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Abstract: Predicting the brittle response of reinforced concrete (RC) frames
remains an active research problem. Different industries and research tools
predict brittle responses with varying accuracy and analysis times, due to their
inherent limitations. Also, the sophisticated Finite Element Tools, i.e.,
(ABAQUS, ANSYS, and DIANA), require costly computational costs and deep
knowledge of defining material compared to the industry tool (SAP 2000). An
Artificial Neural Network Finite Element Analysis (ANN-FEA) method is
proposed to address this issue without incurring additional computational
costs. This ANN-FEA method is designed for the analysis and design of both
new and existing RC structures, such as Double-story single-bay (DSSB)
Frames. For this study, one experimental control model (ECM) frame with three
additional finite element models (FEM) is examined. The additional FEM
models have: (i) Half Diameter of Stirrups in the Beam (HDB), (ii) Half Diameter
of Stirrups in both Beam and Columns (HDBC), and (iii) Double Spacing of
Stirrups in Beam and Columns (DSBC), as compared to the experimental
model. This assessment focused on measuring the influence of critical design
parameters, such as transverse reinforcement ratio (pt), on the load-carrying
capacity of DSSB, especially in a brittle manner. The findings confirmed that
all the new FEA models and ANN-FEA exhibited less lateral load than CM, with
reductions of 4.45% for HDB, 13.8% for HDBC, and 5.2% for DSBC.
Keywords: RC Frames, DSSB, Hybrid FEA-ANN, Structural Analysis Tools,
Artificial Neural Network.

1. Introduction

Since the mid-1950s, the construction boom
of multi-story buildings has significantly expanded
the roles and expertise required of structural
engineers. These professionals are now tasked
with ensuring the safety, durability, and cost-
effectiveness of reinforced concrete (RC) multi-
story structures [1-7]. Over the years, the field of

structural engineering has introduced a variety of
complex analytical methodologies to meet these
demands [8-11]. Today, advanced tools are
employed to design new structures in line with
updated guidelines and to evaluate existing RC
structures against contemporary standards [12-
17]. This evolution has led to increasingly
sophisticated and detailed analyses, requiring
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greater computational resources and time
investments. Current requirements emphasize the
importance of utilizing tools that can provide
accurate predictions, particularly regarding brittle
failure modes [18-24].

Over recent decades, extensive efforts have
been made to develop models that accurately
predict the brittle response of RC frame elements.
Such analysis tools are essential for (i) designing
new RC structures, (ii) assessing old RC structures
in line with current guidelines, (iii) evaluating the
strength, safety, and integrity of damaged or
deteriorated structures, (iv) addressing issues
arising post-construction or due to changes in the
use or function of existing structures, and (v)
investigating the causes of structural failures or
collapses [1-7].

To tackle the challenges faced in the
construction industry, structural engineers must
assess the performance and response of
reinforced concrete (RC) structures under extreme
loading conditions [8-11]. This evaluation involves
examining the load-carrying capacity of RC
structures, with a particular emphasis on their
brittle behavior and the failure mechanisms that
may lead to catastrophic collapse. Presently,
engineers employ nonlinear analysis methods to
explore the brittle characteristics of RC structures,
which require complex calculations. Nonlinear
finite element analysis (NLFEA) software
packages, such as ABAQUS [8] and ADINA[9], are
primarily used for research purposes. In contrast,
industry-standard software tools like (i.e., SAP
2000 and ETABS) [11] are generally effective at
predicting flexural failure modes; however, they
often struggle with accurately forecasting shear
(brittle) failure modes. Given that shear failures
tend to be abrupt and catastrophic, occurring with
little warning, it is crucial for structural analysis
tools to predict these failure modes with precision
[1-7]. Accurate predictions are essential for
developing safe and cost-effective design solutions
that uphold the structural integrity and resilience of
RC frame structures. Inaccurate forecasts can
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result in unsafe designs by overestimating the
load-carrying capacity and ductility of structural
components.

In structural engineering practice, various
standards such as ACI-318 [12], EC2 [13], JSCE
[14], NZ [15], KBSC [16], and CSA [17], are
commonly applied to assess the response of RC
frames under lateral loads. These guidelines
typically rely on truss models and strut-and-tie
frameworks to represent RC behavior at the ULS,
with analyses traditionally performed using
sectional methodologies. While these code-based
predictions tend to correspond well with
experimental results for flexural strength,
discrepancies in shear resistance have been
observed. These discrepancies are mainly due to
their empirical foundations, which are derived from
regression-based interpretations of test data. In
contrast, the CFP method [25] offers an alternative
ULS prediction model by conceptualizing RC
elements as arch-like structures post-cracking,
diverging significantly from conventional code
assumptions. For a more comprehensive analysis
under intricate loading scenarios, NLFEA [26-36] is
often employed in conjunction with physical testing,
utiizing complex 3D modeling, material
nonlinearities, and advanced failure mechanisms.
Additionally, soft computing (SC) strategies have
emerged as innovative tools for structural
evaluation, distinguishing themselves from NLFEA
by using data-driven, heuristic algorithms rather
than strict mechanical formulations [37-46]. More
recently, ANNs have gained traction as efficient
substitutes for traditional NLFEA in tasks like
structural performance evaluation, damage
detection, and reliability analysis, offering faster
computation with promising accuracy [47-55].

To address this challenge efficiently, we
introduce an Artificial Neural Network Finite
Element Analysis (ANN-FEA) approach [56,57], as
depicted in Fig. 1, which aims to establish a novel,
stable, and computationally efficient technique for
accurately predicting the nonlinear response of RC
structures. This innovative method is designed for
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both research and real-world applications, enabling
effective design optimization and comprehensive
parametric investigations. By leveraging Atrtificial
Neural Networks (ANNs), the approach reduces
computational demands compared to conventional
nonlinear finite element analysis (NLFEA). The
ANN-FEA technique models the nonlinear behavior
of individual RC elements, such as beams and
columns, by integrating finite elements with ANNs
to forecast brittle failure modes and their
corresponding load capacities. Training datasets
are compiled from experimental results on basic
structural configurations, which are then used to
train the ANN models. The model's predictions are
evaluated against design code specifications and
alternative assessment techniques, focusing on
ULS behavior, and are further validated through
selective NLFEA.

In these ANN-based finite element (ANN-FE)
models [56,57], ANNs act as failure criteria in
nonlinear static pushover analysis, ensuring
accurate predictions of structural behavior. The
method's reliability and objectivity are confirmed by
comparing its results for RC frames under static
loading with experimental data and numerical
benchmarks. Additionally, the ANN-FE model's
predictions are evaluated against outputs from
commercial and research-oriented structural
analysis software. During pushover analysis, ANNs
determine the load capacity and failure
mechanisms of individual RC members, such as
beams and columns. The findings indicate that the
ANN-FE approach delivers more precise ULS
predictions for RC structures than industry-
standard programs like ETABS and SAP 2000 [11],
while also being significantly faster and less
computationally intensive than advanced research
tools such as ABAQUS [8]. This ANN-FEA
technique [56,57], applies to both new and existing
RC structures, including continuous beams, and
serves as the core methodology of this research.
The process involves three main stages: (1)
database development from experimental and
numerical studies, (2) ANN training to predict
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failure modes, and (3) validation
established analysis methods.

* Artificial Neural Network (ANN) models are
developed for RC beams and columns, based on
experimental databases in the first step. These
models serve as failure criteria for predicting shear
failure modes in individual RC members, including
beams and columns, as established in the authors'
previous work [57-64].

» The second step involves the primary
feature of this method, which is the subdivision of
the structure into segments. These segments
extend between points of maximum bending
moment and points of contra-flexure or between
consecutive points of contra-flexure, analogous to
supported beams, as illustrated in Fig. 1 [56,57].
The behavior of these segments has been
thoroughly investigated experimentally. This
investigation systematically reduces the number of
shear links in key structural elements to evaluate
the accuracy of these structural analysis packages
in predicting the observed shift in failure mode from
flexural to shear when the quantity of shear links is
reduced beyond a critical threshold.

*In the third step, the developed ANN
models are used as failure criteria during the
nonlinear pushover analysis. The analysis process
halts if the applied force exceeds the predicted
capacity of the members.

During the pushover analysis, the ANN s
invoked at each load increment to predict the shear
capacity of individual RC members. Specifically,
the ANN models predict the ultimate shear load
(Vu) for beams and columns based on current
internal forces and geometric/material parameters.
The analysis procedure extracts internal forces
(bending moment M, shear force V, and axial force
N for columns) from each frame element at the
current load step, normalizes these values along
with member properties according to Eq. 4, and
feeds them to the corresponding ANN model. If the
demand (current internal forces) exceeds the ANN-
predicted capacity, the analysis stops and records
the failure mode and capacity. This stopping

against
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criterion corresponds to the Ultimate Limit State
(ULS), representing the point at which member
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capacity is exhausted rather than simulating post-
peak behavior.
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Fig. 1. Proposed Methodology of ANN-FEA for RC Frame [56,57]

* In the last step, for validation purposes, the
ANN-FEA predictions are compared with the
SAP2000 and ABAQUS predictions.

2. Novelty and contributions

The key novelty and contributions of this
study can be summarized as follows: (1)
Integration of ANN as a failure/limit criterion within
pushover analysis, enabling accurate prediction of
brittle failure modes; (2) Development of a
segmentation strategy with ANN-calling
mechanism for RC frame analysis; (3)
Establishment of a comprehensive ANN-FEA
coupling workflow that bridges member-level
predictions to frame-level response; (4)
Comparative assessment framework among ANN-
FEA, ABAQUS, and SAP2000 for validation

purposes; and (5) Application of the proposed
methodology to the DSSB case study with
systematic parametric investigation of transverse
reinforcement effects.

The proposed ANN-FEA structural analysis
method proves to be highly effective in designing
new RC structures and assessing existing ones.
Additionally, it enhances the capabilities of current
professional structural analysis tools [56,57]. This
ANN-FEA method is intended for the analysis and
design of both new and existing RC structures. For
this purpose, Emara et al [65] selected the double-
story-single-bay (DSSB) RC frame as a case study
for the numerical investigation of the effect of
detailing on the frame's capacity. After calibration,
the peak lateral load and peak displacement values
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of the FEA models match those of the experimental
studies, yielding stress values that are very close
to the experimental results. The calibrated CM was
utilized to study three additional finite element
analysis (FEA) models: (a) Half-Diameter Stirrups
in the Beam (HDB), (b) Half-Diameter Stirrups in
both Beam and Columns (HDBC), and (c) Double
Spacing of Stirrups in Beam and Columns (DSBC).
This assessment focused on measuring the
influence of critical design parameters, such as
transverse reinforcement ratio (pt), on the load-
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It should be noted that experimental
validation is available only for the CM (Control
Model) configuration. The parametric variants
(HDB, HDBC, and DSBC) represent numerical
investigations comparing ANN-FEA predictions
against ABAQUS and SAP2000 results. Therefore,
findings for these variants should be interpreted as
comparative assessments among numerical
models rather than experimentally validated
conclusions. The percentage differences reported
for these variants reflect the agreement between

carrying capacity of DSSB, especially in a brittle  different numerical approaches rather than
manner. The findings confirmed that all the new  experimental accuracy.
FEA models exhibited less lateral load than CM, - 3. Database of RC beams
4.45%, -13.8% and -5.2% respectively of HDB, 3.1. Description and Statistical
HDBC, and DSBC. Characterization of the Databases
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Fig. 2. Experimental setup for RC Beams (a&b)
Table 1. Statistical information for the for BWS
b d a/d p fyi fe pw  fyw M; Vy
Unit mm mm (%) MPa MPa (%) MPa KN-mm kN
Min 100 113 1 018 250 13.8 0.08 224 2648 4.097
Max 510 975 7.25 56 890 126 225 875 1,738,423 760.194
Avg. 208 343 35 24 415 45 0.6 400 283,485 185.54
St. Dev 68 158 1.5 1.1 78 25 05 115 378,729 134.25
cov 034 048 04 046 02 055 09 03 1.35 0.75

The initial phase of this study involves
developing Artificial Neural Network (ANN) models
for reinforced concrete (RC) beams and columns.
Two databases have been established: (i) RC
beams with Stirrups (BWS) and (ii) RC columns
with Axial Load (CWA). The BWS database

consists of 315 RC beam specimens subjected to
3-point or 4-point loading tests, as shown in Fig. 2
(a&b). It provides insights into how design
parameters affect the load-carrying capacity and
failure modes of RC beams approaching the
Ultimate Limit State (ULS). Key features include
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material properties, geometric dimensions,
reinforcement details, loading conditions, and
failure modes. Table 1 offers statistical information
about specific parameters for the specimens, with
65% (204 samples) exhibiting shear failure modes
and 35% (111 samples) demonstrating flexural
failure modes. Fig. 3 presents a histogram
illustrating the frequency distribution of key
parameters in the BWS database. Additionally, this
histogram indicates a limitation of ANN models,
which are constrained by the parameter limits.
The second database comprises 130
samples of reinforced concrete (RC) columns
(CWA) with cantilever support conditions, as
shown in Fig. 4. Table 2, provides statistical data
regarding the parameters associated with the CWA
samples. Among these, 62% (80 samples) exhibit
shear failure modes, while 38% (50 samples)
display flexural failure modes. Fig. 5 presents a
histogram illustrating the critical parameters for the
CWA, showing the frequency distribution of each
parameter across different sample values. This
histogram also underscores a limitation of the ANN

models, as the established limits of each
100 100
50 50 |
00 200 400 -0500

b(mm)

Frequency

0
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parameter constrain their predictions.

3.2. Correlation Coefficient of the Parameters
The Pearson correlation coefficient (r) was
calculated using Eq: 1 [66-69]. quantifies the linear
relationship between pairs of variables within a
dataset. For the BWS database, Fig. 6 (a) displays
the correlation factors (r) for key parameters (b, d,
aJ/d, pl, fy, fc). In contrast, Fig. 6 (b) presents those
for the CWA database (b, d, pi, N, fy, fc, pw, fyw, av/d.
These correlations guide the development of ANN
models to predict the load-carrying capacities of
RC specimens. The coefficient (r) ranges from -1
to 1, where negative values indicate an inverse
relationship (an increase in one variable leads to a
decrease in the other). In contrast, positive values
indicate a direct relationship (where both variables
increase or decrease together). A stronger linear
dependence between variables is reflected by a
higher absolute value of (r), meaning parameters
with larger (r) exhibit a more significant influence
on the load-bearing capacity predictions.
nZxy-(Zx)(Zy)

Eq: 1

J n(2x2)-<2x>2J n(zy?)-(zy)”

500 1000

d(mm)

0
0 200 400 600 800
fyl (Mpa)

0
-2 0 2 0 200 400 600 800
pw (%) fyw (Mpa)
(b) For BWS

Fig. 3. Histogram of BWS Parameters
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Cross Section

Fig. 4. Experimental setup for RC columns (CWA)
Table 2. Statistical information for the for CWA

b d avld pl fyl fc pw fyw N Mf VU
(mm)  (mm) (%) (MPa) (MPa) (%) (MPa) (kN) KN-mm  (kN)
Min 150 1105 2647 0.87 313 179 041 255 111 15 33

Max 550 470 8.73362 6.16 5595 118 2.8 1424 5373 1590 812

Avg. 323.03 24122 5.1 3.19 463.16 49.09 0.82 497.46 1445.62 366.91 244.04
St. Dev 117.16 77.37 1.57 115 50.13 28.23 058 246.1 1270.2 337.62 177.62

cov 0.36 0.32 0.31 036 0.11 0.58 0.71 049 0.88 0.92 0.73
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20 20
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100 500 0 200 400 0 5 10
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= 20 20 1 20
o AL
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0
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Fig. 5. Histogram of CWA Parameters
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Fig. 6. The correlation parameter r (a) for BWS and (b) for CWA

4. Artificial neural network (ANN)

Research [55,59,70] indicates that Artificial
Neural Networks (ANNs) are designed to emulate
the structure and functionality of biological neural
systems in living organisms (illustrated in Fig. 7
a&b). These computational models excel at
processing complex relationships through pattern
recognition, leveraging acquired knowledge from
training to perform tasks such as classification,
prediction, and generalization. Structurally, ANNs
consist of multiple layers containing interconnected
processing units  ("neurons") that form
sophisticated networks. As depicted in Fig. 7 these
inter-neuronal connections are governed by
specific weighting values. The fundamental

mathematical representation of an ANN is provided
in Eq: 2. The researchers have provided a
comprehensive description of both the operational

mechanisms and the supervised training
methodology employed in these networks.
O =1(3 x w;+b) Eq: 2

The output of a neural network (O) is
influenced by the combination of weights (wi),
inputs (xi), and a bias term (b). Activation functions
play a crucial role in shaping the network’s
performance; typically, logistic and hyperbolic
functions are applied between the input and hidden
layers, while hyperbolic functions are used
between the hidden and output layers. To refine the
network's  predictions, a  back-propagation
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algorithm based on the delta rule is employed,
which systematically updates the weights to reduce
the discrepancy between the predicted output and
the actual target value (T) obtained from the
dataset. As depicted in Fig. 7 (a&b), this learning

A. Ahmad et al

process proceeds iteratively from the output layer
back through the network, continuing as described
by Eq: 3 until the mean squared error (MSE) falls
below a predefined threshold, thereby improving
the model’s accuracy [55,59,70].

Input Neuron with vector input
O I —
P1 W
P2 !
[ (n) (a)
. > —» f —>»
PR Wr b
1
L J __J
a=flwp+b)

(a)

Forward direction of signals

Hidden
Layers

Output
Layer

Back-propagation of errors

(b)

Fig. 7. (a) The Function of an Artificial Neuron and (b) Artificial Neural Network

E(w)=%zi (T-0)? Eq: 3

The neural network's predicted output (O) is
compared against the target values (T) from the
database, and the resulting error is minimized
through backpropagation using the Delta Rule
[565,59,70]. This optimization process, illustrated in
Fig. 7, involves iteratively adjusting initially

randomized connection weights and propagating
corrections backward (right to left) through the
network to align the outputs more closely with the
expected target values. Training continues until the
mean squared error (MSE) converges to an
acceptable threshold, indicating no further
improvement. The fine-tuned weights are then
applied in the ANN model, enabling more precise

246



JSTT 2025, 5 (4), 238-279

predictions with reduced error margins.
4.1. Normalization of Database

Researchers [55,59,70] emphasizes that
input normalization plays a critical role in training
ANN models effectively, particularly when dealing
with parameters of varying units. Normalization
transforms all inputs into dimensionless values,
improving computational efficiency and preventing
sluggish learning rates. In this study, rather than
using the standard 0 to 1 range, parameters are
scaled between 0.2 and 0.8 Eq: 4 to enhance
model performance [55,59,70]. The normalization
process follows Eq: 4 where a raw input value (x)
is converted to its normalized form (X) by
referencing the maximum value (Xmax) and the
range (Xmax - Xmin). This adjustment ensures

smoother ANN training while maintaining
numerical stability.
0.6
X=(0.6/A)x+{0.8- (T) X} Eq: 4

4.2. Calibration of Proposed ANN Model

To ensure the accuracy of the proposed ANN
model, calibration is performed by comparing its
predictions with experimental results. The multi-
layer feedforward backpropagation (MLFFBP)
technique, introduced by Grossberg (1988) [71-75]
is employed for this process, following established
training methodologies [71-75]. To enhance
generalization and prevent overfitting, the dataset
is divided into three subsets: 60% for training, 20%
for validation, and 20% for testing [71-75]. MATLAB
[76] Serves as the computational platform for ANN
implementation.

i. Each ANN model undergoes training for
100 epochs using the MLFFBP algorithm [71-75].
The iterative process terminates when any of the
following criteria are met:

ii. The performance goal (deviation between
output and target values) falls below 0.0001.

iii. The validation phase records 20
consecutive failures (no improvement in error
reduction).

iv.. The minimum performance gradient
attains a threshold of 1.0 x 10'°, as defined by the
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Levenberg-Marquardt backpropagation method
[71-75].

This optimization leverages a second-order
algorithm that incorporates second-derivative
information for efficient weight adjustment. The
ANN'’s predictive accuracy is evaluated using three
key indicators:

a. Mean Squared Error (MSE, Eq: 5) —
Quantifies the average squared deviation between
predicted and target values.

b. Mean Absolute Error (MAE, Eq: 6) —
Measures the absolute difference between
predictions and experimental data.

c. Correlation factor (R, Eq: 7) — Assesses
the linear relationship between target and
predicted outputs, with higher values indicating
stronger agreement.

These metrics, drawn from prior studies [71-
75], ensure rigorous validation of the model’s
reliability across diverse scenarios.

S(T-0)

MSE = = Ea: 5
n
>[T-0) |
MAE=1 Eq: 6
n
R= L1[(c-T)(0-0)]
Eq: 7

JZ (T 204 (0-0)°
In the following equations, Oi denotes the
predicted values generated by the ANN, while T;
refers to the experimentally observed (target)
values. The variable n represents the total number
of samples. The symbol T indicates the mean of the
experimental values, and O denotes the mean of
the predicted values.
4.3. ANN model development
Eight artificial neural networks (ANNs) were
trained to predict the load-carrying capacity of RC
beams in the BWS category, utilizing various input
parameter combinations outlined in Table 3.
Similarly, nine ANN models were developed for the
CWA category, as detailed in Table 4. The final
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columns of both tables present the architecture of  neurons in the input layer, the two hidden layers,
each ANN model, specifying the number of  and the output layer (I-H-H-O format).
Table 3. ANNs architecture for BWS

ANN Models Combination of Parameters I-H1-H2-0
BWS-1 b, d, pi, fy, fe, pw, fyw, av/d 8-16-16-1
BWS-2 b, d, My, fe, pw, fyw, av/d 7-14-14-1
BWS-3 b/d, M#f coa=, pW, fyw, av/d 5-10-10-1
BWS-4 b/d, pw/pi, f/fyw, av/d 4-8-8-1
BWS-5 d, Mi/f coez, e, pufyw, av/d 5-10-10-1
BWS-6 d, b/d, M¢f cvez, pw, fyw, av/d 6-12-12-1
BWS-7 d, b/d, Md/f cpez,, fe, pwfyw, av/d 7-14-14-1
BWS-8 d, b/d, Md/f cpez,, fe, pwfyw, av/d

900

N 600
=
@ 300

0 0
12345678 12345678 123458678
(b) BWS MODELS (b)

Fig. 8. (a) Results for BWS Models and (b) ANN performance for BWS
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Table 4. ANNs architecture for CWA

ANN Models Combination of Parameters I-H1-H2-0
CWA:1 b, d, pi, N, fy, fe, pw, fyw, av/d, 9-18-18-1
CWA:2 b, d, My, N, fc, pw, fyw, a//d, 8-16-16-1
CWA:3 b/d, N/bdfe, pw, fyw, Mifcbd?, av/d, 6-12-12-1
CWA:4 b/d, N/bdfe, fo/fyw, pw/pl, av/d, 5-10-10-1
CWA:5 d, N/bdf;, pufyw, Mi/fcbd?, fc, av/d, 6-12-12-1
CWA:6 d, b/d, N/bdfe, pw, fyw, Mi/fcbd?, av/d, 7-14-14-1
CWA:7 d, b/d, N/fcbd, pw, fyw, Mifbd?, fe, av/d, 8-16-16-1
CWA:8 d, b/d, N/fcbd, pufyw, Miffcbd?, fe, av/d 7-14-14-1
CWA:9 d, b/d, pw, fyw, Mifcbd?, f;, a./d, 7-14-14-1

900

: 600 |

%300-

0.35-

R (%)

0.05

0 0
123456789 123456789 123456789
(b) CWA MODELS (b)

Fig. 9. (a) Results for CWA Models and (b) ANN performance for CWA
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The selection of hidden layer neurons follows
established guidelines in the literature, where the
number of neurons in each hidden layer is typically
set to approximately twice the number of input
parameters to ensure adequate learning capacity
while avoiding overfitting. This heuristic, combined
with systematic testing of multiple architectures (as
shown in Tables 3 and 4), allows identification of
optimal configurations that balance model
complexity with prediction accuracy. The final
architecture selection was based on minimizing
MSE and maximizing correlation coefficient R
during cross-validation.

Fig. 8 (a&b) depict the performance of eight
ANN models for predicting BWS, comparing their
outputs with experimental data, while Fig. 9 (a&b).
present nine ANN models for CWA. These figures
also include error metrics: Mean Squared Error
(MSE), Mean Absolute Error (MAE), and
correlation coefficient (R) from references
[55,59,70]. The models BWS-7, which uses input
variables such as d, b/d, a.J/d, Mi/fepez, fe, pw, and fyw,
and CWA-8, incorporating (d, b/d, Nffcod, pw, fyw,
Mi/fee, fe, av/d), are identified as the most optimal
configurations for their respective predictions.

5. Case study for DSSB

To enhance the strength and stiffness of
multi-story  structures, which are particularly
susceptible to seismic and wind forces, structural
members are often designed with progressively
larger cross-sectional dimensions from top to
bottom. While this method bolsters structural
integrity, it can lead to economic inefficiencies [65].
Therefore, integrating specialized mechanisms or
systems to enhance lateral stability is crucial.
Braced frames counteract lateral forces through
the bracing action of diagonal members. Fully
braced frames offer superior rigidity; however, from
an economic standpoint, partially braced frames
are more favorable as they generate minimal
forces while keeping displacements within
acceptable thresholds.

In 1980, a 12-story reinforced concrete
building underwent retrofitting after a minor
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earthquake revealed significant ~ seismic
vulnerabilities. The retrofit involved bracing the
perimeter frames along the building's weaker axis
with an external steel truss system designed to
withstand overturning forces, while also allowing
access to the interior and underground parking
[65]. The floor slabs were reinforced to transfer
shear forces to these new frames. This study
examines the structural behavior of steel and
concrete cross-bracing, focusing on its effects on
lateral load capacity and energy dissipation, and
provides a comparative analysis with infilled
frames. The findings offer insights into improving
the lateral load resistance and overall performance
of concrete frames. The experimentally validated
Design-Sensitive Structural Behavior (DSSB) RC
frame, as detailed in the study, includes design
specifications of a 3500 mm center-to-center span
and a story height of 2000 mm, culminating in a
total frame height of 4600 mm [65]. All structural
members maintained a uniform cross-section of
300 mm in width and 400 mm in depth, with
reinforcement details documented in
accompanying figures. Material testing indicated a
concrete compressive strength of 30 MPa,
whereas yield strengths of the steel reinforcement
were recorded at 596 MPa (No.10 bars) and 640
MPa (No.20 bars). The testing procedure began
with a constant axial load of 700 kN applied to each
column, followed by a monotonically increasing
lateral load under stroke-controlled conditions until
the frame's ultimate capacity was reached. The
global load-deformation  behavior revealed
significant relationships between applied lateral
loads and top-frame displacements, with critical
load stages identified [65].

The experimental setup and instrumentation
for the tests are illustrated in Fig. 10. Initial cracking
occurred at an applied load of 52.5 kN, with flexural
cracks first emerging in the north section of the
first-story beam. Further flexural cracking was
noted at column bases under a load of 145 kN,
coinciding with the development of initial web-
shear cracks in the first-story beam. As the loading
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continued, a progressive reduction in structural
stiffness was observed due to extensive crack

indicated initial yielding at 264 kN in the bottom
longitudinal reinforcement of the beam, followed by

propagation.  Strain gauge measurements  yielding of the top reinforcement at 287 kN.
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Fig. 11. Experimental results of DSSB RC Frame [65]

6. Finite element analysis of RC structural
configurations

ABAQUS [8] recognized for its advanced
finite element analysis (FEA) capabilities and
accuracy in modelling materials such as concrete
and steel [8,9] was employed to develop finite

element models that capture the behavior of RC
frames with high precision. In this modelling
approach, concrete was simulated using 3D solid
stress elements, while the reinforcing bars were
represented by wire elements capable of full 3D
deformation. Reliable simulation results were
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ensured by applying suitable boundary conditions
and load setups that enabled the gradual and
uniform application of loads. The model underwent
calibration and refinement to incorporate key
parameters, including the concrete's shape factor,
viscosity coefficient, dilation angle, mesh type, and
element size. This refined model then supported an
extensive parametric study, which explored the
influence of these variables on the behavior of RC
frame, thereby improving the accuracy and
generalizability of the numerical analyses.
6.1. Compressive uniaxial stress-strain
relationship for concrete

Fig. 12 presents the simplified upper-bound
tensile stress-displacement relationship employed

A. Ahmad et al

in this study. The Continuous Plastic-Damage
(CPD) [8] model necessitates the definition of
several critical parameters. Notably, the viscosity
parameter is essential for achieving a smooth
material response in Abaqus/Standard, while the
dilation angle, denoted as y, indicates the
inclination of the failure surface concerning the
hydrostatic axis. This dilation angle plays a pivotal
role in governing plastic flow and the overall
material behavior under applied loads.

The different concrete material properties
used in ABAQUS Standard, defining materials and
step modules, are given in Table 5. The elasticity
modulus (Ec) of concrete was calculated using the
ACI code given by Eq: 8

Compressive stress

[

03f]-

.ﬁ"_-_

(53

(Displacement)d =

{ |

= o [Strain)

Tensile stress

Fig. 12. Stress-strain curve of concrete used in the model [8]
Table 5. Different properties used in ABAQUS for concrete [8]

Parameters Values
Concrete density (ton/mm3) 2.4 X10°
Poisson’s ratio, v 0.2
Concrete Compressive Strength (MPa) 35.06
Elasticity modulus, E. (N/mm?) 26587
The initial increment size of loading 0.01
Maximum increment size of loading 0.1
Minimum increment size of loading 1E-050
Number of increments 100000
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The CPD model, originally developed for
concrete, is also effective in simulating the
behavior of other quasi-brittle materials such as
masonry and mortar [8]. This model addresses two
primary failure modes: tensile cracking and
compressive crushing. Key inputs for the CDP
model include the material’s uniaxial stress-strain
behavior in both tension and compression, as
illustrated in Fig. 13 (a&b). In tension, the material
exhibits a linear response until it reaches its peak
tensile strength, after which it follows a softening
curve. Conversely, in compression, it begins with a
linear elastic phase, progresses into a hardening
region, and eventually softens. These
characteristics allow the CDP model to accurately
represent the progressive damage and nonlinear
response of quasi-brittle materials under various
loading conditions.

Eq: 8

The primary advantage of employing this
material model is its ability to distinctly define the
material's  behaviour under tension and
compression, thereby capturing its fundamentally
different mechanical responses. This includes
variations in yield strengths, tension softening, and
the transition from hardening to softening in
compression, as well as distinct elastic stiffness
degradation under both tensile and compressive
loads. The degradation of elastic stiffness in
concrete is primarily attributed to failure
mechanisms such as cracking under tensile
stresses and crushing under compressive
stresses. In the CPD model, this degradation is
based on scalar-damage theory, where the loss of
stiffness is considered isotropic and represented
by a single scalar damage variable. The stress-
strain relationship, incorporating this damage
parameter as Eq: 9, is mathematically expressed
in providing a concise representation of the
material's behavior as it transitions from an
undamaged to a damaged state.

0=(1-d)-D/(e-€”)=D/(e-€") Eq: 9
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In this context, DS' represents the initial,
undamaged elastic stiffness of the concrete, while

D'=(1-d).DS denotes  the degraded elastic
stiffness, accounting for material damage. The
scalar variable ddd, which quantifies stiffness
degradation, ranges from 0 <d<1, indicates an
entirely intact (undamaged) material and d=1
signifies a fully damaged state. The corresponding
effective stress, which reflects the internal stress
carried by the undamaged portion of the material,
is formally defined in Eq: 10
5=D%'/(e-€") Eq: 10
and is related to the Cauchy stress through the
scalar degradation variable as Eq: 11.
o =(1-d)-o Eq: 11
The plasticity model of concrete is defined by
various parameters, including the dilation angle
(), plastic potential eccentricity (¢), the ratio of
biaxial to uniaxial compressive stresses (Obo/Oco),
shape factor (Kc), and the viscosity parameter. The
dilation angle and Vviscosity values were
determined through calibration. According to the
concrete damaged plasticity model, the
recommended values for the shape factor (Kc) and
eccentricity (¢) are 2/3 and 0.1, respectively. The
stress ratio (0w0/O0) is specified as 1.16, based on
Eq: 12 proposed in reference [8], which quantifies
this ratio using a substantial amount of statistical

data.

Obo -0.075

20 =1 .5(f)

O Eq: 12
Fig. 14 presents the compressive stress-
strain relationship for concrete as outlined in
Eurocode 2 [13]. According to the ABAQUS [8] the
material exhibits linear elastic behavior up to
approximately to 0.4f.m [13] also provides empirical
formulations, derived from experimental
observations Eq: 13 and expressed in Eq: 14 to
estimate the strain €1 corresponding to the mean
compressive strength of concrete and the ultimate
strain gcu1.
£,1=0.0014(2-g°0-024fem_g0.140fcm)

£.,1 =0.004-0.0011(1-g70-0215fcm)

Eq: 13
Eq: 14
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Fig. 13. CPD modelling (a) under tension and (b) under compression [8]
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Fig. 14. Concrete modelling in ABAQUS [13]
6.2. FEM Modelling ABAQUS involves defining the beam-column

The modeling process of the RC frame in  connections, where the column's bottom face is the
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master surface and the beam's top face is the slave
surface, as illustrated in Fig. 16 and Fig. 17. This
same principle applies to the contact between the
beam's top and the steel plates. The RC columns
are fixed at the bottom, and a 60 mm thick rigid
steel plate is attached to the top and sides of the
beam using a 'tie constraint.' The steel plates are
modeled as rigid elements with a Young’s modulus
of 210 GPa and a density of 7.85 x 107° ton/mm?.
The finite element models for the steel-reinforced
columns ensure that the top of the beam remains
free in all directions during lateral loading,
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accurately representing support conditions.

The modeling of the steel cage within the
DSSB RC frame is shown in Fig. 17 (a-d),
Following ABAQUS guidelines, the steel mesh is
embedded in the concrete (b), ensuring that the
nodes of the reinforcing bar elements match the
surrounding concrete's degrees of freedom (c). To
evaluate the lateral load-deflection behavior of the
DSSB RC frame until failure, a static load was
applied on the left side of the beam using
displacement control, with increments of 10 mm for
gradual loading.

(c)

6.3. Calibration of CPD parameters

All the essential parameters required for
defining the damage plasticity model, which
describes the behavior of concrete, were calibrated

(d)
Fig. 15. Modelling of DSSB in ABAQUS (a) 3D model, (b) Connection between Beam & Columns, (c)

Connection between steel plates and beam, and (d) Fixed support condition of Column

using available experimental data. The calibrated
values for these parameters are presented in Table
7. A static load was applied monotonically until
failure, utilizing displacement increments under
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displacement control. The graphs provided in Table
7 illustrate these parameters' numerical calibration.
Only the target parameter was varied for each
calibration, while all other parameters were kept
constant.

The numerical load-deflection curves for the
analysed RC beam were compared with the
corresponding experimental results. Through the

N
| ]
i
&
]
N
i
H

(c)
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calibration process, the following parameter values
were determined: (1) viscosity parameter,
calibrated to 0.0028; (2) dilation angle, calibrated
to 38°; (3) shape factor, calibrated to 0.677; and (4)
stress ratio, calibrated to 1.0. These calibrated
values reflect the material's response and are

crucial for accurately simulating the behavior of RC
frame under load.

/ |
! ]
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[
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llvh

i

VT

(b)

(d)
Fig. 16. Modelling of DSSB in ABAQUS (a) Meshing of 3D model, (b) Steel Mesh in the frame, (c) Steel

Mesh, and (d) Embedded steel mesh with concrete
Table 7. Concrete Damage Plasticity Parameters Used in ABAQUS Modelling [8]

Sr. No Descriptions Values Calibrated
1 Viscosity Parameter, v 0.0018,0.0028,0.0038 0.0028
2 Dilation Angle, @ 33°, 38°, 43° 38°
3 Shape Factor, K¢ 0.667,0.9,1.0 0.677
4 Stress ratio, 639/0.,, 1.0, 1.16. 1.32 1.
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The numerical load-deflection curves of the
analysed RC frame, compared with their
counterpart experimentally results, revealed the
following calibrated parameter values: (1) a
viscosity parameter of 0.0028, (2) a dilation angle
of 38°, (3) a shape factor of 0.677, and (4) a stress
ratio of 1.0. These calibrated values were derived
based on the control model (CM) test results, as
exhibited in Figs. 9 -12.

The calibrated CM was used for the
numerical analysis of additional models, as
outlined in the next section. Fig. 18 illustrates the
impact of the viscosity parameter on the load-
deflection response of the frame. The parameter’s
performance depends on the time increment size,
with smaller values vyielding better results
alongside the pseudo-time scale of the finite
element analysis. References [52,59,60,77-82]
recommend a time increment step of about 15% of
the pseudo-time for accuracy. In this study, the time
increment was set to automatic with both initial and
maximum sizes fixed at 0.01. The most accurate
viscosity parameter value selected from 0.0018,
0.0028, and 0.0038 was 0.0028, calibrated with a

350
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constant dilation angle of 38° and a mesh size of
20 mm, ensuring consistent and reliable numerical
modeling results.

The dilation angle represents the material's
internal friction angle, influencing shear expansion
during plastic deformation. Plastic Potential
Eccentricity measures the convergence rate of the
hyperbolic flow potential's asymptote, usually
defaulting to 0.1 if not specified. The stress ratio
denotes the compressive yield stress proportion in
a biaxial state compared to a uniaxial state,
typically set at 1.16. The shape factor (K), ranging
from 0.5 to 1 (default 0.667), controls the yield
surface shape in the deviatoric plane by defining
the hydrostatic effective stress ratio between
tensile and compressive meridians. Viscosity acts
as a regularization factor in Abaqus/Standard
analyses, stabilizing the solution by smoothing the
constitutive response. The Drucker—Prager plastic
potential function is mathematically defined by Eq.
15 and Eq. 16, where ap represents the dilatancy
parameter for concrete. The flow potential function
utilized in the CPD model is derived from the
Drucker—Prager hyperbolic function [8].

—CM-EXP
---Viscosity 0.0018
300 (- - -Viscosity 0.0028
Viscosity 0.0038

250

N
(=
o

Lateral Load (kN)
o
(=)

100

50

0 20 40 60

80 100 120 140

Displacement (mm)

Fig. 17. Lateral load-axial deformation response of CM against different values of viscosity

G= y2Jo+ aply Eq: 15
Using the Drucker—Prager plastic potential
function, as defined by Lee and Fenves [8] in Eq:

16 the value of the dilation angle y is set to 38

G(o)= \/ (eotany)+ G- ptany Eq: 16
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In Eq: 16, w is the dilation angle, ¢ is the
eccentricity of the plastic flow potential function
needed to modify the shape of the hyperbola and
Oy is uniaxial tensile strength of concrete at failure
can be rewritten as Eq: 17

1
G(o)= \/(eototanw)2+ 9+ 3 htany Eq:17

For the considered range of ap, the dilation
angle (y) is expected to lie between 31° and 42°.
This study analysed dilation angles of 33°, 38°, and
43°. Parametric analysis demonstrated optimal
correlation with experimental results when
employing a dilation angle of 38° in conjunction

350 I T
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with a viscosity parameter of 0.0028 and a mesh
size of 20 mm. This calibrated configuration was
consequently adopted for all subsequent finite
element simulations. As shown in Fig. 19, the
selected dilation angle significantly influences the
axial load-deformation response, particularly for
the CM where it accurately captures both the pre-
peak stiffness and post-peak softening behavior
observed experimentally. The load-deflection
curves indicate that, although changes in the
dilation angle affect the results, their influence is
relatively minor compared to the significant effect
of the viscosity parameter.
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Fig. 18. Lateral load-axial deformation response of CM against different values of dilation angle
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Fig. 19. Lateral load-axial deformation response of CM against different values of shape factor
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Fig. 20. Lateral load-axial deformation response of CM against different values of stress ratio

Fig. 20 shows the effect of different shape
factor values (Kc) on the load-deflection behavior
of the control specimen. The analysis includes
three Kc values—0.667, 0.9, and 1.0—selected to
explore the influence of the shape factor on
structural response under load. The results reveal
that increasing Kc does not significantly affect the
load-displacement curve, as seen in Fig. 20.
Therefore, Kc = 0.667 was chosen to optimize
results while minimizing computational time for the
CM.

For the calibration of the Stress ratio, ow/Oco
[8] as shown in Fig. 21, the different values 1.0,
1.16, and 1.32 are used. However, all the values
exhibited the same results. Thus, the value of 1.0
is used to get the optimized results and analysis
time for the CM.

6.4. Stresses of Calibrated Model

Fig. 22 presents a finite element analysis
from ABAQUS [8] of the DSSB RC Frame at the
ultimate limit state (ULS), detailing its structural
failure mechanisms. The figure illustrates the span-
wise distribution of key parameters: vertical stress
(S33) and strain (E33), which reveal
tensile/compressive zones and deformation
patterns; compressive damage (DAMAGEC),
which highlights concrete degradation, especially
at connections; and plastic equivalent strain
(PEMAG), which signifies permanent inelastic
deformation. A comparative plot of horizontal stress

(S22), E33, and PEMAG further elucidates the
interplay between stress, strain, and plastic
response.

DSSB RC Frame is designated as the CM in
this study, as it serves as a reference due to the
availability of comprehensive experimental test
data. During the loading process, the onset of
flexural cracking was observed near the base of
the columns when the top of the specimen
underwent a horizontal displacement of
approximately 6 mm. These initial cracks highlight
the critical stress points at the base under early
loading stages. As the lateral load increased,
additional cracks were formed, predominantly in
the regions surrounding the beam-column
connections. This progression of cracking indicates
significant stress concentrations at these junctions,
emphasizing their role as vulnerable zones in the
structural system under lateral loads. Under higher
load intensities, diagonal cracks began forming
toward the upper portions of the columns,
eventually propagating into the beam-column joint
areas. These observations highlight the
progressive damage mechanisms and the
vulnerability of the beam-column connections to
shear and flexural stresses under lateral loading.

Fig. 23 ABAQUS [8] FEA results for
reinforcement behavior in the DSSB RC Frame at
ULS: (a) Axial Yield Criterion (AC Yield) showing
initiation of steel yielding; (b) Maximum Principal
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Stress (S, Max) highlighting critical tensile zones;
and (c) a detailed plot of AC Yield and S, Max along
the rebar, illustrating the progression of plastic
deformation. Peak stresses and strains are
localized at the column base and beam-column
joints, with positive (+) and negative (-) values
indicating tension and compression, respectively.
Fig. 24 and Fig. 25 present a comparative
analysis between experimental findings and
numerical predictions generated using SAP2000,
ABAQUS, and the proposed ANN-FEA approach
for the RC frame. Fig. 24(a) illustrates the
experimentally observed crack propagation within
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the RC frame, while Fig. 24(b) The results from a
pushover analysis conducted in SAP2000 highlight
the location and type of plastic hinges at the ULS.
Fig. 24(c) depicts the damage severity and
distribution predicted by ABAQUS, and Fig. 24(d)
displays the crack pattern forecasted by the ANN-
FEA model, which closely aligns with the
experimentally documented failure modes,
demonstrating the reliability and accuracy of the
proposed method. The results showed that ANN-
FEA exhibits similar failure to ABAQUS, consistent
with the experimental results. However, 2000 fails
to predict the experimental results.

B(;‘F'OOOS,O(h Abagus/Standard 6,12-3  Sun Jun 04 16:13 4-

Fig. 21. DSSB RC Frame (a) Stress S33, (b) Strain E33, (c) DAMAGEC, and (d) PEMAG at ULS (e)
Values for S22, E33, and PEMAG
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Fig. 22. DSSB RC Frame (a) AC Yield and (b) Max Principal Stress at ULS (c) Values for AC YIELD and
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(a) Experimental Result (b) SAP Result
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Fig. 23. Results of (a) experimental (b) SAP 2000, (c) ABAQUS for DSSB RC Frame, (d) ANN-FE
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Fig. 24. Comparison of Load-Deflection curves for DSSB RC Frame at ULS

Fig. 25 presents a comparative assessment
of load-displacement behavior obtained from
experimental testing and various numerical
approaches. The experimental curve, serving as
the reference, demonstrates an initial linear
increase in load with displacement, followed by a
peak and a subsequent reduction, indicative of
material softening or failure. In contrast, the results
from the SAP2000 and ANN-FE methods exhibit
higher load capacities at larger displacements,
suggesting a stiffer response and delayed
softening behavior. The ABAQUS model exhibits
closer agreement with the experimental trend up to
moderate displacement levels, but diverges
beyond that point. Overall, the comparison
highlights the variation in predictive accuracy

among the methods, emphasizing the importance
of model calibration and validation when simulating
structural response.
7. New FEM models

To assess the impact of reinforcement
detailing, a parametric study will analyze three
numerical models derived from the calibrated
Control Model (CM). Each model alters the
transverse reinforcement to promote a shear-
critical failure mode:

i. HDB: Features half the stirrup diameter in
the beam only.

ii. HDBC: Uses half the stirrup diameter in
both beams and columns.

iii. DSBC: Doubles the stirrup spacing in both
beams and columns.

Table 8. Case Studies of SB RC Frame SF

Sr. No Description Models
a. Control Model C.M
b. Half Diameter of Stirrups Bars in Beam H.D
C. Half Diameter of Stirrup Bars in Beam & Columns H.D.B.C
d. Double spacing of Stirrups Rings in Beam & Columns D.S.B.C

Table 8 summarizes these case studies for
short and slender RC (DSSB RC) frames under
shear failure (SF) conditions, facilitating an
understanding of how stirrup configuration
influences structural behavior.

7.1. Half Diameter of Stirrup in Beam HDB
The HDB model, a modification of the DSSB

RC Frame C-SF, investigates the effect of
significantly reduced beam confinement. As
detailed in Table 8, the transverse reinforcement in
the beams was reduced by 75% compared to the
original experimental frame. Fig. 26 illustrates this
modified stirrup arrangement.

Fig. 27 illustrates the structural response of
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the HDB specimen with reduced transverse
reinforcement at the ultimate limit state (ULS),
showing contours of vertical stress (S33) and strain
(E33), compressive damage (DAMAGEC), and
plastic strain (PEMAG).

Fig. 28 presents the ABAQUS FEA results for
the HDB model's reinforcement at the ULS,
showing the Axial Yield (AC Yield) and Maximum
Principal Stress (S, Max) distributions. The
contours identify where the rebar approaches its
yield capacity, directly illustrating the impact of
reduced beam stirrups on structural integrity under
extreme loads.

Fig. 29 and Fig. 30 present a comparative
analysis between experimental findings and
numerical predictions generated using SAP2000,
ABAQUS, and the proposed ANN-FEA approach
for the HDB-SF. Fig. 29 (a) shows the results from
a pushover analysis conducted in SAP2000,
highlighting the location and type of plastic hinges
at the ULS. Fig. 29 (b) depicts the damage severity
and distribution predicted by ABAQUS, and Fig. 29
(c) displays the crack pattern forecasted by the
ANN-FEA model. The results showed that ANN-
FEA exhibits similar failure to ABAQUS. However,
SAP2000 exhibited different results.

Fig. 30 compares the load-displacement
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computational techniques: SAP2000, ABAQUS,
and ANN-FE. All approaches exhibit an initial linear
relationship, indicating elastic behavior, followed by
a gradual deviation as the displacement increases.
The SAP2000 method predicts the highest load
capacity at larger displacements, suggesting a
stiffer structural response throughout the range.
The ABAQUS simulation closely follows SAP2000
in the early and mid-stages but diverges slightly
near the end. Meanwhile, the ANN-FE approach
shows a sharper rise in load at smaller
displacements. Still, it plateaus earlier than the
other two, reflecting a different interpretation of
material or structural behavior under increasing
deformation. The variations among the methods
underscore differences in modelling assumptions
and computational strategies used in simulating
the mechanical response.
7.2. Half Diameter of Stirrup in Beam and
Columns HDBC

The HDBC model, which reduces transverse
reinforcement by 75% in both beams and columns
relative to the Control Model (CM), was analyzed
to assess its impact on structural performance. Fig.
31 details the updated stirrup configuration, with
the comparison to the CM underscoring the critical
role of transverse reinforcement in maintaining

responses of HDB-SF predicted by three  frame stability, as outlined in Table 7.
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Fig. 25. Reinforcement details of HDB
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Fig. 26. HDB RC Frame (a) Stress S33, (b) Strain E33, (c) DAMAGEC and (d) PEMAG at ULS (e)
Values for S22, E33 and PEMAG

Fig. 31 and Fig. 32 present the finite element
analysis results for the HDBC model at the ULS.
Fig. 31 shows the concrete response through
contours of vertical stress (S33) and strain (E33),
compressive damage (DAMAGEC), and plastic
strain (PEMAG). Fig. 32 llustrates the
reinforcement behavior, displaying the Axial Yield
Criterion (AC Yield) and Maximum Principal Stress
(S, Max).

Fig. 33 and Fig. 34 present a comparative
analysis between experimental findings and

numerical predictions generated using SAP2000,
ABAQUS, and the proposed ANN-FEA approach
for the HDBC. Fig. 33(a) shows the results from a
pushover analysis conducted in SAP2000,
highlighting the location and type of plastic hinges
at the ULS. Fig. 33(b) depicts the damage severity
and distribution predicted by ABAQUS, and Fig. 33
(c) displays the crack pattern forecasted by the
ANN-FEA model. The results showed that ANN-
FEA exhibits similar failure to ABAQUS. However,
SAP2000 exhibited different results.
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Fig. 27. HDB RC Frame (a) AC Yield and (b) Max Principal Stress at ULS (c) Values for AC YIELD and
S, Max
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(c) ANN-FE Result
Fig. 28. Results of (a) SAP 2000, (b) for HDB at ULS, (c) ANN-FE
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Fig. 29. Comparison of Load-Deflection curves obtained for HDB

Fig. 34 llustrates the load-displacement
behavior as predicted by three numerical
approaches: SAP2000, ABAQUS, and ANN-FE. All
methods start with a linear rise in load, reflecting
elastic performance. The SAP model demonstrates
a continued increase in load capacity beyond 50
mm of displacement, indicating a more ductile or
stiffer modelled behavior. ABAQUS and ANN-FE
predictions, in contrast, extend only up to around
20 mm, showing an earlier levelling off or limit in
their simulations. Among them, ANN-FE predicts
higher initial stiffness and slightly greater peak
loads than ABAQUS. The observed differences
highlight the sensitivity of each modelling strategy

to deformation and load progression, with
implications for how each captures post-elastic
response characteristics.
7.3. Double spacing of Stirrup in Beam and
Columns DSBC

The DSBC model, which doubles the stirrup
spacing in beams and columns, was analyzed
against the Control Model (CM) to assess its
structural impact. This change, detailed in Fig 35
and Table 8, effectively halves the transverse
reinforcement volume, significantly influencing
load capacity, ductility, and damage progression.
The comparison underscores the critical role of
stirrups in maintaining frame stability.
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Fig. 30. Reinforcement details of HDBC
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Fig. 38. Results of (a) SAP 2000, (b) ABAQUS for DSBC, (c) ANN - FE
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Table 8. Analysis Time for the case of DSSB RC Frame EF

Sr. No Tools
1 SAP 2000
2 ABAQUS
3 ANN-FE

Analysis Time of EF Models

10 Minutes

15 Hours (Half Model)
25 Minutes (Python)

Fig. 36 illustrates the structural response of
the DSBC model at the ULS, showing contours of
vertical stress (S33), strain (E33), compressive
damage (DAMAGEC), and plastic strain (PEMAG).

Fig. 37 The ABAQUS FEA results for the
HDBC model's reinforcement at the ULS are
presented, showing the Axial Yield Criterion (AC
Yield) and Maximum Principal Stress (S, Max)
distributions to illustrate its stress and yield
behavior.

Fig. 38 and Fig. 39 present a comparative
analysis between experimental findings and
numerical predictions generated using SAP2000,
ABAQUS, and the proposed ANN-FEA approach
for the DSBC-SF. Fig. 38 (a) shows the results from
a pushover analysis conducted in SAP2000,
highlighting the location and type of plastic hinges
at the ULS. Fig. 38 (b) depicts the damage severity
and distribution predicted by ABAQUS, and Fig. 38
(c) displays the crack pattern forecasted by the
ANN-FEA model. The results showed that ANN-
FEA exhibits similar failure to ABAQUS. However,
SAP2000 exhibited different results.

Fig. 39 compares the structural response in

terms of load versus displacement as predicted by
three  computational  methods: SAP2000,
ABAQUS, and ANN-FE. Initially, all approaches
show a linear trend, representing elastic
deformation. The SAP2000 model extends further
in displacement and maintains load capacity up to
around 50 mm, indicating a more ductile or
extended response. In contrast, both the ABAQUS
and ANN-FE models terminate at a displacement
of approximately 20 mm, suggesting that their
simulations were either constrained or reflected an
earlier peak behavior. The ANN-FE method
predicts a slightly higher load than ABAQUS for the
same range, pointing to differences in model
interpretation or data learning behavior. This
divergence among models highlights the varying
levels of conservatism and accuracy in capturing
material or structural performance under
increasing deformation.

Beyond predictive accuracy, computational
efficiency is a critical advantage of the proposed
ANN-FEA method. As shown in Table 8, the
analysis time required by the ANN-FE tool is
comparable to a SAP 2000 push-over analysis and

271



JSTT 2025, 5 (4), 238-279

only 2.27% of the time needed by ABAQUS.
7.4. Comparative study between FEM models
The Fig. 40 illustrates the comparison of
lateral displacements by encompassing (i)
experimental results, (ii)) ABAQUS [8], (iii) SAP-
2000 [11] and (iv) ANN-FEA, for the four case
120
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studies mentioned above, i.e., (a) CM, (b) HDB, (c)
HDBC, and (d) DSBC. The experimental results
are only available for the CM configuration,
showing a lateral displacement of approximately 60
mm, whereas no experimental data is reported for
HDB, HDBC, and DSBC.

80

40 -~

Lateral Displacement (mm)

HDB

HDBC DSBC

Case Studies for DSSB
Fig. 40. Lateral displacement comparison of all models

In the numerical simulations, ABAQUS and
ANN-FEA demonstrate a variation in lateral
displacements among the configurations, with the
CM model exhibiting the highest displacement 30
mm and other configurations (HDB, HDBC, DSBC)
showing progressively lower values. This variability
suggests that ABAQUS is sensitive to the material
properties and boundary conditions employed in
the modelling. In contrast, the SAP simulation
results display uniform lateral displacements of 90
mm across all configurations, indicating the
potential insensitivity of the SAP model to material-
specific variations or possible oversimplifications in
the modelling assumptions. Notably, the
experimental  displacement for the CM
configuration is significantly higher than the
corresponding values predicted by both ABAQUS
[8] and SAP2000 [11]. This discrepancy highlights
potential challenges in capturing real-world
structural behavior within numerical simulations,
such as the influence of imperfections, nonlinear
material behavior, or boundary conditions that may
not be adequately modeled. In summary, while the

numerical tools provide valuable insights, the
uniformity in SAP-2000 results and the divergence
from experimental data necessitate further
refinement in modeling approaches. Additionally,
conducting experimental validation for all
configurations is essential to enhance the reliability
of the findings and establish a more robust
correlation between experimental and simulation
outcomes.

The Fig. 41 illustrates the comparison of
lateral load by encompassing (i) experimental
results, (ii) ABAQUS [8], (iii) SAP-2000 [11] Sand
(iv) ANN-FEA, for the four case studies mentioned
above, i.e., (a) CM, (b) HDB, (c) HDBC, and (d)
DSBC. In the experimental results, only the CM
configuration is represented, showing a lateral load
of approximately 60 kN. The absence of
experimental data for the HDB, HDBC, and DSBC
configurations limits the ability to validate the
numerical simulation results comprehensively. For
the numerical simulations, ABAQUS and ANN-FEA
demonstrate variation in lateral load capacity
among the configurations. The HDB configuration
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exhibits the highest load, closely followed by the
CM configuration, while the HDBC and DSBC
configurations show slightly lower lateral load
values. This variation indicates ABAQUS's
sensitivity to the material properties and boundary
conditions applied in the models. Conversely, the
SAP-2000 results reveal uniform lateral loads 90
kN across all configurations. This uniformity
suggests that the SAP-2000 model may not
adequately capture material-specific differences or
boundary condition variations, potentially due to
oversimplified assumptions or a lack of sensitivity
in its modeling framework.

The discrepancy between the experimental
load for the CM configuration and the numerical
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predictions from both ABAQUS, ANN-FEA, and
SAP-2000 highlights potential limitations in the
simulation models, such as an inability to fully
replicate  real-world  conditions, including
imperfections, nonlinearities, or other influential
factors. In conclusion, while the numerical
simulations provide valuable insights into structural
performance, the consistent results from SAP and
the lack of experimental data for specific
configurations highlight the need for experimental
validation across all configurations. Furthermore,
enhancing the modelling strategies in numerical
tools could improve their predictive accuracy,
bridging the gap between simulated and
experimental outcomes.

cM HDB

HDBC DSBC

Case Studies for DSSB
Fig. 41. Lateral Load Comparison of all models

8. Numerical modeling details

For the SAP2000 analysis, the model
employs default concentrated plastic hinges at
member ends using automatic hinge properties
based on FEMA 356/ASCE 41 provisions. The
hinge definitions include both flexural (M3) hinges
for beams and axial-moment interaction (P-M2-M3)
hinges for columns. However, the default
configuration does not include explicit shear
hinges, which may explain the different
displacement ranges observed in the pushover
curves compared to ANN-FEA and ABAQUS.

The ABAQUS model utilizes the Concrete

Damaged Plasticity (CDP) material model with the
following key parameters: dilation angle of 38
degrees, eccentricity of 0.1, biaxial-to-uniaxial
compressive stress ratio (foo/fco) of 1.16, and Kc of
0.667. The mesh consists of C3D8R solid elements
for concrete with an approximate size of 25mm,
while reinforcement is modeled using embedded
T3D2 truss elements. Boundary conditions include
fixed supports at column bases with displacement
control applied at the beam-column joint level. The
comparison basis for all models is the peak base
shear capacity at the Ultimate Limit State (ULS),
with curves terminated when member capacity is
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reached.
9. Limitations

This study has several limitations that should
be acknowledged: (1) The ANN models are trained
on databases with specific parameter ranges (as
shown in Tables 1 and 2), and predictions outside
these ranges should be treated with caution; (2)
Experimental validation is limited to the CM
configuration, while findings for parametric variants
(HDB, HDBC, DSBC) are based on numerical
comparisons; (3) The ANN-FEA stopping criterion
corresponds to ULS capacity cutoff and does not
simulate post-peak softening behavior; (4) The
current implementation focuses on static pushover
analysis and has not been validated for dynamic or
cyclic loading scenarios; and (5) The member-level
ANN models assume specific support conditions
that may differ from actual frame boundary
conditions under different loading scenarios.

10. Discussion and conclusion

The analysis of four cases demonstrates that
the finite element models (FEM) effectively
replicate the behavior of reinforced concrete (RC)
frames with various detailing approaches. The
findings of this investigation lead to several key
conclusions:

1. The incorporation of shear effects is critical
for the safe and accurate evaluation of the strength
and ductility of RC frames, particularly for essential
frames that are prevalent in practice.

2. Numerical simulations performed using
ABAQUS exhibit sensitivity to material properties
and boundary conditions, whereas the results from
SAP indicate a degree of uniformity across

configurations, suggesting potential
oversimplifications. It is imperative to refine
numerical modeling techniques and include

material-specific variations to enhance predictive
accuracy and bridge the disparity between
experimental and simulated outcomes.

3. A comparison of experimental and
numerical results reveals significant discrepancies,
especially with the CM configuration. This finding
highlights the limitations of numerical models in

A. Ahmad et al

accurately  replicating  real-world  structural
behavior. Additionally, the absence of experimental
data for the HDB, HDBC, and DSBC configurations
underscores the necessity for comprehensive
experimental validation to bolster the reliability of
numerical simulations.

4. The comparative analysis of the finite
element models indicates substantial variations in
lateral load capacity relative to the CM
configuration. The findings confirm that all newly
developed finite element analysis (FEA) models
demonstrate lower lateral load capacities: -4.45%,
-13.8%, and -5.2% for the HDB, HDBC, and DSBC
configurations, respectively. These discrepancies
emphasize the sensitivity of structural responses to
variations in reinforcement detailing and spacing
configurations.

These observations raise  significant
concerns regarding the underlying assumptions
employed in current assessment methods for RC
structures. They point to an urgent need for the
development of more sophisticated design and
evaluation tools that accurately capture the
behavior of RC structures under complex loading
conditions, including high temperatures, fire,
impact, blast, and environmental factors.
Furthermore, these results underscore the
necessity of reassessing the principles and
assumptions of existing RC design codes to ensure
their reliability and relevance in contemporary
structural engineering practices.
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