

observed. These discrepancies are mainly due to 

their empirical foundations, which are derived from 

regression-based interpretations of test data. In 

contrast, the CFP method [25] offers an alternative 

ULS prediction model by conceptualizing RC 

elements as arch-like structures post-cracking, 

diverging significantly from conventional code 

assumptions. For a more comprehensive analysis 

under intricate loading scenarios, NLFEA [26-36] is 

often employed in conjunction with physical testing, 

utilizing complex 3D modeling, material 

nonlinearities, and advanced failure mechanisms. 

Additionally, soft computing (SC) strategies have 

emerged as innovative tools for structural 

evaluation, distinguishing themselves from NLFEA 

by using data-driven, heuristic algorithms rather 

than strict mechanical formulations [37-46]. More 

recently, ANNs have gained traction as efficient 

substitutes for traditional NLFEA in tasks like 

structural performance evaluation, damage 

detection, and reliability analysis, offering faster 

computation with promising accuracy [47-55].  

To address this challenge efficiently, we 

introduce an Artificial Neural Network Finite 

Element Analysis (ANN-FEA) approach [56,57], as 

depicted in Fig. 1, which aims to establish a novel, 

stable, and computationally efficient technique for 

accurately predicting the nonlinear response of RC 

structures. This innovative method is designed for 
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both research and real-world applications, enabling 

effective design optimization and comprehensive 

parametric investigations. By leveraging Artificial 

Neural Networks (ANNs), the approach reduces 

computational demands compared to conventional 

nonlinear finite element analysis (NLFEA). The 

ANN-FEA technique models the nonlinear behavior 

of individual RC elements, such as beams and 

columns, by integrating finite elements with ANNs 

to forecast brittle failure modes and their 

corresponding load capacities. Training datasets 

are compiled from experimental results on basic 

structural configurations, which are then used to 

train the ANN models. The model's predictions are 

evaluated against design code specifications and 

alternative assessment techniques, focusing on 

ULS behavior, and are further validated through 

selective NLFEA. 

In these ANN-based finite element (ANN-FE) 

models [56,57], ANNs act as failure criteria in 

nonlinear static pushover analysis, ensuring 

accurate predictions of structural behavior. The 

method's reliability and objectivity are confirmed by 

comparing its results for RC frames under static 

loading with experimental data and numerical 

benchmarks. Additionally, the ANN-FE model's 

predictions are evaluated against outputs from 

commercial and research-oriented structural 

analysis software. During pushover analysis, ANNs 

determine the load capacity and failure 

mechanisms of individual RC members, such as 

beams and columns. The findings indicate that the 

ANN-FE approach delivers more precise ULS 

predictions for RC structures than industry-

standard programs like ETABS and SAP 2000 [11], 

while also being significantly faster and less 

computationally intensive than advanced research 

tools such as ABAQUS [8]. This ANN-FEA 

technique [56,57], applies to both new and existing 

RC structures, including continuous beams, and 

serves as the core methodology of this research. 

The process involves three main stages: (1) 

database development from experimental and 

numerical studies, (2) ANN training to predict 

failure modes, and (3) validation against 

established analysis methods. 

• Artificial Neural Network (ANN) models are 

developed for RC beams and columns, based on 

experimental databases in the first step. These 

models serve as failure criteria for predicting shear 

failure modes in individual RC members, including 

beams and columns, as established in the authors' 

previous work [57-64]. 

• The second step involves the primary 

feature of this method, which is the subdivision of 

the structure into segments. These segments 

extend between points of maximum bending 

moment and points of contra-flexure or between 

consecutive points of contra-flexure, analogous to 

supported beams, as illustrated in Fig. 1 [56,57]. 

The behavior of these segments has been 

thoroughly investigated experimentally. This 

investigation systematically reduces the number of 

shear links in key structural elements to evaluate 

the accuracy of these structural analysis packages 

in predicting the observed shift in failure mode from 

flexural to shear when the quantity of shear links is 

reduced beyond a critical threshold.  

• In the third step, the developed ANN 

models are used as failure criteria during the 

nonlinear pushover analysis. The analysis process 

halts if the applied force exceeds the predicted 

capacity of the members. 

During the pushover analysis, the ANN is 

invoked at each load increment to predict the shear 

capacity of individual RC members. Specifically, 

the ANN models predict the ultimate shear load 

(Vu) for beams and columns based on current 

internal forces and geometric/material parameters. 

The analysis procedure extracts internal forces 

(bending moment M, shear force V, and axial force 

N for columns) from each frame element at the 

current load step, normalizes these values along 

with member properties according to Eq. 4, and 

feeds them to the corresponding ANN model. If the 

demand (current internal forces) exceeds the ANN-

predicted capacity, the analysis stops and records 

the failure mode and capacity. This stopping 



JSTT 2025, 5 (4), 238-279                                                A. Ahmad et al 

 

 
241 

criterion corresponds to the Ultimate Limit State 

(ULS), representing the point at which member 

capacity is exhausted rather than simulating post-

peak behavior. 

 

Fig. 1. Proposed Methodology of ANN-FEA for RC Frame [56,57] 

• In the last step, for validation purposes, the 

ANN-FEA predictions are compared with the 

SAP2000 and ABAQUS predictions. 

2. Novelty and contributions  

The key novelty and contributions of this 

study can be summarized as follows: (1) 

Integration of ANN as a failure/limit criterion within 

pushover analysis, enabling accurate prediction of 

brittle failure modes; (2) Development of a 

segmentation strategy with ANN-calling 

mechanism for RC frame analysis; (3) 

Establishment of a comprehensive ANN-FEA 

coupling workflow that bridges member-level 

predictions to frame-level response; (4) 

Comparative assessment framework among ANN-

FEA, ABAQUS, and SAP2000 for validation 

purposes; and (5) Application of the proposed 

methodology to the DSSB case study with 

systematic parametric investigation of transverse 

reinforcement effects. 

The proposed ANN-FEA structural analysis 

method proves to be highly effective in designing 

new RC structures and assessing existing ones. 

Additionally, it enhances the capabilities of current 

professional structural analysis tools [56,57]. This 

ANN-FEA method is intended for the analysis and 

design of both new and existing RC structures. For 

this purpose, Emara et al [65] selected the double-

story-single-bay (DSSB) RC frame as a case study 

for the numerical investigation of the effect of 

detailing on the frame's capacity. After calibration, 

the peak lateral load and peak displacement values 
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of the FEA models match those of the experimental 

studies, yielding stress values that are very close 

to the experimental results. The calibrated CM was 

utilized to study three additional finite element 

analysis (FEA) models: (a) Half-Diameter Stirrups 

in the Beam (HDB), (b) Half-Diameter Stirrups in 

both Beam and Columns (HDBC), and (c) Double 

Spacing of Stirrups in Beam and Columns (DSBC). 

This assessment focused on measuring the 

influence of critical design parameters, such as 

transverse reinforcement ratio (ρt), on the load-

carrying capacity of DSSB, especially in a brittle 

manner. The findings confirmed that all the new 

FEA models exhibited less lateral load than CM, -

4.45%, -13.8% and -5.2% respectively of HDB, 

HDBC, and DSBC.  

It should be noted that experimental 

validation is available only for the CM (Control 

Model) configuration. The parametric variants 

(HDB, HDBC, and DSBC) represent numerical 

investigations comparing ANN-FEA predictions 

against ABAQUS and SAP2000 results. Therefore, 

findings for these variants should be interpreted as 

comparative assessments among numerical 

models rather than experimentally validated 

conclusions. The percentage differences reported 

for these variants reflect the agreement between 

different numerical approaches rather than 

experimental accuracy. 

3. Database of RC beams  

3.1. Description and Statistical 

Characterization of the Databases 

  
(a) (b) 

 Fig. 2. Experimental setup for RC Beams (a&b)  

Table 1. Statistical information for the for BWS 

 b d av/d ρl fyl fc ρw fyw Mf Vu 

Unit mm mm  (%) MPa MPa (%) MPa kN-mm kN 

Min 100 113 1 0.18 250 13.8 0.08 224 2648 4.097 

Max 510 975 7.25 5.6 890 126 2.25 875 1,738,423 760.194 

Avg. 208 343 3.5 2.4 415 45 0.6 400 283,485 185.54 

St. Dev 68 158 1.5 1.1 78 25 0.5 115 378,729 134.25 

COV 0.34 0.48 0.4 0.46 0.2 0.55 0.9 0.3 1.35 0.75 

The initial phase of this study involves 

developing Artificial Neural Network (ANN) models 

for reinforced concrete (RC) beams and columns. 

Two databases have been established: (i) RC 

beams with Stirrups (BWS) and (ii) RC columns 

with Axial Load (CWA). The BWS database 

consists of 315 RC beam specimens subjected to 

3-point or 4-point loading tests, as shown in Fig. 2 

(a&b). It provides insights into how design 

parameters affect the load-carrying capacity and 

failure modes of RC beams approaching the 

Ultimate Limit State (ULS). Key features include 
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material properties, geometric dimensions, 

reinforcement details, loading conditions, and 

failure modes. Table 1 offers statistical information 

about specific parameters for the specimens, with 

65% (204 samples) exhibiting shear failure modes 

and 35% (111 samples) demonstrating flexural 

failure modes. Fig. 3 presents a histogram 

illustrating the frequency distribution of key 

parameters in the BWS database. Additionally, this 

histogram indicates a limitation of ANN models, 

which are constrained by the parameter limits. 

The second database comprises 130 

samples of reinforced concrete (RC) columns 

(CWA) with cantilever support conditions, as 

shown in Fig. 4. Table 2, provides statistical data 

regarding the parameters associated with the CWA 

samples. Among these, 62% (80 samples) exhibit 

shear failure modes, while 38% (50 samples) 

display flexural failure modes. Fig. 5 presents a 

histogram illustrating the critical parameters for the 

CWA, showing the frequency distribution of each 

parameter across different sample values. This 

histogram also underscores a limitation of the ANN 

models, as the established limits of each 

parameter constrain their predictions. 

3.2. Correlation Coefficient of the Parameters  

The Pearson correlation coefficient (r) was 

calculated using Eq: 1 [66-69]. quantifies the linear 

relationship between pairs of variables within a 

dataset. For the BWS database, Fig. 6 (a) displays 

the correlation factors (r) for key parameters (b, d, 

av/d, ρl, fyl, fc). In contrast, Fig. 6 (b) presents those 

for the CWA database (b, d, ρl, N, fyl, fc, ρw, fyw, av/d. 

These correlations guide the development of ANN 

models to predict the load-carrying capacities of 

RC specimens. The coefficient (r) ranges from -1 

to 1, where negative values indicate an inverse 

relationship (an increase in one variable leads to a 

decrease in the other). In contrast, positive values 

indicate a direct relationship (where both variables 

increase or decrease together). A stronger linear 

dependence between variables is reflected by a 

higher absolute value of (r), meaning parameters 

with larger (r) exhibit a more significant influence 

on the load-bearing capacity predictions. 

r=
nΣxy-(Σx)(Σy)

√n(Σx2)-(Σx)
2√n(Σy2)-(Σy)

2

 
Eq: 1 

 

Fig. 3. Histogram of BWS Parameters 
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Fig. 4. Experimental setup for RC columns (CWA)

Table 2. Statistical information for the for CWA 

 b d av/d ρl fyl fc ρw fyw N Mf Vu 

 (mm) (mm)  (%) (MPa) (MPa) (%) (MPa) (kN) kN-mm (kN) 

Min 150 110.5 2.647 0.87 313 17.9 0.1 255 111 15 33 

Max 550 470 8.73362 6.16 559.5 118 2.8 1424 5373 1590 812 

Avg. 323.03 241.22 5.1 3.19 463.16 49.09 0.82 497.46 1445.62 366.91 244.04 

St. Dev 117.16 77.37 1.57 1.15 50.13 28.23 0.58 246.1 1270.2 337.62 177.62 

COV 0.36 0.32 0.31 0.36 0.11 0.58 0.71 0.49 0.88 0.92 0.73 

 
Fig. 5. Histogram of CWA Parameters
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(a) 

 
(b) 

Fig. 6. The correlation parameter r (a) for BWS and (b) for CWA

4. Artificial neural network (ANN) 

Research [55,59,70] indicates that Artificial 

Neural Networks (ANNs) are designed to emulate 

the structure and functionality of biological neural 

systems in living organisms (illustrated in Fig. 7 

a&b). These computational models excel at 

processing complex relationships through pattern 

recognition, leveraging acquired knowledge from 

training to perform tasks such as classification, 

prediction, and generalization. Structurally, ANNs 

consist of multiple layers containing interconnected 

processing units ("neurons") that form 

sophisticated networks. As depicted in Fig. 7 these 

inter-neuronal connections are governed by 

specific weighting values. The fundamental 

mathematical representation of an ANN is provided 

in Eq: 2. The researchers have provided a 

comprehensive description of both the operational 

mechanisms and the supervised training 

methodology employed in these networks. 

O = f(∑xi wi+b) Eq: 2 

The output of a neural network (O) is 

influenced by the combination of weights (wi), 

inputs (xi), and a bias term (b). Activation functions 

play a crucial role in shaping the network’s 

performance; typically, logistic and hyperbolic 

functions are applied between the input and hidden 

layers, while hyperbolic functions are used 

between the hidden and output layers. To refine the 

network's predictions, a back-propagation 



JSTT 2025, 5 (4), 238-279                                                A. Ahmad et al 

 

 
    246 

algorithm based on the delta rule is employed, 

which systematically updates the weights to reduce 

the discrepancy between the predicted output and 

the actual target value (T) obtained from the 

dataset. As depicted in Fig. 7 (a&b), this learning 

process proceeds iteratively from the output layer 

back through the network, continuing as described 

by Eq: 3 until the mean squared error (MSE) falls 

below a predefined threshold, thereby improving 

the model’s accuracy [55,59,70]. 

 

(a) 

 

(b) 

Fig. 7. (a) The Function of an Artificial Neuron and (b) Artificial Neural Network 

E(w)=
1

2
∑

i 
(T-O)

2
 Eq: 3 

The neural network's predicted output (O) is 

compared against the target values (T) from the 

database, and the resulting error is minimized 

through backpropagation using the Delta Rule 

[55,59,70]. This optimization process, illustrated in 

Fig. 7, involves iteratively adjusting initially 

randomized connection weights and propagating 

corrections backward (right to left) through the 

network to align the outputs more closely with the 

expected target values. Training continues until the 

mean squared error (MSE) converges to an 

acceptable threshold, indicating no further 

improvement. The fine-tuned weights are then 

applied in the ANN model, enabling more precise 

Σ
(n)

p1

Input Neuron with vector input

a=f(wp+b)

b

f
(a)

1

p2
p3

pR

Input 

Layer

Hidden 

Layers

Output 

Layer

Forward direction of signals

x y

Back-propagation of errors
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predictions with reduced error margins. 

4.1. Normalization of Database 

Researchers [55,59,70] emphasizes that 

input normalization plays a critical role in training 

ANN models effectively, particularly when dealing 

with parameters of varying units. Normalization 

transforms all inputs into dimensionless values, 

improving computational efficiency and preventing 

sluggish learning rates. In this study, rather than 

using the standard 0 to 1 range, parameters are 

scaled between 0.2 and 0.8 Eq: 4 to enhance 

model performance [55,59,70]. The normalization 

process follows Eq: 4 where a raw input value (x) 

is converted to its normalized form (X) by 

referencing the maximum value (xmax) and the 

range (xmax - xmin). This adjustment ensures 

smoother ANN training while maintaining 

numerical stability. 

X=(0.6/Δ)x+{0.8- (
0.6

Δ
) xmax} Eq: 4 

4.2. Calibration of Proposed ANN Model 

To ensure the accuracy of the proposed ANN 

model, calibration is performed by comparing its 

predictions with experimental results. The multi-

layer feedforward backpropagation (MLFFBP) 

technique, introduced by Grossberg (1988) [71-75] 

is employed for this process, following established 

training methodologies [71-75]. To enhance 

generalization and prevent overfitting, the dataset 

is divided into three subsets: 60% for training, 20% 

for validation, and 20% for testing [71-75]. MATLAB 

[76] Serves as the computational platform for ANN 

implementation. 

i. Each ANN model undergoes training for 

100 epochs using the MLFFBP algorithm [71-75]. 

The iterative process terminates when any of the 

following criteria are met: 

ii. The performance goal (deviation between 

output and target values) falls below 0.0001. 

iii. The validation phase records 20 

consecutive failures (no improvement in error 

reduction). 

iv. The minimum performance gradient 

attains a threshold of 1.0 × 10-10, as defined by the 

Levenberg-Marquardt backpropagation method 

[71-75].  

This optimization leverages a second-order 

algorithm that incorporates second-derivative 

information for efficient weight adjustment. The 

ANN’s predictive accuracy is evaluated using three 

key indicators: 

a. Mean Squared Error (MSE, Eq: 5) – 

Quantifies the average squared deviation between 

predicted and target values. 

b. Mean Absolute Error (MAE, Eq: 6) – 

Measures the absolute difference between 

predictions and experimental data. 

c. Correlation factor (R, Eq: 7) – Assesses 

the linear relationship between target and 

predicted outputs, with higher values indicating 

stronger agreement. 

These metrics, drawn from prior studies [71-

75], ensure rigorous validation of the model’s 

reliability across diverse scenarios. 

( )
n

2

i i

i 1

T O

MSE
n

=

−

=


  
Eq: 5 

n

i i

i 1

T O

MAE
n

=

−

=


 
Eq: 6 

R=
∑ [(c-T̄)(Oi-Ō)]n

i=1

√∑ (Ti-T̄)
2n

i=1 ⋅ ∑ (Oi-Ō)
2n

i=1

 
Eq: 7 

In the following equations, Oi denotes the 

predicted values generated by the ANN, while Ti 

refers to the experimentally observed (target) 

values. The variable n represents the total number 

of samples. The symbol T̄ indicates the mean of the 

experimental values, and Ō denotes the mean of 

the predicted values. 

4.3. ANN model development 

Eight artificial neural networks (ANNs) were 

trained to predict the load-carrying capacity of RC 

beams in the BWS category, utilizing various input 

parameter combinations outlined in Table 3. 

Similarly, nine ANN models were developed for the 

CWA category, as detailed in Table 4. The final 
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columns of both tables present the architecture of 

each ANN model, specifying the number of 

neurons in the input layer, the two hidden layers, 

and the output layer (I-H-H-O format). 

Table 3. ANNs architecture for BWS 

ANN Models Combination of Parameters I-H1-H2-O 

BWS-1 b, d, ρl, fyl, fc, ρw, fyw, av/d 8-16-16-1 

BWS-2 b, d, Mf, fc, ρw, fyw, av/d 7-14-14-1 

BWS-3 b/d, Mf/f cbd²,, ρw, fyw, av/d 5-10-10-1 

BWS-4 b/d, ρw/ρl, fc/fyw, av/d 4-8-8-1 

BWS-5 d, Mf/f cbd²,, fc, ρwfyw, av/d 5-10-10-1 

BWS-6 d, b/d, Mf/f cbd², ρw, fyw, av/d 6-12-12-1 

BWS-7 d, b/d, Mf/f cbd²,, fc, ρwfyw, av/d 7-14-14-1 

BWS-8 d, b/d, Mf/f cbd²,, fc, ρwfyw, av/d  

(a) 

(b) 

Fig. 8. (a) Results for BWS Models and (b) ANN performance for BWS
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Table 4. ANNs architecture for CWA 

ANN Models Combination of Parameters I-H1-H2-O 

CWA:1 b, d, ρl, N, fyl, fc, ρw, fyw, av/d, 9-18-18-1 

CWA:2 b, d, Mf, N, fc, ρw, fyw, av/d, 8-16-16-1 

CWA:3 b/d, N/bdfc, ρw, fyw, Mf/fcbd2, av/d, 6-12-12-1 

CWA:4 b/d, N/bdfc, fc/fyw, ρw/ρl, av/d, 5-10-10-1 

CWA:5 d, N/bdfc, ρwfyw, Mf/fcbd2, fc, av/d, 6-12-12-1 

CWA:6 d, b/d, N/bdfc, ρw, fyw, Mf/fcbd2, av/d, 7-14-14-1 

CWA:7 d, b/d, N/fcbd, ρw, fyw, Mf/fcbd2, fc, av/d, 8-16-16-1 

CWA:8 d, b/d, N/fcbd, ρwfyw, Mf/fcbd2, fc, av/d 7-14-14-1 

CWA:9 d, b/d, ρw, fyw, Mf/fcbd2, fc, av/d, 7-14-14-1 

 (a) 

 (b) 

Fig. 9. (a) Results for CWA Models and (b) ANN performance for CWA



JSTT 2025, 5 (4), 238-279                                                A. Ahmad et al 

 

 
250 

The selection of hidden layer neurons follows 

established guidelines in the literature, where the 

number of neurons in each hidden layer is typically 

set to approximately twice the number of input 

parameters to ensure adequate learning capacity 

while avoiding overfitting. This heuristic, combined 

with systematic testing of multiple architectures (as 

shown in Tables 3 and 4), allows identification of 

optimal configurations that balance model 

complexity with prediction accuracy. The final 

architecture selection was based on minimizing 

MSE and maximizing correlation coefficient R 

during cross-validation. 

Fig. 8 (a&b) depict the performance of eight 

ANN models for predicting BWS, comparing their 

outputs with experimental data, while Fig. 9 (a&b). 

present nine ANN models for CWA. These figures 

also include error metrics: Mean Squared Error 

(MSE), Mean Absolute Error (MAE), and 

correlation coefficient (R) from references 

[55,59,70]. The models BWS-7, which uses input 

variables such as d, b/d, av/d, Mf/fcbd², fc, ρw, and fyw, 

and CWA-8, incorporating (d, b/d, N/fcbd, ρw, fyw, 

Mf/fcbd², fc, av/d), are identified as the most optimal 

configurations for their respective predictions. 

5. Case study for DSSB 

To enhance the strength and stiffness of 

multi-story structures, which are particularly 

susceptible to seismic and wind forces, structural 

members are often designed with progressively 

larger cross-sectional dimensions from top to 

bottom. While this method bolsters structural 

integrity, it can lead to economic inefficiencies [65]. 

Therefore, integrating specialized mechanisms or 

systems to enhance lateral stability is crucial. 

Braced frames counteract lateral forces through 

the bracing action of diagonal members. Fully 

braced frames offer superior rigidity; however, from 

an economic standpoint, partially braced frames 

are more favorable as they generate minimal 

forces while keeping displacements within 

acceptable thresholds. 

In 1980, a 12-story reinforced concrete 

building underwent retrofitting after a minor 

earthquake revealed significant seismic 

vulnerabilities. The retrofit involved bracing the 

perimeter frames along the building's weaker axis 

with an external steel truss system designed to 

withstand overturning forces, while also allowing 

access to the interior and underground parking 

[65]. The floor slabs were reinforced to transfer 

shear forces to these new frames. This study 

examines the structural behavior of steel and 

concrete cross-bracing, focusing on its effects on 

lateral load capacity and energy dissipation, and 

provides a comparative analysis with infilled 

frames. The findings offer insights into improving 

the lateral load resistance and overall performance 

of concrete frames. The experimentally validated 

Design-Sensitive Structural Behavior (DSSB) RC 

frame, as detailed in the study, includes design 

specifications of a 3500 mm center-to-center span 

and a story height of 2000 mm, culminating in a 

total frame height of 4600 mm [65]. All structural 

members maintained a uniform cross-section of 

300 mm in width and 400 mm in depth, with 

reinforcement details documented in 

accompanying figures. Material testing indicated a 

concrete compressive strength of 30 MPa, 

whereas yield strengths of the steel reinforcement 

were recorded at 596 MPa (No.10 bars) and 640 

MPa (No.20 bars). The testing procedure began 

with a constant axial load of 700 kN applied to each 

column, followed by a monotonically increasing 

lateral load under stroke-controlled conditions until 

the frame's ultimate capacity was reached. The 

global load-deformation behavior revealed 

significant relationships between applied lateral 

loads and top-frame displacements, with critical 

load stages identified [65].  

The experimental setup and instrumentation 

for the tests are illustrated in Fig. 10. Initial cracking 

occurred at an applied load of 52.5 kN, with flexural 

cracks first emerging in the north section of the 

first-story beam. Further flexural cracking was 

noted at column bases under a load of 145 kN, 

coinciding with the development of initial web-

shear cracks in the first-story beam. As the loading 
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continued, a progressive reduction in structural 

stiffness was observed due to extensive crack 

propagation. Strain gauge measurements 

indicated initial yielding at 264 kN in the bottom 

longitudinal reinforcement of the beam, followed by 

yielding of the top reinforcement at 287 kN. 

 
Fig. 10. Dimension and RCC details of the DSSB RC Frame 

 

Fig. 11. Experimental results of DSSB RC Frame [65] 

6. Finite element analysis of RC structural 

configurations 

ABAQUS [8] recognized for its advanced 

finite element analysis (FEA) capabilities and 

accuracy in modelling materials such as concrete 

and steel [8,9] was employed to develop finite 

element models that capture the behavior of RC 

frames with high precision. In this modelling 

approach, concrete was simulated using 3D solid 

stress elements, while the reinforcing bars were 

represented by wire elements capable of full 3D 

deformation. Reliable simulation results were 
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ensured by applying suitable boundary conditions 

and load setups that enabled the gradual and 

uniform application of loads. The model underwent 

calibration and refinement to incorporate key 

parameters, including the concrete's shape factor, 

viscosity coefficient, dilation angle, mesh type, and 

element size. This refined model then supported an 

extensive parametric study, which explored the 

influence of these variables on the behavior of RC 

frame, thereby improving the accuracy and 

generalizability of the numerical analyses. 

6.1. Compressive uniaxial stress-strain 

relationship for concrete 

Fig. 12 presents the simplified upper-bound 

tensile stress-displacement relationship employed 

in this study. The Continuous Plastic-Damage 

(CPD) [8] model necessitates the definition of 

several critical parameters. Notably, the viscosity 

parameter is essential for achieving a smooth 

material response in Abaqus/Standard, while the 

dilation angle, denoted as ψ, indicates the 

inclination of the failure surface concerning the 

hydrostatic axis. This dilation angle plays a pivotal 

role in governing plastic flow and the overall 

material behavior under applied loads. 

The different concrete material properties 

used in ABAQUS Standard, defining materials and 

step modules, are given in Table 5. The elasticity 

modulus (Ec) of concrete was calculated using the 

ACI code given by Eq: 8

 

Fig. 12.  Stress-strain curve of concrete used in the model [8] 

Table 5. Different properties used in ABAQUS for concrete [8] 

Parameters Values 

Concrete density (ton/mm3) 2.4 X 10-9 

Poisson’s ratio, 𝜈 0.2 

Concrete Compressive Strength (MPa) 35.06 

Elasticity modulus, Ec (N/mm2) 26587 

The initial increment size of loading 0.01 

Maximum increment size of loading 0.1 

Minimum increment size of loading 1E-050 

Number of increments 100000 
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Ec=4700√fc
'
       Eq: 8 

The CPD model, originally developed for 

concrete, is also effective in simulating the 

behavior of other quasi-brittle materials such as 

masonry and mortar [8]. This model addresses two 

primary failure modes: tensile cracking and 

compressive crushing. Key inputs for the CDP 

model include the material’s uniaxial stress-strain 

behavior in both tension and compression, as 

illustrated in Fig. 13 (a&b). In tension, the material 

exhibits a linear response until it reaches its peak 

tensile strength, after which it follows a softening 

curve. Conversely, in compression, it begins with a 

linear elastic phase, progresses into a hardening 

region, and eventually softens. These 

characteristics allow the CDP model to accurately 

represent the progressive damage and nonlinear 

response of quasi-brittle materials under various 

loading conditions. 

The primary advantage of employing this 

material model is its ability to distinctly define the 

material's behaviour under tension and 

compression, thereby capturing its fundamentally 

different mechanical responses. This includes 

variations in yield strengths, tension softening, and 

the transition from hardening to softening in 

compression, as well as distinct elastic stiffness 

degradation under both tensile and compressive 

loads. The degradation of elastic stiffness in 

concrete is primarily attributed to failure 

mechanisms such as cracking under tensile 

stresses and crushing under compressive 

stresses. In the CPD model, this degradation is 

based on scalar-damage theory, where the loss of 

stiffness is considered isotropic and represented 

by a single scalar damage variable. The stress-

strain relationship, incorporating this damage 

parameter as Eq: 9, is mathematically expressed 

in providing a concise representation of the 

material's behavior as it transitions from an 

undamaged to a damaged state. 

σ=(1-d)∙D0
el

/(ε-εpl)=D
el

/(ε-εpl) Eq: 9 

In this context, D0
el represents the initial, 

undamaged elastic stiffness of the concrete, while 

D0
el

=(1-d).D0
el denotes the degraded elastic 

stiffness, accounting for material damage. The 

scalar variable ddd, which quantifies stiffness 

degradation, ranges from 0 ≤d≤1, indicates an 

entirely intact (undamaged) material and d=1 

signifies a fully damaged state. The corresponding 

effective stress, which reflects the internal stress 

carried by the undamaged portion of the material, 

is formally defined in Eq: 10 

σ̅=D0
el

/(ε-εpl) Eq: 10 

and is related to the Cauchy stress through the 

scalar degradation variable as Eq: 11. 

σ = (1-d)·σ ̄ Eq: 11 

The plasticity model of concrete is defined by 

various parameters, including the dilation angle 

(ψ), plastic potential eccentricity (ɛ), the ratio of 

biaxial to uniaxial compressive stresses (σb0/σc0), 

shape factor (Kc), and the viscosity parameter. The 

dilation angle and viscosity values were 

determined through calibration. According to the 

concrete damaged plasticity model, the 

recommended values for the shape factor (Kc) and 

eccentricity (ɛ) are 2/3 and 0.1, respectively. The 

stress ratio (σb0/σc0) is specified as 1.16, based on 

Eq: 12 proposed in reference [8], which quantifies 

this ratio using a substantial amount of statistical 

data. 

σbo

σco

=1.5(fc
'
)
-0.075

 Eq: 12 

Fig. 14 presents the compressive stress-

strain relationship for concrete as outlined in 

Eurocode 2 [13]. According to the ABAQUS [8] the 

material exhibits linear elastic behavior up to 

approximately to 0.4fcm [13] also provides empirical 

formulations, derived from experimental 

observations Eq: 13 and expressed in Eq: 14 to 

estimate the strain εc1 corresponding to the mean 

compressive strength of concrete and the ultimate 

strain εcu1. 

εc1=0.0014(2-e-0.024fcm-e-0.140fcm) Eq: 13 

εcu1 =0.004-0.0011(1-e-0.0215fcm) Eq: 14 
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Fig. 13. CPD modelling (a) under tension and (b) under compression [8]

 
Fig. 14. Concrete modelling in ABAQUS [13] 

6.2. FEM Modelling 

The modeling process of the RC frame in 

ABAQUS involves defining the beam-column 

connections, where the column's bottom face is the 
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master surface and the beam's top face is the slave 

surface, as illustrated in Fig. 16 and Fig. 17. This 

same principle applies to the contact between the 

beam's top and the steel plates. The RC columns 

are fixed at the bottom, and a 60 mm thick rigid 

steel plate is attached to the top and sides of the 

beam using a 'tie constraint.' The steel plates are 

modeled as rigid elements with a Young’s modulus 

of 210 GPa and a density of 7.85 × 10⁻⁹ ton/mm³. 

The finite element models for the steel-reinforced 

columns ensure that the top of the beam remains 

free in all directions during lateral loading, 

accurately representing support conditions. 

The modeling of the steel cage within the 

DSSB RC frame is shown in Fig. 17 (a-d), 

Following ABAQUS guidelines, the steel mesh is 

embedded in the concrete (b), ensuring that the 

nodes of the reinforcing bar elements match the 

surrounding concrete's degrees of freedom (c). To 

evaluate the lateral load-deflection behavior of the 

DSSB RC frame until failure, a static load was 

applied on the left side of the beam using 

displacement control, with increments of 10 mm for 

gradual loading. 

  
(a) (b) 

  
(c) (d) 

Fig. 15. Modelling of DSSB in ABAQUS (a) 3D model, (b) Connection between Beam & Columns, (c) 

Connection between steel plates and beam, and (d) Fixed support condition of Column 

6.3. Calibration of CPD parameters 

All the essential parameters required for 

defining the damage plasticity model, which 

describes the behavior of concrete, were calibrated 

using available experimental data. The calibrated 

values for these parameters are presented in Table 

7. A static load was applied monotonically until 

failure, utilizing displacement increments under 
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displacement control. The graphs provided in Table 

7 illustrate these parameters' numerical calibration. 

Only the target parameter was varied for each 

calibration, while all other parameters were kept 

constant. 

The numerical load-deflection curves for the 

analysed RC beam were compared with the 

corresponding experimental results. Through the 

calibration process, the following parameter values 

were determined: (1) viscosity parameter, 

calibrated to 0.0028; (2) dilation angle, calibrated 

to 38°; (3) shape factor, calibrated to 0.677; and (4) 

stress ratio, calibrated to 1.0. These calibrated 

values reflect the material's response and are 

crucial for accurately simulating the behavior of RC 

frame under load. 

  
(a) (b) 

  
(c) (d) 

Fig. 16. Modelling of DSSB in ABAQUS (a) Meshing of 3D model, (b) Steel Mesh in the frame, (c) Steel 

Mesh, and (d) Embedded steel mesh with concrete 

Table 7. Concrete Damage Plasticity Parameters Used in ABAQUS Modelling [8] 

Sr. No Descriptions Values Calibrated 

1 Viscosity Parameter, v 0.0018,0.0028,0.0038 0.0028 

2 Dilation Angle, ψ 33°, 38°, 43° 38° 

3 Shape Factor, Kc 0.667, 0.9, 1.0 0.677 

4 Stress ratio, 𝝈𝒃𝟎 𝝈𝒄𝒐⁄  1.0, 1.16. 1.32 1. 
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The numerical load-deflection curves of the 

analysed RC frame, compared with their 

counterpart experimentally results, revealed the 

following calibrated parameter values: (1) a 

viscosity parameter of 0.0028, (2) a dilation angle 

of 38°, (3) a shape factor of 0.677, and (4) a stress 

ratio of 1.0. These calibrated values were derived 

based on the control model (CM) test results, as 

exhibited in Figs. 9 -12. 

The calibrated CM was used for the 

numerical analysis of additional models, as 

outlined in the next section. Fig. 18 illustrates the 

impact of the viscosity parameter on the load-

deflection response of the frame. The parameter’s 

performance depends on the time increment size, 

with smaller values yielding better results 

alongside the pseudo-time scale of the finite 

element analysis. References [52,59,60,77-82] 

recommend a time increment step of about 15% of 

the pseudo-time for accuracy. In this study, the time 

increment was set to automatic with both initial and 

maximum sizes fixed at 0.01. The most accurate 

viscosity parameter value selected from 0.0018, 

0.0028, and 0.0038 was 0.0028, calibrated with a 

constant dilation angle of 38° and a mesh size of 

20 mm, ensuring consistent and reliable numerical 

modeling results. 

The dilation angle represents the material's 

internal friction angle, influencing shear expansion 

during plastic deformation. Plastic Potential 

Eccentricity measures the convergence rate of the 

hyperbolic flow potential’s asymptote, usually 

defaulting to 0.1 if not specified. The stress ratio 

denotes the compressive yield stress proportion in 

a biaxial state compared to a uniaxial state, 

typically set at 1.16. The shape factor (K), ranging 

from 0.5 to 1 (default 0.667), controls the yield 

surface shape in the deviatoric plane by defining 

the hydrostatic effective stress ratio between 

tensile and compressive meridians. Viscosity acts 

as a regularization factor in Abaqus/Standard 

analyses, stabilizing the solution by smoothing the 

constitutive response. The Drucker–Prager plastic 

potential function is mathematically defined by Eq. 

15 and Eq. 16, where αp represents the dilatancy 

parameter for concrete. The flow potential function 

utilized in the CPD model is derived from the 

Drucker–Prager hyperbolic function [8].

 

Fig. 17. Lateral load-axial deformation response of CM against different values of viscosity

G= √2J2+ αpI1 Eq: 15 

Using the Drucker–Prager plastic potential 

function, as defined by Lee and Fenves [8] in Eq:  

16 the value of the dilation angle ψ is set to 38 

G(σ)= √(εσt0tanψ)
2
+ q̅2- p̅tanψ Eq: 16 
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In Eq: 16, ψ is the dilation angle, ε is the 

eccentricity of the plastic flow potential function 

needed to modify the shape of the hyperbola and 

σt0 is uniaxial tensile strength of concrete at failure 

can be rewritten as Eq: 17 

G(σ)= √(εσt0tanψ)
2
+ q̅2+ 

1

3
I1tanψ  Eq:17 

For the considered range of αp, the dilation 

angle (ψ) is expected to lie between 31° and 42°. 

This study analysed dilation angles of 33°, 38°, and 

43°. Parametric analysis demonstrated optimal 

correlation with experimental results when 

employing a dilation angle of 38° in conjunction 

with a viscosity parameter of 0.0028 and a mesh 

size of 20 mm. This calibrated configuration was 

consequently adopted for all subsequent finite 

element simulations. As shown in Fig. 19, the 

selected dilation angle significantly influences the 

axial load-deformation response, particularly for 

the CM where it accurately captures both the pre-

peak stiffness and post-peak softening behavior 

observed experimentally. The load-deflection 

curves indicate that, although changes in the 

dilation angle affect the results, their influence is 

relatively minor compared to the significant effect 

of the viscosity parameter. 

 

Fig. 18. Lateral load-axial deformation response of CM against different values of dilation angle 

 

Fig. 19. Lateral load-axial deformation response of CM against different values of shape factor
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Fig. 20. Lateral load-axial deformation response of CM against different values of stress ratio

Fig. 20 shows the effect of different shape 

factor values (Kc) on the load-deflection behavior 

of the control specimen. The analysis includes 

three Kc values—0.667, 0.9, and 1.0—selected to 

explore the influence of the shape factor on 

structural response under load. The results reveal 

that increasing Kc does not significantly affect the 

load-displacement curve, as seen in Fig. 20. 

Therefore, Kc = 0.667 was chosen to optimize 

results while minimizing computational time for the 

CM. 

For the calibration of the Stress ratio, σb0/σc0 

[8] as shown in Fig. 21, the different values 1.0, 

1.16, and 1.32 are used. However, all the values 

exhibited the same results. Thus, the value of 1.0 

is used to get the optimized results and analysis 

time for the CM. 

6.4. Stresses of Calibrated Model 

Fig. 22 presents a finite element analysis 

from ABAQUS [8] of the DSSB RC Frame at the 

ultimate limit state (ULS), detailing its structural 

failure mechanisms. The figure illustrates the span-

wise distribution of key parameters: vertical stress 

(S33) and strain (E33), which reveal 

tensile/compressive zones and deformation 

patterns; compressive damage (DAMAGEC), 

which highlights concrete degradation, especially 

at connections; and plastic equivalent strain 

(PEMAG), which signifies permanent inelastic 

deformation. A comparative plot of horizontal stress 

(S22), E33, and PEMAG further elucidates the 

interplay between stress, strain, and plastic 

response. 

DSSB RC Frame is designated as the CM in 

this study, as it serves as a reference due to the 

availability of comprehensive experimental test 

data. During the loading process, the onset of 

flexural cracking was observed near the base of 

the columns when the top of the specimen 

underwent a horizontal displacement of 

approximately 6 mm. These initial cracks highlight 

the critical stress points at the base under early 

loading stages. As the lateral load increased, 

additional cracks were formed, predominantly in 

the regions surrounding the beam-column 

connections. This progression of cracking indicates 

significant stress concentrations at these junctions, 

emphasizing their role as vulnerable zones in the 

structural system under lateral loads. Under higher 

load intensities, diagonal cracks began forming 

toward the upper portions of the columns, 

eventually propagating into the beam-column joint 

areas. These observations highlight the 

progressive damage mechanisms and the 

vulnerability of the beam-column connections to 

shear and flexural stresses under lateral loading. 

Fig. 23 ABAQUS [8] FEA results for 

reinforcement behavior in the DSSB RC Frame at 

ULS: (a) Axial Yield Criterion (AC Yield) showing 

initiation of steel yielding; (b) Maximum Principal 
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Stress (S, Max) highlighting critical tensile zones; 

and (c) a detailed plot of AC Yield and S, Max along 

the rebar, illustrating the progression of plastic 

deformation. Peak stresses and strains are 

localized at the column base and beam-column 

joints, with positive (+) and negative (-) values 

indicating tension and compression, respectively. 

Fig. 24 and Fig. 25 present a comparative 

analysis between experimental findings and 

numerical predictions generated using SAP2000, 

ABAQUS, and the proposed ANN-FEA approach 

for the RC frame. Fig. 24(a) illustrates the 

experimentally observed crack propagation within 

the RC frame, while Fig. 24(b) The results from a 

pushover analysis conducted in SAP2000 highlight 

the location and type of plastic hinges at the ULS. 

Fig. 24(c) depicts the damage severity and 

distribution predicted by ABAQUS, and Fig. 24(d) 

displays the crack pattern forecasted by the ANN-

FEA model, which closely aligns with the 

experimentally documented failure modes, 

demonstrating the reliability and accuracy of the 

proposed method. The results showed that ANN-

FEA exhibits similar failure to ABAQUS, consistent 

with the experimental results. However, 2000 fails 

to predict the experimental results. 
   

  
(a) (b) 

  
(c) (d) 

    
(e) 

Fig. 21. DSSB RC Frame (a) Stress S33, (b) Strain E33, (c) DAMAGEC, and (d) PEMAG at ULS (e) 

Values for S22, E33, and PEMAG 
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(a) (b) 

  
(c) 

Fig. 22. DSSB RC Frame (a) AC Yield and (b) Max Principal Stress at ULS (c) Values for AC YIELD and 

S, Max

  
(a) Experimental Result (b) SAP Result 

 
 

(c) ABAQUS Result (d) ANN-FE Result 

Fig. 23. Results of (a) experimental (b) SAP 2000, (c) ABAQUS for DSSB RC Frame, (d) ANN-FE
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Fig. 24. Comparison of Load-Deflection curves for DSSB RC Frame at ULS 

Fig. 25 presents a comparative assessment 

of load-displacement behavior obtained from 

experimental testing and various numerical 

approaches. The experimental curve, serving as 

the reference, demonstrates an initial linear 

increase in load with displacement, followed by a 

peak and a subsequent reduction, indicative of 

material softening or failure. In contrast, the results 

from the SAP2000 and ANN-FE methods exhibit 

higher load capacities at larger displacements, 

suggesting a stiffer response and delayed 

softening behavior. The ABAQUS model exhibits 

closer agreement with the experimental trend up to 

moderate displacement levels, but diverges 

beyond that point. Overall, the comparison 

highlights the variation in predictive accuracy 

among the methods, emphasizing the importance 

of model calibration and validation when simulating 

structural response. 

7. New FEM models 

To assess the impact of reinforcement 

detailing, a parametric study will analyze three 

numerical models derived from the calibrated 

Control Model (CM). Each model alters the 

transverse reinforcement to promote a shear-

critical failure mode: 

i. HDB: Features half the stirrup diameter in 

the beam only. 

ii. HDBC: Uses half the stirrup diameter in 

both beams and columns. 

iii. DSBC: Doubles the stirrup spacing in both 

beams and columns. 

Table 8. Case Studies of SB RC Frame SF 

Sr. No Description Models 

a.  Control Model C.M 

b.  Half Diameter of Stirrups Bars in Beam H.D 

c.  Half Diameter of Stirrup Bars in Beam & Columns H.D.B.C 

d.  Double spacing of Stirrups Rings in Beam & Columns D.S.B.C 

Table 8 summarizes these case studies for 

short and slender RC (DSSB RC) frames under 

shear failure (SF) conditions, facilitating an 

understanding of how stirrup configuration 

influences structural behavior. 

7.1. Half Diameter of Stirrup in Beam HDB 

The HDB model, a modification of the DSSB 

RC Frame C-SF, investigates the effect of 

significantly reduced beam confinement. As 

detailed in Table 8, the transverse reinforcement in 

the beams was reduced by 75% compared to the 

original experimental frame. Fig. 26 illustrates this 

modified stirrup arrangement. 

Fig. 27 illustrates the structural response of 
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the HDB specimen with reduced transverse 

reinforcement at the ultimate limit state (ULS), 

showing contours of vertical stress (S33) and strain 

(E33), compressive damage (DAMAGEC), and 

plastic strain (PEMAG). 

Fig. 28 presents the ABAQUS FEA results for 

the HDB model's reinforcement at the ULS, 

showing the Axial Yield (AC Yield) and Maximum 

Principal Stress (S, Max) distributions. The 

contours identify where the rebar approaches its 

yield capacity, directly illustrating the impact of 

reduced beam stirrups on structural integrity under 

extreme loads. 

Fig. 29 and Fig. 30 present a comparative 

analysis between experimental findings and 

numerical predictions generated using SAP2000, 

ABAQUS, and the proposed ANN-FEA approach 

for the HDB-SF. Fig. 29 (a) shows the results from 

a pushover analysis conducted in SAP2000, 

highlighting the location and type of plastic hinges 

at the ULS. Fig. 29 (b) depicts the damage severity 

and distribution predicted by ABAQUS, and Fig. 29 

(c) displays the crack pattern forecasted by the 

ANN-FEA model. The results showed that ANN-

FEA exhibits similar failure to ABAQUS. However, 

SAP2000 exhibited different results.  

Fig. 30 compares the load-displacement 

responses of HDB-SF predicted by three 

computational techniques: SAP2000, ABAQUS, 

and ANN-FE. All approaches exhibit an initial linear 

relationship, indicating elastic behavior, followed by 

a gradual deviation as the displacement increases. 

The SAP2000 method predicts the highest load 

capacity at larger displacements, suggesting a 

stiffer structural response throughout the range. 

The ABAQUS simulation closely follows SAP2000 

in the early and mid-stages but diverges slightly 

near the end. Meanwhile, the ANN-FE approach 

shows a sharper rise in load at smaller 

displacements. Still, it plateaus earlier than the 

other two, reflecting a different interpretation of 

material or structural behavior under increasing 

deformation. The variations among the methods 

underscore differences in modelling assumptions 

and computational strategies used in simulating 

the mechanical response.  

7.2. Half Diameter of Stirrup in Beam and 

Columns HDBC 

The HDBC model, which reduces transverse 

reinforcement by 75% in both beams and columns 

relative to the Control Model (CM), was analyzed 

to assess its impact on structural performance. Fig. 

31 details the updated stirrup configuration, with 

the comparison to the CM underscoring the critical 

role of transverse reinforcement in maintaining 

frame stability, as outlined in Table 7.  

 

Fig. 25. Reinforcement details of HDB 
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(a) (b) 

  
(c) (d) 

    
(e) 

Fig. 26. HDB RC Frame (a) Stress S33, (b) Strain E33, (c) DAMAGEC and (d) PEMAG at ULS (e) 

Values for S22, E33 and PEMAG 

Fig. 31 and Fig. 32 present the finite element 

analysis results for the HDBC model at the ULS. 

Fig. 31 shows the concrete response through 

contours of vertical stress (S33) and strain (E33), 

compressive damage (DAMAGEC), and plastic 

strain (PEMAG). Fig. 32 illustrates the 

reinforcement behavior, displaying the Axial Yield 

Criterion (AC Yield) and Maximum Principal Stress 

(S, Max).  

Fig. 33 and Fig. 34 present a comparative 

analysis between experimental findings and 

numerical predictions generated using SAP2000, 

ABAQUS, and the proposed ANN-FEA approach 

for the HDBC. Fig. 33(a) shows the results from a 

pushover analysis conducted in SAP2000, 

highlighting the location and type of plastic hinges 

at the ULS. Fig. 33(b) depicts the damage severity 

and distribution predicted by ABAQUS, and Fig. 33 

(c) displays the crack pattern forecasted by the 

ANN-FEA model. The results showed that ANN-

FEA exhibits similar failure to ABAQUS. However, 

SAP2000 exhibited different results.  
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(a) (b) 

 

  
(c) 

Fig. 27. HDB RC Frame (a) AC Yield and (b) Max Principal Stress at ULS (c) Values for AC YIELD and 

S, Max

  
(a) SAP Result (b) ABAQUS Result 

 
(c) ANN-FE Result 

Fig. 28. Results of (a) SAP 2000, (b) for HDB at ULS, (c) ANN-FE
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Fig. 29. Comparison of Load-Deflection curves obtained for HDB 

Fig. 34 illustrates the load-displacement 

behavior as predicted by three numerical 

approaches: SAP2000, ABAQUS, and ANN-FE. All 

methods start with a linear rise in load, reflecting 

elastic performance. The SAP model demonstrates 

a continued increase in load capacity beyond 50 

mm of displacement, indicating a more ductile or 

stiffer modelled behavior. ABAQUS and ANN-FE 

predictions, in contrast, extend only up to around 

20 mm, showing an earlier levelling off or limit in 

their simulations. Among them, ANN-FE predicts 

higher initial stiffness and slightly greater peak 

loads than ABAQUS. The observed differences 

highlight the sensitivity of each modelling strategy 

to deformation and load progression, with 

implications for how each captures post-elastic 

response characteristics. 

7.3. Double spacing of Stirrup in Beam and 

Columns DSBC 

The DSBC model, which doubles the stirrup 

spacing in beams and columns, was analyzed 

against the Control Model (CM) to assess its 

structural impact. This change, detailed in Fig 35 

and Table 8, effectively halves the transverse 

reinforcement volume, significantly influencing 

load capacity, ductility, and damage progression. 

The comparison underscores the critical role of 

stirrups in maintaining frame stability. 

 

Fig. 30. Reinforcement details of HDBC 
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(a) (b) 

  
(c) (d) 

    
(e) 

Fig. 31. HDBC (a) Stress S33, (b) Strain E33, (c) DAMAGEC, and (d) PEMAG at ULS (e) Values for 

S22, E33, and PEMAG 

  
(a) (b) 

Fig. 32. HDBC (a) AC Yield and (b) Max Principal Stress at ULS (c) Values for AC YIELD and S, Max 
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(c)  

Fig. 32. (continued) 

  
(a) SAP Result (b) ABAQUS Result 

 
(c) ANN-FE Result 

Fig. 33. Results (a) SAP 2000, (b) ABAQUS for HDBC, (c) ANN-FE

 

Fig. 34. Comparison of Load-Deflection curves obtained for HDBC 
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Fig. 35. Reinforcement details of DSBC 

(a) (b) 

(c) (d) 

   (e) 

Fig. 36. DSBC (a) Stress S33, (b) Strain E33, (c) DAMAGEC and (d) PEMAG at ULS (e) Values for S22, 

E33 and PEMA 
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(a) (b) 

  
(c) 

Fig. 37. DSBC (a) AC Yield and (b) Max Principal Stress at ULS (c) Values for AC YIELD and S, Max

  
(a) SAP Result (b) ABAQUS Result 

 

(c) ANN-FE Result 

Fig. 38. Results of (a) SAP 2000, (b) ABAQUS for DSBC, (c) ANN - FE
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Fig. 39. Comparison of Load-Deflection curves for DSBC 

Table 8. Analysis Time for the case of DSSB RC Frame EF  

Sr. No Tools Analysis Time of EF Models 

1 SAP 2000 10 Minutes 

2 ABAQUS 15 Hours (Half Model) 

3 ANN-FE 25 Minutes (Python) 

Fig. 36 illustrates the structural response of 

the DSBC model at the ULS, showing contours of 

vertical stress (S33), strain (E33), compressive 

damage (DAMAGEC), and plastic strain (PEMAG). 

Fig. 37 The ABAQUS FEA results for the 

HDBC model's reinforcement at the ULS are 

presented, showing the Axial Yield Criterion (AC 

Yield) and Maximum Principal Stress (S, Max) 

distributions to illustrate its stress and yield 

behavior. 

Fig. 38 and Fig. 39 present a comparative 

analysis between experimental findings and 

numerical predictions generated using SAP2000, 

ABAQUS, and the proposed ANN-FEA approach 

for the DSBC-SF. Fig. 38 (a) shows the results from 

a pushover analysis conducted in SAP2000, 

highlighting the location and type of plastic hinges 

at the ULS. Fig. 38 (b) depicts the damage severity 

and distribution predicted by ABAQUS, and Fig. 38 

(c) displays the crack pattern forecasted by the 

ANN-FEA model. The results showed that ANN-

FEA exhibits similar failure to ABAQUS. However, 

SAP2000 exhibited different results. 

Fig. 39 compares the structural response in 

terms of load versus displacement as predicted by 

three computational methods: SAP2000, 

ABAQUS, and ANN-FE. Initially, all approaches 

show a linear trend, representing elastic 

deformation. The SAP2000 model extends further 

in displacement and maintains load capacity up to 

around 50 mm, indicating a more ductile or 

extended response. In contrast, both the ABAQUS 

and ANN-FE models terminate at a displacement 

of approximately 20 mm, suggesting that their 

simulations were either constrained or reflected an 

earlier peak behavior. The ANN-FE method 

predicts a slightly higher load than ABAQUS for the 

same range, pointing to differences in model 

interpretation or data learning behavior. This 

divergence among models highlights the varying 

levels of conservatism and accuracy in capturing 

material or structural performance under 

increasing deformation. 

Beyond predictive accuracy, computational 

efficiency is a critical advantage of the proposed 

ANN-FEA method. As shown in Table 8, the 

analysis time required by the ANN-FE tool is 

comparable to a SAP 2000 push-over analysis and 
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only 2.27% of the time needed by ABAQUS. 

7.4. Comparative study between FEM models 

The Fig. 40 illustrates the comparison of 

lateral displacements by encompassing (i) 

experimental results, (ii) ABAQUS [8], (iii) SAP-

2000 [11] and (iv) ANN-FEA, for the four case 

studies mentioned above, i.e., (a) CM, (b) HDB, (c) 

HDBC, and (d) DSBC. The experimental results 

are only available for the CM configuration, 

showing a lateral displacement of approximately 60 

mm, whereas no experimental data is reported for 

HDB, HDBC, and DSBC.  

 

Fig. 40. Lateral displacement comparison of all models

In the numerical simulations, ABAQUS and 

ANN-FEA demonstrate a variation in lateral 

displacements among the configurations, with the 

CM model exhibiting the highest displacement 30 

mm and other configurations (HDB, HDBC, DSBC) 

showing progressively lower values. This variability 

suggests that ABAQUS is sensitive to the material 

properties and boundary conditions employed in 

the modelling. In contrast, the SAP simulation 

results display uniform lateral displacements of 90 

mm across all configurations, indicating the 

potential insensitivity of the SAP model to material-

specific variations or possible oversimplifications in 

the modelling assumptions. Notably, the 

experimental displacement for the CM 

configuration is significantly higher than the 

corresponding values predicted by both ABAQUS 

[8] and SAP2000 [11]. This discrepancy highlights 

potential challenges in capturing real-world 

structural behavior within numerical simulations, 

such as the influence of imperfections, nonlinear 

material behavior, or boundary conditions that may 

not be adequately modeled. In summary, while the 

numerical tools provide valuable insights, the 

uniformity in SAP-2000 results and the divergence 

from experimental data necessitate further 

refinement in modeling approaches. Additionally, 

conducting experimental validation for all 

configurations is essential to enhance the reliability 

of the findings and establish a more robust 

correlation between experimental and simulation 

outcomes. 

The Fig. 41 illustrates the comparison of 

lateral load by encompassing (i) experimental 

results, (ii) ABAQUS [8], (iii) SAP-2000 [11] Sand 

(iv) ANN-FEA, for the four case studies mentioned 

above, i.e., (a) CM, (b) HDB, (c) HDBC, and (d) 

DSBC. In the experimental results, only the CM 

configuration is represented, showing a lateral load 

of approximately 60 kN. The absence of 

experimental data for the HDB, HDBC, and DSBC 

configurations limits the ability to validate the 

numerical simulation results comprehensively. For 

the numerical simulations, ABAQUS and ANN-FEA 

demonstrate variation in lateral load capacity 

among the configurations. The HDB configuration 
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exhibits the highest load, closely followed by the 

CM configuration, while the HDBC and DSBC 

configurations show slightly lower lateral load 

values. This variation indicates ABAQUS's 

sensitivity to the material properties and boundary 

conditions applied in the models. Conversely, the 

SAP-2000 results reveal uniform lateral loads 90 

kN across all configurations. This uniformity 

suggests that the SAP-2000 model may not 

adequately capture material-specific differences or 

boundary condition variations, potentially due to 

oversimplified assumptions or a lack of sensitivity 

in its modeling framework. 

The discrepancy between the experimental 

load for the CM configuration and the numerical 

predictions from both ABAQUS, ANN-FEA, and 

SAP-2000 highlights potential limitations in the 

simulation models, such as an inability to fully 

replicate real-world conditions, including 

imperfections, nonlinearities, or other influential 

factors. In conclusion, while the numerical 

simulations provide valuable insights into structural 

performance, the consistent results from SAP and 

the lack of experimental data for specific 

configurations highlight the need for experimental 

validation across all configurations. Furthermore, 

enhancing the modelling strategies in numerical 

tools could improve their predictive accuracy, 

bridging the gap between simulated and 

experimental outcomes. 

 

Fig. 41. Lateral Load Comparison of all models

8. Numerical modeling details  

For the SAP2000 analysis, the model 

employs default concentrated plastic hinges at 

member ends using automatic hinge properties 

based on FEMA 356/ASCE 41 provisions. The 

hinge definitions include both flexural (M3) hinges 

for beams and axial-moment interaction (P-M2-M3) 

hinges for columns. However, the default 

configuration does not include explicit shear 

hinges, which may explain the different 

displacement ranges observed in the pushover 

curves compared to ANN-FEA and ABAQUS. 

The ABAQUS model utilizes the Concrete 

Damaged Plasticity (CDP) material model with the 

following key parameters: dilation angle of 38 

degrees, eccentricity of 0.1, biaxial-to-uniaxial 

compressive stress ratio (fb0/fc0) of 1.16, and Kc of 

0.667. The mesh consists of C3D8R solid elements 

for concrete with an approximate size of 25mm, 

while reinforcement is modeled using embedded 

T3D2 truss elements. Boundary conditions include 

fixed supports at column bases with displacement 

control applied at the beam-column joint level. The 

comparison basis for all models is the peak base 

shear capacity at the Ultimate Limit State (ULS), 

with curves terminated when member capacity is 
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reached. 

9. Limitations 

This study has several limitations that should 

be acknowledged: (1) The ANN models are trained 

on databases with specific parameter ranges (as 

shown in Tables 1 and 2), and predictions outside 

these ranges should be treated with caution; (2) 

Experimental validation is limited to the CM 

configuration, while findings for parametric variants 

(HDB, HDBC, DSBC) are based on numerical 

comparisons; (3) The ANN-FEA stopping criterion 

corresponds to ULS capacity cutoff and does not 

simulate post-peak softening behavior; (4) The 

current implementation focuses on static pushover 

analysis and has not been validated for dynamic or 

cyclic loading scenarios; and (5) The member-level 

ANN models assume specific support conditions 

that may differ from actual frame boundary 

conditions under different loading scenarios. 

10. Discussion and conclusion 

The analysis of four cases demonstrates that 

the finite element models (FEM) effectively 

replicate the behavior of reinforced concrete (RC) 

frames with various detailing approaches. The 

findings of this investigation lead to several key 

conclusions: 

1. The incorporation of shear effects is critical 

for the safe and accurate evaluation of the strength 

and ductility of RC frames, particularly for essential 

frames that are prevalent in practice. 

2. Numerical simulations performed using 

ABAQUS exhibit sensitivity to material properties 

and boundary conditions, whereas the results from 

SAP indicate a degree of uniformity across 

configurations, suggesting potential 

oversimplifications. It is imperative to refine 

numerical modeling techniques and include 

material-specific variations to enhance predictive 

accuracy and bridge the disparity between 

experimental and simulated outcomes. 

3. A comparison of experimental and 

numerical results reveals significant discrepancies, 

especially with the CM configuration. This finding 

highlights the limitations of numerical models in 

accurately replicating real-world structural 

behavior. Additionally, the absence of experimental 

data for the HDB, HDBC, and DSBC configurations 

underscores the necessity for comprehensive 

experimental validation to bolster the reliability of 

numerical simulations. 

4. The comparative analysis of the finite 

element models indicates substantial variations in 

lateral load capacity relative to the CM 

configuration. The findings confirm that all newly 

developed finite element analysis (FEA) models 

demonstrate lower lateral load capacities: -4.45%, 

-13.8%, and -5.2% for the HDB, HDBC, and DSBC 

configurations, respectively. These discrepancies 

emphasize the sensitivity of structural responses to 

variations in reinforcement detailing and spacing 

configurations. 

These observations raise significant 

concerns regarding the underlying assumptions 

employed in current assessment methods for RC 

structures. They point to an urgent need for the 

development of more sophisticated design and 

evaluation tools that accurately capture the 

behavior of RC structures under complex loading 

conditions, including high temperatures, fire, 

impact, blast, and environmental factors. 

Furthermore, these results underscore the 

necessity of reassessing the principles and 

assumptions of existing RC design codes to ensure 

their reliability and relevance in contemporary 

structural engineering practices. 
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