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Abstract: For the first time, an analytical approach to the static stability
problem of a shallow annular spherical cap stiffened by a system of
circumferential stiffeners is presented in this study. Both the shell and the
stiffeners are constructed from Functionally Graded Graphene Platelet
Reinforced Composite (FG-GPLRC) material, which follows five common
distribution laws: FG-X, FG-O, FG-A, FG-V, and UD. The stiffened shallow
annular spherical caps are subjected to a uniform temperature change. An
extended smeared stiffener technique is applied to the circumferential stiffener
system of the SASC. Based on Donnell’s classical shell theory and von Karman
geometric nonlinearities, the fundamental expressions and governing
equations of the problem are established. Novel displacement solutions
satisfying the parallel-closed conditions are proposed. The load—deflection
relationships are derived by applying the Ritz energy minimization method.
Consequently, the significant effects of the stiffeners, material model, and
geometric and material parameters are investigated.

Keywords: Nonlinear stability, Shallow Annular Spherical Caps,
Circumferential Stiffener System, Asymmetrical deformation, Ritz energy
method.

1. Introduction

Shallow spherical caps (SSCs), circular
plates (CPLs), shallow annular spherical caps
(SASCs), and annular plates (APLs) are commonly
used structures in many engineering fields. They
in various civil
mechanical equipment, and parts of aerospace

are often found

equipment.

The analysis of the mechanical behavior of
isotropic SSCs and CPLs has been carried out by
many researchers, making it a noteworthy
research direction. Kalnins and Naghdi [1],
Grossman et al. [2], and Sathyamoorthy [3]
focused on the vibration analysis of isotropic SSCs

structures,
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based on various models and theories. Dube et al.
[4] employed the first-order shear deformation
theory (FSDT) and the Galerkin method to analyze
the nonlinear static and dynamic behavior of thick
SSCs. The buckling behavior of pressurized SSCs
was numerically investigated by Wang et al. [5]. Du
et al. [6] introduced a unified formulation for free
vibration analysis of edge-restrained SSCs with
both uniform and stepped thicknesses. Li et al. [7]
investigated the nonlinear axisymmetric bending
model of a strain gradient thin circular plate. Ismail
et al. [8] studied the most critical buckling scenarios
in SSCs using numerical simulations.

For FGM CPLs, several authors [9-12] have
studied the static and dynamic buckling and
vibration responses under various loading
conditions using different methods. For FGM
SSCs, Ahmadi and Foroutan [13] investigated the
nonlinear dynamic buckling responses of porous
FGM SSCs. Based on the Timoshenko-Mindlin
hypothesis, Fu et al. [14] investigated the transient
deformation of FGM SSCs subjected to time-
dependent thermomechanical load. Applying the
Galerkin method and FSDT, Bich and Tung [15]
studied the nonlinear axisymmetric buckling of
FGM SCs, Anh and Duc [16] analyzed the
nonlinear thermo-mechanical stability of thick S-
FGM SSCs, and Phuong et al. [17] analyzed the
sandwich FGM SSCs in a nonlinear forced
vibration problem. Ly et al. [18] analyze thermo-
mechanical buckling in FGM CPLs and SSCs with
porous core based on higher-order shear
deformation theory (HSDT) and the energy
method. Barzegar and Fadaee [19] explored the
free vibration and buckling responses of thin FGM
shallow SSCs under a thermal load based on a
decoupling technique.

For FG-GPLRC CPLs and SSCs, Javani et
al. [20] and Chu et al. [21] investigated vibration
and stability responses of the FG-GPLRC CPLs
using FSDT and HSDT, respectively. Chien and
Phuc [22] studied the free vibration behavior of FG-
GPLRC CPLs using the HSDT and meshfree
method. The dynamic instability responses of FG-
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GPLRC CPLs were mentioned by Dai et al. [23].
Heydarpour et al. [24] presented thermoelastic
behavior of FG-GPLRC SSCs using the Lord-
Shulman theory. Liu et al. [25] studied the linear
and nonlinear free vibration problems of FG-
GPLRC SSCs and CPLs using the 3D elasticity
theory. Using the energy method, the nonlinear
static and dynamic responses of FG-GPLRC/
sandwich FG-GPLRC CPLs and SSCs were
investigated by Phuong et al. [26], Tu et al. [27],
and Ly et al. [28], respectively. The FG-GPLRC
CPLs and SSCs stiffened by spiderweb stiffeners
were considered in the nonlinear thermo-
mechanical buckling [29], static and dynamic
buckling [30], and vibration [31] problems.

Although not as commonly studied as
shallow spherical shells and circular plates, the
stability and dynamics of SASCs and APLs have
also been investigated by several authors. APLs
were also considered in the symmetric and
asymmetric vibration problems [32-34], with
laminated composites [32], with thermal rotating
conditions [33], and with general boundary
conditions [34]. The segments of FGM SASCs
stiffened by parallel stiffeners were investigated in
linear buckling by Nam et al. [35], using the
Galerkin method and adjacent equilibrium criterion.
Mirjavadi et al. [36] studied the nonlinear vibration
of segments of FGM SASCs using the Galerkin
method and Donnell shell theory. Vibration and
dynamic behaviors of FG-GPLRC APLs were
presented using the Rayleigh-Ritz variational
method [37] and the generalized differential
quadrature method [38, 39]. Safarpour et al. [40]
studied three-dimensional bending and frequency
of FG-GPLRC porous CPLs and APLs on different
boundary conditions.

It can be seen that there are extensive
studies on the mechanical response of CPLs and
SSCs, but studies on APLs and SASCs are still
very limited. Especially, FG-GPLRC APLs and
SASCs reinforced with circumferential FG-GPLRC
stiffeners have not been studied yet. In this study,
the nonlinear thermal buckling and postbuckling
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responses of FG-GPLRC APLs and SASCs
stifened by circumferential stiffeners are
investigated in detail. An improved smeared
stiffener technique is developed for the FG-GPLRC
circumferential ~ stiffener system to obtain
asymmetric responses. Trigonometric solutions of
displacement components satisfying the parallel
closed condition are proposed. The governing
equations of stiffened SASCs/APLs are solved by
applying the energy method. The effects of
stiffeners, material distribution models, and
geometric and material parameters are

investigated in the numerical examples.
2. Modeling of FG-GPLRC SASCs stiffened by
circumferential stiffener system

An asymmetrically deformed SASCs is
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considered in this paper. The SASC is subjected to
temperature changes, as described in Fig. 1, with
the thickness of the SASC h, curvature R, and the
radii of the upper and lower bases are denoted by
r. and r,, respectively. A circumferential stiffener

system is applied to the asymmetrical SASC. It can
be seen in Fig. 1, the shell is analyzed using a
coordinate system (¢,0,z ), where ¢ aligns with the

meridian, 6 with the parallel direction, and z with
the thickness direction.

The SASCs and their corresponding
stiffeners are both constructed from FG-GPLRC.
To ensure continuity of material in the shell and
stiffener, five material models are considered as
follows (Fig. 2 and Table 1).

Fig 1. Model and coordinate system of stiffened FG-GPLRC SASC

T

UD-UD

A-V

'l
T T

0-0

Fig 2. Material models of shell and stiffeners of SASC/APL
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Table 1. Model of SASC and Stiffener material

Model

SASC material

V-A FG-V type
X-X FG-X type
UD-UD type
FG-O type
A-V FG-Atype

ubD-UD
0-0

For SASCs, the distribution of the GPL
volume fraction through the shell thickness follows
the rules described below (for —h/2 <z <h/2)

-2z +h
T WgpL FG-V type,
4|z
% OgpL FG-Xtype,
O =1 OgpL UDtype, (1)
4|z
(2 - %} og. ~ FG-Otype,
2z +h
h Qon FG-Atype,

For stiffeners, to preserve the continuity of
materials within the stiffeners, the corresponding
GPL volume fraction is defined by the expression
below, (for h/2<z<h/2+h,,).

271 —t h J o FG-Atype,
4z + ir: +2h,, I On, FG-X type,
Ogp, = 1 OgpL Hb e, @
o |-4z+2h +2h, |Jw FG-Otype,
| hst | GPL
%j Ogpt FG-V type,

where ®g, denotes the total mass fraction of

GPLs distributed within both the SASC and the
stiffeners.

The Halpin—Tsai scheme is employed to
determine the elastic moduli of the cap skin and the
stiffeners as [39]

_E. (3 + 38,8, VI

sasc sasc
8 1- aEVGPL

A
1- bEVGPL

Nguyen et al
Stiffener material
FG-Atype
FG-X type
UD-UD type
FG-O type
FG-V type
_E,(3+3a.3. Vi | 5+5bb Ve, @
B 8 1- aEVétPL 1- bEV(.S;tPL ,
where
sasc mmsasc
VGP'— = sasc P L sasc \ ’ (5)
Pm®cpL  PapL (1 — OgpL )
s m(DSaSC
VGtPL _ _ Pm®DcpL —, (6)
Pm®cpL + PapL (1 - CoGPL)
and
— Ecr —En _ Ecr —En
E »ME y
Eer +8cEn Ege +bcEn (7)
2, 2w
G ’ G ’
ts ts

with Vg5° corresponds to the GPL volume fraction
in the cap skin, while Vg, refers to that in the

stiffeners. The properties of the matrix are given by
E (Young's modulus) and p, (density).

m

Correspondingly, Eg,, and pgp, are utilized for the

GPLs. The shape of the GPLs is fully described by
their dimensions: wg (width), I, (length) and tg

(thickness).

The corresponding Poisson’s ratios and
thermal expansion coefficients for the cap skin and
the stiffeners are given as

_ sasc sasc
Vsase = Vm (1 — VerL ) +VepL VerL »

_ _ sasc sasc
Ogase = O (1 Vet )+ e, VapL -

sasc

(8)

_ st st
Vst = Vm (1 - VGPL) + Vap VarL»

(9)

_ st st
At = Oy (1 — VerL ) + Olgp VapL»

3. Fundamental equations
To facilitate the calculation process for
SASCSs, the variable r =Rsin¢ representing the
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parallel circle with the base, is utilized. Given that
the SASCSs are shallow, the derivation of the
fundamental formulas and governing equations in
this research is based on two key elements: the
application of a quasi-polar coordinate system and
the geometric approximations cos¢e~1 and

Rde =dr . The general expressions and governing

equations provided below apply to SASCs, while
those for APLs can be obtained by setting R —> «.

The mid-surface strain field of the SASCs
can be determined by [35]

0
8[
0
€ =
0
Yre
w, 1 ,
uO,r - F + EWO,r + WO,rW1,r (1 0)
1 w 1 W, W
_(V09+u0)_ . + 2W§6+ O’92 0
r - R 2r ' r
\% u W, W W, W W, W
rl 2o | 4200 , Tor™oe , Tor™e , 00 i
r. r r r r

where the variables u,, v,, and w, represent the

displacement components at the middle surface.
These displacements occur in the meridian,
parallel, and thickness directions, respectively. In
addition,w, (r) is used to denote the initial
imperfection in deflection.

The strain field, at an arbitrary distance z
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from the mid-surface, is defined as [35]
0

€, K, €,
_ 0
€ (=—ZiKy (T3 1 (11)
0
Yre Kre Yre
where
" WO,rr
r
W w
Ke — or + 02,99 , (12)
r r
K
" Wore ~ Wop
r r?

Considering the influence of temperature
variation, the constitutive stress—strain relationship
for the SASCs is formulated as follows

O, Cy Cp O & a
c,|=|Cy C,p O gy |—|a |AT |, (13)
T 0 0 Cxlllvel (O

with AT denotes the difference in temperature
from the undeformed state to the final thermally
strained state, a value which is assumed as
constant. C. (ij=1112,22,66) represents the

ij
reduced stiffnesses of stiffened SASCs.

In this work, the force and moment resultants
of stiffened SASCs are obtained by extending
Lekhnitskii's smeared stiffener method, formulated
based on classical beam theory, wherein the
stiffness of the shell skin is combined with that of
the stiffeners. The resulting expressions are

Av Az O Bu Bz O
Nr _11 _12 _11 _12 8? q)1r
N, Az A 0 Biz B2 0 88 D,
N 0 0 As O O B 0
wi_J O w 0 6] Yo | |J O AT | (14)
M, Bi1 Bz 0 Dun Dz 0 |]|K D,
M, Bz B2 0 Di Dz O Ky D,,
M, 0 O Be O O Des)l w0 0
where and
(Aus,BDin ) = (A + AL BE® +BSLDE= +D5), (0,0, ) = (0 + ©F, 05  + 03 ), (16)
Azz,Br, D2z ) = (A + AL BE® +BL. D5 +D%), (00 ) = (05 + 05,05 + 03,
= with

(
(Awz,Brz, Drz) = (A5, B3, D),
(

Ass,Bes, Dss ) = (A%*,B%*, D), (15)

(A;aSC,BEaSC,DEaSC) — hj‘2 (1’ z, Z2 ) C;ascdz’

-h/2
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st st st e st 2 st
(AsBI.D)= [ —*(1z2°)Cidz,
h/2 st

ij=1112,22,66; kl=11,22
and

(17)

h/2

(@50, @5%) = [ [(C* +C5°)tase |(12)d2,
-h/2 (1 8)

h/2

(q)fgsc,q)sasc ) _ J' [(ngsc + C:SSC ) Olgse :| (1, Z)dz,

-h/2

h/2+hg,

(o08)= [ 2(Cha,)(12)z (19)
h/2 st
where
sasc sasc Esasc sasc Esasc sasc
Cim =Cx Z%, Cr :i’
E (20)
O =Sy OR = Ch ~Eu.

where b, and d, represent the widths and the

distances between two adjacent circumferential
stiffeners, respectively. The superscripts sasc, st
represent the shell and the stiffeners, respectively.
with the symbols b, and d, denote the widths of

the stiffeners and the distances between two
neighboring stiffeners, respectively. For clarity, the
superscripts sasc, and st are employed as
notational identifiers for the cap and the stiffeners,
respectively.

The total potential energy for the SASCs is
expressed as

) cr[sr—a(z)AT]
:%j [ [{+ou[5) ~a(2)AT]} rdrdodz,  (21)

0 r
+Treyr6

2. Boundary conditions and solution method

In this paper, the pinned boundary
constraints applied to both the upper and lower
parallel bases, the boundary conditions can be
written as
w,=0,u,=0,M =0, atr=r,r, (22)

The following approximate displacement

3 Tt

Ty N 2 A n 2
Ay = J‘HM}ISW 2 +mcos 20 sin21 +
r -
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formulations are proposed to satisfy both the
parallel closed requirement in the parallel direction
and the boundary condition (22), given by

Uy = Usin(ne)sin[m}

=1

= Vsin(2n6)sin(Mj, (23)

w, =W sin(ne)sin(m—_

Here, the amplitudes of the meridional and
parallel displacement components are denoted by
Uand V, respectively, while the amplitude of the

deflection is denoted by W. m and n denote the
number of half-wave in the meridian direction and
the number of full-wave in the parallel direction,
respectively.

Assuming that the expression for the initial
imperfection is taken similarly to the form of
deflection, as follows

w, =W’ sin[mr(_rr )Jsin(ne), (24)

with W™ =nh, where n represents the size of the
initial imperfection (n <1).

The Ritz method of energy is used, basing
the minimization energy principle, i.e

Y _p, (25)
ouU

Yr o, (26)
oV

Y _o, (27)
oW

leads to

7b11U+}\412W 20, (28)
Ay V + Ay W2+, WW'™ =0, (29)
Mgy W2 + Ay WPW™ + 0, WW 2 4, WV

+has WV + A WAT + Ay W AT +25,U (30)

+hg W =0,

where A, is presented as

N 2.3
‘T”er os” 2. |dr,
r

b_r)

t
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T (566 + ézz)n2
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-, = =
Ay = . Bizm 71:2 _AutAz nSinAsin2i — M 2 sin2L.cos A
. r (r,-r) R, (r,—r)r
B.mi2r 2(Az+An)m o 2
4| 2Bm n; ( ) , 2Bremn” |, sinkcosZk—mcoskcosm dr,
(rb—rt) (rb_rt)R (r1_rt)r (rb_rt)
rb _ 2 A 2
A, :j Aecsr® Lcosk—lzsinx no FART oy dr,
: (r,—r)r r r
T 2 3N
Aoy =I 1 Asormr n[ M os? kcosk—lsm XCosk:I—lwcos AsinA +— in Azzznsing‘k dr,
212 L (r, —r)r r’ (rb_rt) 2 T
e 2 3A
A =j Asormn n{ mr cos%sink—lzsinzkcosx} +Mcos Jsink + 1 Azzznsinsx dr,
S R (r,—r)r r (r _rt)
Al PN 2Ae6+ A2 )m?n’n?
x31=j 3Anm n4r 4k+3A22? " sin x+( )2 cos? Asin? |dr,
2 8(r,—1) ar 4(r,-1r)r
b _9K11m4n5r 9Axn*n (2K66+K12)m2n3n2
k32=j —cos’ L +———sin“1L+3 sin? Acos? A |dr,
n 8(rb _rt) 8r 4(rb - ) r
A A..pnh 2Ae6+ Arz )m?°n?
Aa :.[ SAnm ' n4r os4X+—3A22? nsin4k+( )2 cos?Asin?A (dr,
r 4(rb_rt) 4r 2(rb_rt) r
e 2 [ 7 n 3
/™ =f Awrmnn| _mn cos? ksinx—lzsin2 AL COSA Mcos AsinA + Azzn ™ sin® 2 bdr,
Tl _(rb_rt)r r (rb_rt)
f Asrmz’n| _mn cos’ ksink—%sin%cosk —A12m TN cos?Asinh + Azn’ T sin® . tdr,
sl h-n [(n-r)r r (rb—rt) r?
'y i 2 2_3 1
k36=f LT e g, - Pul = _cos? . |dr,
1l r (r,—r) i
W[ 2 2_3 l
x37=j L 2y, Lutm = _cos? ) |dr,
] r (rb _rt) i
% || (Bes +Baz|n? & A R..m2m2 Besn? + Bz |mn?
Ao = ( . ) _AuztAzn  Bum n2 nsinAsin 2%—( ) cos A sin2x
G r R (I‘b —r‘) (rb _rt)r
B 3 4 = 2,2 2 Km +K11 mr’r
2B1m nsr ,2Bzmn’n ( ) Sin2.cos 2 — 2Bi2m?n rCOSKCOSZK dr,
(rb_rt) r(rb—rt) (rb—rt)R (rb_rt) r
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T, [_)12m2n3n2 (KH + 2K12 + Kzz )I’Tt 511m4n5r 2(512-1— Ezz)nnz
+ + -

Aoy = 2
39 ;!. r(rb _ rt )2 R2 (I’b _

2 (511 +Br2 )m2n3r

2(512 +|§22)mn2 Diom®r

Rr

> sin® A + — |sinLcosh
R(rb—rt) R(rb_rt) (rb_rt)
= nf n? mn * nt= ( sinh mnm i mn(r—r,)
+D22 = ——sini + cosh | + —Des| ——— + cosA | ¢dr, with A = ——2,
reor (r,-r) r r (rn-r) r,—r

By solving Egs. (28) and (29), the formulas
for Uand V are determined. In which Uand V are
explicitly dependent on W and AT . These derived
results are then substituted back into Eq. (30),
yielding
a,WW™? +a, W*W" +a,W°+a,W
+a,WAT +a,W AT =0,

where

(31)

Ay = AggMop + Agys 8y = AagMpy + AgyMyy + Agy;
Ay =AguMyy +Agy; g = AagNyy + Agg; Ay = Agg;
A by A
a. =X\ m :_i; n :_ﬁ;n :_ﬁ;
6 37 1 }\‘11 21 }\‘21 22 7\421
Eq. (31) is used to investigate the nonlinear
thermal postbuckling curves of stiffened FG-

GPLRC SASCs/APLs. From Eq. (31), the
expression of AT is obtained as
To examine the nonlinear thermal

postbuckling response of stiffened FG-GPLRC
SASCs/APLs, Eq. (31) is utilized. From this
equation, the corresponding form of AT can be
derived as

a,WW? +a, W*W" +a,W° +a,W
- a,W +a,W’
From Eq. (32), the thermal buckling load is
determined by setting W — 0 and n=0 as

AT =

(32)

AT, =24, (33)

The critical thermal buckling load is obtained
from Eq. (33) by applying the condition
AT, =minAT, vs. (m,n).

5. Numerical results and discussions

In the following illustration section, copper-
matrix/GPLs stiffened SASCs and APLs are

considered, with GPL material and geometric
parameters taken from Ref. [39].
5.1. Validations
To evaluate the validity of the proposed

analytical method and the current mathematical
expressions, the critical thermal buckling loads of
unstiffened FG-GPLRC APLs and SASCs were
compared with the finite element results as
presented in Table 2. The results obtained show
good agreement between the current approach
and the numerical simulation results.
5.2. Numerical examples

Table 3 illustrates the effect of circumferential
stiffeners on the critical thermal buckling loads of
FG-GPLRC SASCs and APLs for different total
GPL mass fractions oy, . For both SASCs and

APLs, the addition of circumferential stiffeners
significantly increases the critical thermal buckling
load compared to the unstiffened structures. In
addition, the effect of the total mass fraction of
GPLs is also significant. The critical thermal
buckling load increases when the total mass
fraction of GPLs increases. This indicates the
effectiveness of the GPL reinforcement phase in
enhancing the thermal resistance of FG-GPLRC
SASCs and APLs. Table 4 examines the critical
thermal load of the SASCs and the APLs with
different material distribution patterns. For the
illustrative data set, the V-Atype FG-GPLRC SASC
exhibits the largest critical thermal load among
SASCs, while the critical thermal buckling load of
A-V type FG-GPLRC SASC is the smallest. For
APLs, the largest critical thermal buckling load is
recorded corresponding to the X-X type FG-
GPLRC, and the smallest is corresponding to O-O
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type FG-GPLRC. This is significant for the
designers when selecting the appropriate material
model for FG-GPLRC stiffened SASCs and APLs.
Furthermore, the influence of the r, /R ratio is also

investigated in Table 4. Clearly, the critical thermal
buckling load of the stiffened SASCs decreases as
the r, /R ratio decreases. In other words, the

critical thermal buckling load of the stiffened
SASCs decreases as their shallowness increases.

Figs. 4a-d illustrate the effects of stiffeners on
the nonlinear thermal postbuckling responses of
SASCs and APLs. It is clear that the stiffeners

Nguyen et al

significantly increase the post-buckling resistance
compared to the unreinforced case. This is also
noted in Table 2. These results confirm the role of
stiffeners in improving the stability of both APLs
and SASCs. Unlike the stiffened SSCs and CPLs,
the bifurcation phenomenon can be observed in all
the cases studied for both perfect APLs and
SASCs. At the same time, the snap-through
phenomenon is not observed in any of the studied
examples. On the other hand, it can be observed
that in the case of imperfect SASCs/ APLs, the
bifurcation phenomenon does not occur. This
phenomenon is also observed in Figs. 5a, b, and d.

Table 2. Comparisons of critical thermal buckling loads AT, (K)
of unstiffened FG-GPLRC SASCs and APLs (r, =0.5m, r, /r, =0.5,r, /h =80, UD-UD)

ogp, = 0.1% g =0.5% Ogp = 1% ogp = 1.5%
Unstiffened APLs
Present 23.72(11y  2436(1,1)  2515(1,1)  25.93(1,1)
Simulation (Abaqus) 2459(1,1)  25.29(1,1)  26.03(1,1)  26.98(1,1)
Difference (%) 3.67 3.82 3.50 4.05
Unstiffened SASCs
Present 31.24%(1,1) 3208 (1,1) 3312(1,1) 34.14(11)
Simulation (Abaqus) 3242 (1,1)  3333(1,1) 34.32(1,1) 3557 (1,1)
Difference (%) 3.78 3.90 3.62 4.19
" The buckling modes (m, n),
U, Magnitude
+1.000=+00
o
Bt
Eigenvalue buckling analy=iz
¥ ODB: DomeCombinedAnalyziz.odk  Abaqus/Standard 2020 Wed Mow 06 02:22:19 AUS Eastern Daylight Tirm
| Step: BucklingAnalysisStep, Eigenvalue buckling analysis under thermal loading,
Mode 2: Eigen¥alue = 32,420
F4 X Primmary Var: U, Magnitude
Deformed war: U Deformation Scale Factor: +1,000e-01

(“Fig. 3. An example of thermal buckling analysis
of unstiffened FG-GPLRC SASCs by Abaqus (m,n) = (1,1)
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Table 3. Influence of the stiffeners on critical thermal buckling loads AT,_, (K) of APLs and SASCs

(h=0.008m,, r,/h=80,r,/R=0.1, r,/r,=0.4, n=4, h,/h=2, b, /h=1 og =1%, UD-UD)
OgpL SASCs APLs
Unstiffened Circumferential Stiffener Unstiffened Circumferential Stiffener
ogp, = 0.1% 43.15(1,3) 49.18 (1,2) 16.91(1,1) 21.85(1,1)
ogp = 0.5% 44.20 (1,3) 50.40 (1,2) 17.36 (1,1) 22.45(1,1)
oge, = 1%  45.50 (1,3) 51.91 (1,2) 17.92 (1,1) 23.20 (1,1)
0ge, = 1.5% 46.78 (1,3) 53.40 (1,2) 18.47 (1,1) 23.94 (1,1)
Ogp, = 2%  48.04 (1,3) 54.87 (1,2) 19.01 (1,1) 24.67 (1,1)
Table 4. Influence of material distribution model on critical thermal load AT, (K) SASCs and APLs

120

150

(h=0.009m, r, /h=65, r,/r,=04,h,/h=2,n=6,b,/h=1 o, =0.1%)

/R UD-UD X-X 0-0 V-A A-V
0.25 170.99(2,3) 173.64 (2,3) 168.39 (2,3) 175.19(2,3) 166.81 (2,3)
0.20 134.67(1,3) 135.60 (1,3) 133.76 (1,3) 137.76 (1,3) 131.60 (1,3)
0.18 121.06(1,3) 121.99(1,3) 120.15(1,3) 123.94 (1,3) 118.18 (1,3)
015 97.21(1,2) 97.94(1,2) 96.50(1,2) 99.28(1,2) 95.15(1,2)
012 7557(1,2) 76.29(1,2) 74.85(1,2) 77.30(1,2) 73.83(1,2)
010 64.25(1,2) 64.98(1,2) 63.54(12) 6577(1,2) 62.73(1,2)
0.05 46.87(1,2) 47.59(1,2) 46.15(1,2) 47.84(1,2) 45.90 (1,2)
APLs 39.32(1,1) 40.03(1,1) 38.62(1,1) 39.63(1,1) 40.00 (1,1)
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Fig. 4. Influences of circumferential stiffeners on nonlinear postbuckling curves of SASCs and APLs
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Fig. 5. Influences of geometric parameters on nonlinear postbuckling curves of SASCs and APLs
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Fig. 6. Influences of material distribution model and the total mass fraction of GPLs o, on nonlinear

postbuckling curves of SASCs and APLs
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Fig. 5 investigates the significant role of
geometric parameters on the nonlinear
postbuckling behavior. Specifically, Figs. 5a and b
show the influence of the r /r, ratios on the

postbuckling curves of SASCs and APLs. Clearly,
as the r /r, ratio increases, the postbuckling

capacity of both SASC and APL increases. This
effect is more pronounced in the region of large
deformation. Fig. 5¢c shows a strong influence of
the a/b ratio on the post-buckling curves of SASCs.
It is clear that as the ratio a/b decreases, i.e., the
shallowness of the SASCs increases, the
postbuckling curves become lower. A similar trend
is observed in Table 4 for the critical thermal
buckling load.

The effect of the imperfections in the SASC
is shown in Fig. 5d. It can be observed that, in the
small deflection region, the postbuckling curves
decrease as the imperfections increase.
Conversely, in the large deflection region, the
opposite trend is observed. The postbuckling
curves appear to intersect at a certain strain, where
the trend reversal occurs.

Fig. 6 investigates the nonlinear postbuckling
curves of stiffened FG-GPLRC SASCs and APLs
with different material models and total mass
fraction of GPLs. The obtained trends in Figs. 6a-d
are in full agreement with the results shown in
Tables 3 and 4. Specifically, in Figs. 6a and b, the
V-A SASC has the highest postbuckling curve
among the SASCs, while the postbuckling curve of
the A-V SASC is the lowest. For APL, the highest
postbuckling curve corresponds to the X-X type,
and the lowest one corresponds to O-O type. Figs.
6¢ and 6d once again show that increasing the total
mass fraction of GPLs positively affects the thermal
load-carrying capacity of stiffened SASCs and
APLs.

6. Conclusion

By combining the extended smeared stiffener
technique, Donnell’s classical shell theory, and von
Karman geometric nonlinearity, the nonlinear
thermal buckling and postbuckling behaviors of

Nguyen et al

FG-GPLRC SASCs and APLs stiffened by a
circumferential stiffener system were presented.
Some notable findings can be drawn as follows:

- Circumferential stiffeners help improve the
thermal load capacity of SACs and APLs. The
bifurcation buckling phenomenon can be observed
in all the cases studied for both perfect APLs and
SASCs.

- For the illustrative data set, the V-A SASC
exhibits the largest load-bearing capacity among
SASCs, while the A-V SASC shows the smallest
load-bearing capacity. Meanwhile, for APLs, the
largest load-bearing capacity is recorded
corresponding to the X-X type, and the smallest
corresponding to O-0 type.

- Geometric and material parameters have a
significant impact on the thermal stability
responses.
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