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Abstract: For the first time, an analytical approach to the static stability 

problem of a shallow annular spherical cap stiffened by a system of 

circumferential stiffeners is presented in this study. Both the shell and the 

stiffeners are constructed from Functionally Graded Graphene Platelet 

Reinforced Composite (FG-GPLRC) material, which follows five common 

distribution laws: FG-X, FG-O, FG-A, FG-V, and UD. The stiffened shallow 

annular spherical caps are subjected to a uniform temperature change. An 

extended smeared stiffener technique is applied to the circumferential stiffener 

system of the SASC. Based on Donnell’s classical shell theory and von Kármán 

geometric nonlinearities, the fundamental expressions and governing 

equations of the problem are established. Novel displacement solutions 

satisfying the parallel-closed conditions are proposed. The load–deflection 

relationships are derived by applying the Ritz energy minimization method. 

Consequently, the significant effects of the stiffeners, material model, and 

geometric and material parameters are investigated. 

Keywords: Nonlinear stability, Shallow Annular Spherical Caps, 

Circumferential Stiffener System, Asymmetrical deformation, Ritz energy 

method. 

 

 

1. Introduction 

Shallow spherical caps (SSCs), circular 

plates (CPLs), shallow annular spherical caps 

(SASCs), and annular plates (APLs) are commonly 

used structures in many engineering fields. They 

are often found in various civil structures, 

mechanical equipment, and parts of aerospace 

equipment.  

The analysis of the mechanical behavior of 

isotropic SSCs and CPLs has been carried out by 

many researchers, making it a noteworthy 

research direction. Kalnins and Naghdi [1], 

Grossman et al. [2], and Sathyamoorthy [3] 

focused on the vibration analysis of isotropic SSCs 
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based on various models and theories. Dube et al. 

[4] employed the first-order shear deformation 

theory (FSDT) and the Galerkin method to analyze 

the nonlinear static and dynamic behavior of thick 

SSCs. The buckling behavior of pressurized SSCs 

was numerically investigated by Wang et al. [5]. Du 

et al. [6] introduced a unified formulation for free 

vibration analysis of edge-restrained SSCs with 

both uniform and stepped thicknesses. Li et al. [7] 

investigated the nonlinear axisymmetric bending 

model of a strain gradient thin circular plate. Ismail 

et al. [8] studied the most critical buckling scenarios 

in SSCs using numerical simulations.  

For FGM CPLs, several authors [9–12] have 

studied the static and dynamic buckling and 

vibration responses under various loading 

conditions using different methods. For FGM 

SSCs, Ahmadi and Foroutan [13] investigated the 

nonlinear dynamic buckling responses of porous 

FGM SSCs. Based on the Timoshenko-Mindlin 

hypothesis, Fu et al. [14] investigated the transient 

deformation of FGM SSCs subjected to time-

dependent thermomechanical load. Applying the 

Galerkin method and FSDT, Bich and Tung [15] 

studied the nonlinear axisymmetric buckling of 

FGM SCs, Anh and Duc [16] analyzed the 

nonlinear thermo-mechanical stability of thick S-

FGM SSCs, and Phuong et al. [17] analyzed the 

sandwich FGM SSCs in a nonlinear forced 

vibration problem. Ly et al. [18] analyze thermo-

mechanical buckling in FGM CPLs and SSCs with 

porous core based on higher-order shear 

deformation theory (HSDT) and the energy 

method. Barzegar and Fadaee [19] explored the 

free vibration and buckling responses of thin FGM 

shallow SSCs under a thermal load based on a 

decoupling technique.  

For FG-GPLRC CPLs and SSCs, Javani et 

al. [20] and Chu et al. [21] investigated vibration 

and stability responses of the FG-GPLRC CPLs 

using FSDT and HSDT, respectively. Chien and 

Phuc [22] studied the free vibration behavior of FG-

GPLRC CPLs using the HSDT and meshfree 

method. The dynamic instability responses of FG-

GPLRC CPLs were mentioned by Dai et al. [23]. 

Heydarpour et al. [24] presented thermoelastic 

behavior of FG-GPLRC SSCs using the Lord-

Shulman theory. Liu et al. [25] studied the linear 

and nonlinear free vibration problems of FG-

GPLRC SSCs and CPLs using the 3D elasticity 

theory. Using the energy method, the nonlinear 

static and dynamic responses of FG-GPLRC/ 

sandwich FG-GPLRC CPLs and SSCs were 

investigated by Phuong et al. [26], Tu et al. [27], 

and Ly et al. [28], respectively. The FG-GPLRC 

CPLs and SSCs stiffened by spiderweb stiffeners 

were considered in the nonlinear thermo-

mechanical buckling [29], static and dynamic 

buckling [30], and vibration [31] problems.  

Although not as commonly studied as 

shallow spherical shells and circular plates, the 

stability and dynamics of SASCs and APLs have 

also been investigated by several authors. APLs 

were also considered in the symmetric and 

asymmetric vibration problems [32-34], with 

laminated composites [32], with thermal rotating 

conditions [33], and with general boundary 

conditions [34].  The segments of FGM SASCs 

stiffened by parallel stiffeners were investigated in 

linear buckling by Nam et al. [35], using the 

Galerkin method and adjacent equilibrium criterion. 

Mirjavadi et al. [36] studied the nonlinear vibration 

of segments of FGM SASCs using the Galerkin 

method and Donnell shell theory. Vibration and 

dynamic behaviors of FG-GPLRC APLs were 

presented using the Rayleigh-Ritz variational 

method [37] and the generalized differential 

quadrature method [38, 39]. Safarpour et al. [40] 

studied three-dimensional bending and frequency 

of FG-GPLRC porous CPLs and APLs on different 

boundary conditions. 

It can be seen that there are extensive 

studies on the mechanical response of CPLs and 

SSCs, but studies on APLs and SASCs are still 

very limited. Especially, FG-GPLRC APLs and 

SASCs reinforced with circumferential FG-GPLRC 

stiffeners have not been studied yet. In this study, 

the nonlinear thermal buckling and postbuckling 
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responses of FG-GPLRC APLs and SASCs 

stiffened by circumferential stiffeners are 

investigated in detail.  An improved smeared 

stiffener technique is developed for the FG-GPLRC 

circumferential stiffener system to obtain 

asymmetric responses. Trigonometric solutions of 

displacement components satisfying the parallel 

closed condition are proposed. The governing 

equations of stiffened SASCs/APLs are solved by 

applying the energy method. The effects of 

stiffeners, material distribution models, and 

geometric and material parameters are 

investigated in the numerical examples. 

2. Modeling of FG-GPLRC SASCs stiffened by 

circumferential stiffener system 

An asymmetrically deformed SASCs is 

considered in this paper. The SASC is subjected to 

temperature changes, as described in Fig. 1, with 

the thickness of the SASC h , curvature R,and the 

radii of the upper and lower bases are denoted by 

tr  and br , respectively. A circumferential stiffener 

system is applied to the asymmetrical SASC.  It can 

be seen in Fig. 1, the shell is analyzed using a 

coordinate system ( , ,z ), where   aligns with the 

meridian,   with the parallel direction, and z  with 

the thickness direction. 

The SASCs and their corresponding 

stiffeners are both constructed from FG-GPLRC. 

To ensure continuity of material in the shell and 

stiffener, five material models are considered as 

follows (Fig. 2 and Table 1). 

 

 

Fig 1. Model and coordinate system of stiffened FG-GPLRC SASC 

 

Fig 2. Material models of shell and stiffeners of SASC/APL 
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Table 1. Model of SASC and Stiffener material 

Model SASC material Stiffener material 

V-A FG-V type FG-A type 

X-X FG-X type FG-X type 

UD-UD UD-UD type UD-UD type 

O-O FG-O type FG-O type 

A-V FG-A type FG-V type 
 

For SASCs, the distribution of the GPL 

volume fraction through the shell thickness follows 

the rules described below (for −  h 2 z h 2 ) 

− +
 


 



 = 

 
 −    


+ 


GPL

GPL

sasc

GPL GPL

GPL

GPL

2z h
FG-V type,

h

4 z
FG-X type,

h

UDtype,

4 z
2 FG-O type,

h

2z h
FG-A type,

h

                (1) 

For stiffeners, to preserve the continuity of 

materials within the stiffeners, the corresponding 

GPL volume fraction is defined by the expression 

below, (for   + sth 2 z h 2 h ). 

GPL

st

st
GPL

st

st

GPL GPL

st
GPL

st

st
GPL

st

2z h
FG-A type,

h

4z 2h 2h
FG-X type,

h

UD type,

4z 2h 2h
2 FG-O type,

h

2z h 2h
FG-V type,

h

 −
  
 

− + + 




 = 
 − + + −    

 − + +

 
 

 (2) 

where GPL  denotes the total mass fraction of 

GPLs distributed within both the SASC and the 

stiffeners. 

The Halpin–Tsai scheme is employed to 

determine the elastic moduli of the cap skin and the 

stiffeners as [39] 

 + +
= + 

− − 

sasc sasc

G E GPL G E GPLm
sasc sasc sasc

E GPL E GPL

3 3a a V 5 5b b VE
E ,

8 1 a V 1 b V
    (3) 

 + +
= + 

− − 

st st

G E GPL G E GPLm
st st st

E GPL E GPL

3 3a a V 5 5b b VE
E ,

8 1 a V 1 b V
        (4) 

where 

( )
 

=
  +  − 

sasc
sasc m GPL
GPL sasc sasc

m GPL GPL GPL

V ,
1

                         (5) 

( )
 

=
  +  − 

sasc
st m GPL
GPL st st

m GPL GPL GPL

V ,
1

                          (6) 

and 

− −
= =

+  +

= =

GPL m GPL m
E E

GPL G m GPL G m

G G
G G

G G

E E E E
a ,b ,

E E E b E

2l 2w
a , b ,

t t

                  (7) 

with sasc

GPLV  corresponds to the GPL volume fraction 

in the cap skin, while st

GPLV  refers to that in the 

stiffeners. The properties of the matrix are given by 

mE  (Young's modulus) and m  (density). 

Correspondingly, GPLE  and GPL  are utilized for the 

GPLs. The shape of the GPLs is fully described by 

their dimensions: Gw  (width), Gl  (length) and Gt  

(thickness). 

The corresponding Poisson’s ratios and 

thermal expansion coefficients for the cap skin and 

the stiffeners are given as 

( )

( )

 =  − + 

 =  − + 

sasc sasc

sasc m GPL GPL GPL

sasc sasc

sasc m GPL GPL GPL

1 V V ,

1 V V ,
                     (8) 

( )

( )

 =  − + 

 =  − + 

st st

st m GPL GPL GPL

st st

st m GPL GPL GPL

1 V V ,

1 V V ,
                             (9) 

3. Fundamental equations 

To facilitate the calculation process for 

SASCSs, the variable = r Rsin  representing the 
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parallel circle with the base, is utilized. Given that 

the SASCSs are shallow, the derivation of the 

fundamental formulas and governing equations in 

this research is based on two key elements: the 

application of a quasi-polar coordinate system and 

the geometric approximations  cos 1 and 

 =Rd dr . The general expressions and governing 

equations provided below apply to SASCs, while 

those for APLs can be obtained by setting →R . 

The mid-surface strain field of the SASCs 

can be determined by [35] 

0

r

0

0

r

20
0,r 0,r 0,r 1,r

0, 1,20
0, 0 0,2 2

0, 0,r 0, 0,r 1, 0, 1,r0

,r

w 1
u w w w

R 2

w ww1 1
(v u ) w .

r R 2r r

u w w w w w wv
r

r r r r r





 

 

   

 
  
 = 
 
  

 
− + + 

 
  

+ − + + 
 
  

+ + + +  
   

(10) 

where the variables 0u ,  0v ,  and 0w  represent the 

displacement components at the middle surface. 

These displacements occur in the meridian, 

parallel, and thickness directions, respectively. In 

addition, ( )1w r  is used to denote the initial 

imperfection in deflection.  

The strain field, at an arbitrary distance z  

from the mid-surface, is defined as [35] 

  

  

     
    

 = −  +      
            

0

rr r

0

0
r r r

z ,                                          (11) 

where  






 

 
 

   
   
 = +   
      

− 
 

0,rr

r

0,r 0,

2

r
0,r 0,

2

w

w w
,

r r

w w

r r

                                           (12) 

Considering the influence of temperature 

variation, the constitutive stress–strain relationship 

for the SASCs is formulated as follows 

 

 

         
       

 =  −         
               

r r11 12

12 22

66r r

C C 0

C C 0 T ,

0 0 C 0

          (13) 

with T  denotes the difference in temperature 

from the undeformed state to the final thermally 

strained state, a value which is assumed as 

constant. 
ijC  ( =ij 11,12,22,66 ) represents the 

reduced stiffnesses of stiffened SASCs. 

In this work, the force and moment resultants 

of stiffened SASCs are obtained by extending 

Lekhnitskii’s smeared stiffener method, formulated 

based on classical beam theory, wherein the 

stiffness of the shell skin is combined with that of 

the stiffeners. The resulting expressions are  

  

 

  

 

 
      
            
         

= −     
−      

    − 
    

−       
 

011 12 11 12
r r 1r

012 22 12 22
1

0
66 66r r

r 11 12 11 12 r 2r

212 22 12 22

r r
66 66

A A 0 B B 0N

A A 0 B B 0N

N 0 0 A 0 0 B 0

M B B 0 D D 0

M B B 0 D D 0
M 0

0 0 B 0 0 D

 
 
 
 
 
 
  
  
   

T   (14) 

where 

( ) ( )sasc st sasc st sasc st
11 11 11 11 11 11 11 11 11A ,B ,D A A ,B B ,D D ,= + + +  

( ) ( )sasc st sasc st sasc st
22 22 22 22 22 22 22 22 22A ,B ,D A A ,B B ,D D ,= + + +  

( ) ( )sasc sasc sasc
12 12 12 12 12 12A ,B , D A ,B ,D ,=  

( ) ( )= sasc sasc sasc
66 66 66 66 66 66A ,B , D A ,B ,D ,                       (15) 

and 

( ) ( )

( ) ( )

  

  

  =  +   + 

  =  +   + 

sasc st sasc st

1r 1 1r 1r 1 1

sasc st sasc st

2r 2 2r 2r 2 2

, , ,

, , ,
              (16) 

with 

( ) ( )
h/2

sasc sasc sasc 2 sasc

ij ij ij ij

h/2

A ,B ,D 1,z,z C dz,
−

=   
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( ) ( )
sth/2 h

st st st 2 stst
kl kl kl kl

sth/2

b
A ,B ,D 1,z,z C dz,

d

ij 11,12,22,66; kl 11,22

+

=

= =

               (17) 

and 

( ) ( ) ( )

( ) ( ) ( )

h/2

sasc sasc sasc sasc

1r 2r 11 12 sasc

h/2

h/2

sasc sasc sasc sasc

1 2 22 12 sasc

h/2

, C C 1,z dz,

, C C 1,z dz,

−

 

−

   = + 
 

   = + 
 





 (18) 

( ) ( ) ( )
+

 
  = 

sth/2 h

st st stst
1 2 22 st

sth/2

b
, C 1,z dz,

d
                 (19) 

where 

( )


= = =

−  − 

= = =
+ 

sasc sasc sascsasc sasc sasc
11 22 122 2

sasc sasc

sasc st stsasc
66 11 22 st

sasc

E E
C C , C ,

1 1

E
C ,C C E ,

2 1

         (20) 

where stb  and std  represent the widths and the 

distances between two adjacent circumferential 

stiffeners, respectively. The superscripts sasc, st

represent the shell and the stiffeners, respectively. 

with the symbols stb  and std  denote the widths of 

the stiffeners and the distances between two 

neighboring stiffeners, respectively. For clarity, the 

superscripts sasc,  and st  are employed as 

notational identifiers for the cap and the stiffeners, 

respectively.  

The total potential energy for the SASCs is 

expressed as      

( )

( )


 



 

    −   
  

 = +  −     
 
+   

  
b

t

r r
r2

T

0 r

r r

z T

1
U z T  rdrd dz,

2
        (21) 

2. Boundary conditions and solution method 

In this paper, the pinned boundary 

constraints applied to both the upper and lower 

parallel bases, the boundary conditions can be 

written as 

= = = =0 0 r t bw 0, u 0, M 0, at r r , r ,               (22) 

The following approximate displacement 

formulations are proposed to satisfy both the 

parallel closed requirement in the parallel direction 

and the boundary condition (22), given by 

( )

( )

( )

  −
=   

− 

  −
=   

− 

  −
=   

− 

t
0

b t

t
0

b t

t
0

b t

2m (r r )
u Usin n sin ,

r r

m (r r )
v V sin 2n sin ,

r r

m (r r )
w W sin n sin .

r r

                        (23) 

Here, the amplitudes of the meridional and 

parallel displacement components are denoted by  

U and V,  respectively, while the amplitude of the 

deflection is denoted by W . m   and n  denote the 

number of half-wave in the meridian direction and 

the number of full-wave in the parallel direction, 

respectively.  

Assuming that the expression for the initial 

imperfection is taken similarly to the form of 

deflection, as follows 

( )
  −

=  
− 

* t
1

b t

m (r r )
w W sin sin n ,

r r
                      (24) 

with  = *W h , where   represents the size of the 

initial imperfection (  1). 

The Ritz method of energy is used, basing 

the minimization energy principle, i.e 


=



TU
0,

U
                             (25) 


=



TU
0,

V
                              (26) 


=



TU
0,

W
                             (27) 

leads to 

 +  =11 12U W 0,                                        (28) 

 +  +  =2 *

21 22 23V W WW 0,
                           (29) 

3 2 * *2

31 32 33 34

* *

35 36 37 38

39

W W W WW WV

W V W T W T U

W 0,

 +  +  + 

+ +   +   + 

+ =

    (30) 

where  ij
 is presented as 

( )

   
=   +   +    − − 

+


 

b

t

r 2 2 2 3
66 22 12 112

1

t t

2

1 2

br b

A n A 4A m 4A m r
sin 2 cos2 sin2 cos 2 dr,

r r r r r
 



JSTT 2025, 5 (4), 126-140                                                  Nguyen et al 

 

 
132 

( )
( ) ( )

( )

( )
( ) ( ) ( )

 +  + + −    − 

−


  −−
 

     + − +    
 −


+

 = 



−−

+


−  


b

t

2
2 266 22

12 12 22 66 22 2

2

r 2

12

tr t

2 2

t

2

m b1

3 212 11
11 12 122

3 2

b 1

3

tb t bt

B B n B m A A B mn B m
sin sin2 sin2 cos

R r r rr r r

2 A A mB m r 2B mn 2B m
       2 sin cos2 cos cos2 dr

r r R

r

rr r rrrr
,

 

( ) 


   
  −   +   −  

= 
b

t

2

21

2r 2
23 2

66
2

br t

m 1 4A n
A r cos sin sin dr,

r r r rr
  

( ) ( )


      
  −   −   +   

− − − 
=

   

b

t

22

r 2 2 3 3
66 12 222 2 2 3

2 2 2

b br bt t t

1 A rm n m 1 1 A m n 1n A
cos cos sin cos cos sin sin dr,

2 r r r r r 2 2r rr r
 

( ) ( )

   
 =   

 

   
  −   +  

−  

+ 
− −


b

t

r 2 2 3 3
66 12 222 2 2 3

2 2 2

b br b

23

t t t

A rm n m 1 A m n n A
cos sin sin cos cos sin sin dr,

r r r r r r rr r
 

( )

( )
( )

    +  +  


+

− −
 

=


b

t

2 3 2r 4 5 4 66 12
11 224

r

31

t

4 2 2

4 3 2

tb b

2A A m n3A m r 3A n
cos sin cos sin dr,

8r8 r r 4 r r r
 

( )

( )
( )

    +  +  
 −


−

 

+
= 

b

t

2 3 2r 4 5 4 66 12
11 224 4 2 2

4 3 2

b b

32

r t t

,
2A A m n9A m r 9A n

cos sin 3 sin cos dr
8r8 r r 4 r r r

 

( )

( )
( )

    +  +  


+

− −
 

=


b

t

2 3 2r 4 5 4 66 12
11 224

r

33

t

4 2 2

4 3 2

tb b

2A A m n3A m r 3A n
cos sin cos sin dr,

4r4 r r 2 r r r
 

( ) ( )




     
  −   −   +   

− − −  

=
 


b

t

34

r 2 2 3 3
66 12 222 2

t

2 3

2 2 2

b br bt t

A rm n m 1 A m n A n
cos sin sin cos cos sin sin dr,

r r r r r r rr r
 

( ) ( )




     
  −   −   +   

− − −  

=
 


b

t

35

r 2 2 3 3
66 12 222 2

t

2 3

2 2 2

b br bt t

A rm n m 1 A m n A n
cos sin sin cos cos sin sin dr,

r r r r r r rr r
 

( )


    
  −  − 

−

=
 

b

t

r 2 2 3
2 21

36

t

1r

2

r b

n rm
sin cos dr,

r r r
 

( )


    
  −  − 

−

=
 

b

t

r 2 2 3
2 21

37

t

1r

2

r b

n rm
sin cos dr,

r r r
 

( )
( )

( )
( )

( ) ( )

( )
( ) ( )



 + +


  +  − +  −
  −



−
 

   + + −



   



 − −−



−


= 



+ 
− 




b

t

2 2 2r 266 22 66 22
12 22 12

2 2

br b

2
3 4 2 2 212 11

11

2

38

tt

3

t tt

12 12

3 2

b bb b t

B B n B n B mA A B m
sin sin2 cos sin2

R r r rr r r

2 A A m r2B m r 2B mn 2B m r
     sin cos2 cos cos2 dr

r r r r r Rr r r r r
,

 



JSTT 2025, 5 (4), 126-140                                                  Nguyen et al 

 

 
133 

( )

( )
( )

( )

( )
( )

( )
( ) ( )

( )



+ + +


    + + −
 − −

     −  + −  
  −− −
  

   
+ −  +  +  −

=



+ +


b

t

39

t t

3 4

3

tt

2r 2 3 2 4 511 12 22 12 22
12 11

2 2 4

r b b

2 3 2
11 12 12 22

122

2

bb b

2
2 2

2

b

t

2

t

A 2A A r 2 B B nD m n D m r
2

RrRr r r r r

2 B B m r 2 B B m D m
sin 2 sin cos

R r rR r r r r

n m n
D sin cos

r rr r r ( )

( )   −  
− +   =   − −  

2

t
66

b t b t

m r rsin m
D cos dr,  .i

r r r r
th

r
w  

 

By solving Eqs. (28) and (29), the formulas 

for U and V are determined. In which U and V are 

explicitly dependent on W and T . These derived 

results are then substituted back into Eq. (30), 

yielding 

+ + +
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Eq. (31) is used to investigate the nonlinear 

thermal postbuckling curves of stiffened FG-

GPLRC SASCs/APLs.  From Eq. (31), the 

expression of T  is obtained as 

To examine the nonlinear thermal 

postbuckling response of stiffened FG-GPLRC 

SASCs/APLs, Eq. (31) is utilized. From this 

equation, the corresponding form of T can be 

derived as  

+ + +
 = −

+

*2 2 * 3

1 2 3 4

*

5 6

a WW a W W a W a W
T

a W a W
       (32) 

From Eq. (32), the thermal buckling load is 

determined by setting →W 0  and  = 0  as 

 =−
5

b
4a

T ,
a

                              (33) 

The critical thermal buckling load is obtained 

from Eq. (33) by applying the condition 

 =crb binT Tm  vs. (m,n ). 

5. Numerical results and discussions 

In the following illustration section, copper-

matrix/GPLs stiffened SASCs and APLs are 

considered, with GPL material and geometric 

parameters taken from Ref. [39]. 

5.1. Validations 

To evaluate the validity of the proposed 

analytical method and the current mathematical 

expressions, the critical thermal buckling loads of 

unstiffened FG-GPLRC APLs and SASCs were 

compared with the finite element results as 

presented in Table 2. The results obtained show 

good agreement between the current approach 

and the numerical simulation results. 

5.2. Numerical examples 

Table 3 illustrates the effect of circumferential 

stiffeners on the critical thermal buckling loads of 

FG-GPLRC SASCs and APLs for different total 

GPL mass fractions GPL .  For both SASCs and 

APLs, the addition of circumferential stiffeners 

significantly increases the critical thermal buckling 

load compared to the unstiffened structures. In 

addition, the effect of the total mass fraction of 

GPLs is also significant. The critical thermal 

buckling load increases when the total mass 

fraction of GPLs increases. This indicates the 

effectiveness of the GPL reinforcement phase in 

enhancing the thermal resistance of FG-GPLRC 

SASCs and APLs. Table 4 examines the critical 

thermal load of the SASCs and the APLs with 

different material distribution patterns. For the 

illustrative data set, the V-A type FG-GPLRC SASC 

exhibits the largest critical thermal load among 

SASCs, while the critical thermal buckling load of 

A-V type FG-GPLRC SASC is the smallest. For 

APLs, the largest critical thermal buckling load is 

recorded corresponding to the X-X type FG-

GPLRC, and the smallest is corresponding to O-O 
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type FG-GPLRC. This is significant for the 

designers when selecting the appropriate material 

model for FG-GPLRC stiffened SASCs and APLs. 

Furthermore, the influence of the br / R  ratio is also 

investigated in Table 4. Clearly, the critical thermal 

buckling load of the stiffened SASCs decreases as 

the br / R  ratio decreases. In other words, the 

critical thermal buckling load of the stiffened 

SASCs decreases as their shallowness increases.  

Figs. 4a-d illustrate the effects of stiffeners on 

the nonlinear thermal postbuckling responses of 

SASCs and APLs. It is clear that the stiffeners 

significantly increase the post-buckling resistance 

compared to the unreinforced case. This is also 

noted in Table 2. These results confirm the role of 

stiffeners in improving the stability of both APLs 

and SASCs. Unlike the stiffened SSCs and CPLs, 

the bifurcation phenomenon can be observed in all 

the cases studied for both perfect APLs and 

SASCs. At the same time, the snap-through 

phenomenon is not observed in any of the studied 

examples. On the other hand, it can be observed 

that in the case of imperfect SASCs/ APLs, the 

bifurcation phenomenon does not occur. This 

phenomenon is also observed in Figs. 5a, b, and d. 

Table 2. Comparisons of  critical thermal buckling loads  crbT  (K) 

 of unstiffened FG-GPLRC SASCs and APLs ( =br 0.5 m, =t br / r 0.5 , =br / h 80, UD-UD) 

 GPL = 0.1% GPL = 0.5% GPL = 1% GPL = 1.5% 

Unstiffened APLs 

Present  23.72(1,1)* 24.36(1,1) 25.15(1,1) 25.93(1,1) 

Simulation (Abaqus) 24.59(1,1) 25.29(1,1) 26.03(1,1) 26.98(1,1) 

Difference (%) 3.67 3.82 3.50 4.05 

Unstiffened SASCs 

Present  31.24(**)(1,1) 32.08 (1,1) 33.12 (1,1) 34.14 (1,1) 

Simulation (Abaqus) 32.42 (1,1) 33.33 (1,1) 34.32 (1,1) 35.57 (1,1) 

Difference (%) 3.78 3.90 3.62 4.19 

* The buckling modes (m, n),  

 
(**)Fig. 3.  An example of thermal buckling analysis  

of unstiffened FG-GPLRC SASCs by Abaqus (m,n ) = (1,1) 
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Table 3. Influence of the stiffeners on critical thermal buckling loads  crbT (K) of APLs and SASCs  

(h =0.008m, , =br / h 80 , =br / R 0.1,  =t br / r 0.4 , =n 4 , =sth / h 2 , =stb / h 1, GPL =1%, UD-UD) 

GPL  SASCs  APLs 

Unstiffened Circumferential Stiffener  Unstiffened Circumferential Stiffener  

GPL = 0.1% 43.15 (1,3) 49.18 (1,2) 16.91(1,1) 21.85 (1,1) 

GPL = 0.5% 44.20 (1,3) 50.40 (1,2) 17.36 (1,1) 22.45 (1,1) 

GPL = 1% 45.50 (1,3) 51.91 (1,2) 17.92 (1,1) 23.20 (1,1) 

GPL = 1.5% 46.78 (1,3) 53.40 (1,2) 18.47 (1,1) 23.94 (1,1) 

GPL = 2% 48.04 (1,3) 54.87 (1,2) 19.01 (1,1) 24.67 (1,1) 

Table 4. Influence of material distribution model on critical thermal load  crbT (K) SASCs and APLs  

(h =0.009m, =br / h 65 , =t br / r 0.4 , =sth / h 2 , =n 6, =stb / h 1,  GPL =0.1%) 

1 mr / R  UD-UD X-X O-O V-A A-V 

0.25 170.99 (2,3) 173.64 (2,3) 168.39 (2,3) 175.19(2,3) 166.81 (2,3) 

0.20 134.67(1,3) 135.60 (1,3) 133.76 (1,3) 137.76 (1,3) 131.60 (1,3) 

0.18 121.06 (1,3) 121.99 (1,3) 120.15 (1,3) 123.94 (1,3) 118.18 (1,3) 

0.15 97.21(1,2) 97.94 (1,2) 96.50 (1,2) 99.28(1,2) 95.15 (1,2) 

0.12 75.57 (1,2) 76.29 (1,2) 74.85 (1,2) 77.30 (1,2) 73.83(1,2) 

0.10 64.25 (1,2) 64.98 (1,2) 63.54 (1,2) 65.77 (1,2) 62.73(1,2) 

0.05 46.87 (1,2) 47.59 (1,2) 46.15 (1,2) 47.84 (1,2) 45.90 (1,2) 

APLs 39.32 (1,1) 40.03 (1,1) 38.62 (1,1) 39.63 (1,1) 40.00 (1,1) 
 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Influences of circumferential stiffeners on nonlinear postbuckling curves of SASCs and APLs 
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(a) (b) 

  
(c) (d) 

Fig. 5. Influences of geometric parameters on nonlinear postbuckling curves of SASCs and APLs 

  
(a) (b) 

  
(c) (d) 

Fig. 6. Influences of material distribution model and the total mass fraction of GPLs GPL on nonlinear 

postbuckling curves of SASCs and APLs 
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Fig. 5 investigates the significant role of 

geometric parameters on the nonlinear 

postbuckling behavior. Specifically, Figs. 5a and b 

show the influence of the t br / r  ratios on the 

postbuckling curves of SASCs and APLs. Clearly, 

as the t br / r  ratio increases, the postbuckling 

capacity of both SASC and APL increases. This 

effect is more pronounced in the region of large 

deformation. Fig. 5c shows a strong influence of 

the a/b ratio on the post-buckling curves of SASCs. 

It is clear that as the ratio a/b decreases, i.e., the 

shallowness of the SASCs increases, the 

postbuckling curves become lower. A similar trend 

is observed in Table 4 for the critical thermal 

buckling load.  

The effect of the imperfections in the SASC 

is shown in Fig. 5d. It can be observed that, in the 

small deflection region, the postbuckling curves 

decrease as the imperfections increase. 

Conversely, in the large deflection region, the 

opposite trend is observed. The postbuckling 

curves appear to intersect at a certain strain, where 

the trend reversal occurs.  

Fig. 6 investigates the nonlinear postbuckling 

curves of stiffened FG-GPLRC SASCs and APLs 

with different material models and total mass 

fraction of GPLs. The obtained trends in Figs. 6a-d 

are in full agreement with the results shown in 

Tables 3 and 4. Specifically, in Figs. 6a and b, the 

V-A SASC has the highest postbuckling curve 

among the SASCs, while the postbuckling curve of 

the A-V SASC is the lowest. For APL, the highest 

postbuckling curve corresponds to the X-X type, 

and the lowest one corresponds to O-O type. Figs. 

6c and 6d once again show that increasing the total 

mass fraction of GPLs positively affects the thermal 

load-carrying capacity of stiffened SASCs and 

APLs. 

6. Conclusion 

By combining the extended smeared stiffener 

technique, Donnell’s classical shell theory, and von 

Kármán geometric nonlinearity, the nonlinear 

thermal buckling and postbuckling behaviors of 

FG-GPLRC SASCs and APLs stiffened by a 

circumferential stiffener system were presented. 

Some notable findings can be drawn as follows: 

- Circumferential stiffeners help improve the 

thermal load capacity of SACs and APLs. The 

bifurcation buckling phenomenon can be observed 

in all the cases studied for both perfect APLs and 

SASCs.  

- For the illustrative data set, the V-A SASC 

exhibits the largest load-bearing capacity among 

SASCs, while the A-V SASC shows the smallest 

load-bearing capacity. Meanwhile, for APLs, the 

largest load-bearing capacity is recorded 

corresponding to the X-X type, and the smallest 

corresponding to O-O type.   

- Geometric and material parameters have a 

significant impact on the thermal stability 

responses. 
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