Journal of Science and Transport Technology Vol. 5 No. 4, 141-155

AND TRANSPORT TECHNOLOGY

Journal of Science and Transport Technology
Journal homepage: https://jstt.vn/index.php/en

Article info
Type of article:
Original research paper

DOI:
https://doi.org/10.58845/jstt.utt.2

025.en.5.4.141-155

"Corresponding author:
Email address:
tamvm@huce.edu.vn

Received: 06/09/2025
Received in Revised Form:
01/12/2025

Accepted: 12/12/2025

Integration of Computer Vision, Microscopic
Traffic Simulation and Heuristics for
Optimizing Motorcycle-Dominated Signalized

Intersections

Tam Vu'", Ngoc Viet Pham', Ngoc Son Nguyen', Quang Thai Pham', Thanh
Hieu Pham?, Viet Phuong Nguyen'

"Faculty of Transportation Engineering, Hanoi University of Civil Engineering,
Hanoi, Vietnam

2Mechanics of Advanced Materials and Structures, University of Transport
Technology, Hanoi, Vietnam

Abstract: Traffic signal optimization in motorcycle-dominated environments
remains a critical challenge in many developing cities, where the heterogeneity
and high dynamics of traffic flows often limit the effectiveness of traditional
control methods. This study introduces an approach that integrates computer
vision, microscopic traffic simulation and heuristic optimization to design
signals of motorcycle-dominated mixed traffic intersections. By leveraging
visual data through modern object detection techniques, the proposed
framework enables a more comprehensive and precisely of key traffic
parameters including traffic volume and travel time - overcoming the limitations
of conventional field surveys and loop detectors. These data are then utilized
for developing and calibrating VISSIM models to accurately reflect reality. Rule-
based and multi-start local search heuristics are implemented with VISSIM and
Python to iteratively refine signal timing plans, aiming to minimize travel time
and queue lengths at intersections. A case study conducted at a motorcycle-
dominated intersection in Hanoi, Vietham demonstrates the potential of this
integration to improve both operational efficiency and adaptability of signal
control systems. The chosen solution performs much better than the existing
situation, with the average queue length and travel time reduced by
approximately 52.5% and 16.3% correspondingly. The findings can prove the
feasibility and accuracy of proposed integrated framework that traffic engineers
and decision-makers might apply in motorcycle-dominated mixed traffic
environments in practice.

Keywords: traffic signal optimization, computer vision, VISSIM, heuristic
search, motorcycle-dominated intersections.

1. Introduction

Traffic congestion poses a significant and
growing challenge to urban mobility, economic
productivity, and environmental sustainability in

cities worldwide. The issue is particularly acute in
many Southeast Asian nations, including Vietnam,
Indonesia, and Thailand, where transportation
infrastructure struggles to accommodate rapidly
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growing numbers of vehicles, predominantly
motorcycles [1, 2]. This motorcycle-dominated
traffic creates a unique and complex
heterogeneous flow, characterized by non-lane-
based movements, high densities, and dynamic
vehicle interactions, which profoundly impacts
intersection performance [3, 4].

Signalized intersections, as critical nodes in
the urban network, are primary sources of delay,
fuel consumption, and emissions in these
environments. Conventional traffic signal control
strategies, often derived from principles
established for homogeneous car traffic, frequently
prove inadequate for managing the intricate
dynamics of mixed flows with high motorcycle
proportions [5]. The effectiveness of any signal
optimization effort is fundamentally contingent on
the accuracy and comprehensiveness of its input
data, namely ftraffic volumes and performance
measures like travel time and queue length [6].
Traditional data collection methods, including
manual surveys and inductive loops, are often
incapable of capturing the full complexity of
motorcycle-dominated traffic streams, typically
sampling only a small fraction of vehicles and
struggling with vehicle classification in dense,
mixed conditions [7].

Recent advancements in computer vision,
particularly deep learning—based object detection
models such as YOLO, have demonstrated
transformative potential for traffic data extraction
[8]. Nevertheless, most existing studies employ
these technologies in isolation, focusing on
detection accuracy rather than leveraging the
extracted data for optimizing motorcycle-
dominated signalized intersections. Although
microscopic traffic simulation platforms such as
VISSIM are widely used for performance
evaluation [9], and heuristic optimization
techniques are increasingly applied for signal
timing optimization [10], few studies have
established an integrated methodological
framework that couples high-fidelity computer
vision—based data extraction with simulation and
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iterative heuristic search, particularly under
motorcycle-dominated mixed traffic conditions. As
a result, this study proposes a novel integrated
framework that combines computer vision,
microscopic simulation (VISSIM) and heuristic
search in finding near-optimal solutions for signals
plan of intersections.

The remainder of this paper is structured as
follows. Section 2 provides a review of related
literature. Section 3 details the proposed integrated
methodology. Section 4 presents a case study in
Hanoi, Vietnam. Section 5 discusses the results
and concludes with key findings and suggestions
for future research.

2. Literature Review

The optimization of motorcycle-dominated
signalized intersections can remain a significant
challenge in urban areas because of complexity
related to data collection and design process. The
unique characteristics of motorcycle traffic - such
as their small size, high maneuverability, and non-
lane-based movement - render conventional traffic
analysis and control strategies, often developed for
homogeneous car ftraffic, less effective. A
substantial body of research has employed
microscopic traffic simulation (e.g. VISSIM) to
understand these complex dynamics. Studies
consistently highlight the impact of motorcycle-
specific behaviors, revealing that allowing
motorcycles to filter and position themselves ahead
of cars can reduce start-up lost time and overall
travel time [11, 12]. Further analyses of
heterogeneous traffic in cities have used VISSIM to
quantify key performance metrics such as delay
and queue length [13].

Traditional methods relying on manual
counts, loop detectors, or low-frequency GPS data
have inherent limitations. Manual counts are labor-
intensive and sample only a small fraction of the
traffic stream, while methods using GPS trajectory
data often struggle with low-frequency data,
leading to estimations that may not capture full
traffic variability [14]. The recent application of
computer vision, specifically YOLO, for object
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detection and analysis points towards a paradigm
shift, offering the potential to automatically and
accurately track nearly all vehicles (90-95%) within
view of camera on-site [8, 11]. This might provide a
rich, high-resolution dataset for travel time and
queue length calculation that was previously
unattainable at scale. The critical advantage might
be the ability to extract comprehensive travel time
data directly from video feeds, which serves as the
essential ground truth for building and calibrating
highly accurate VISSIM models - a foundational
step that is often compromised in previous studies
due to data paucity.

Building upon the need for adaptive control,
advanced computational intelligence approaches
have been explored. Vuong et al. [15] proposed an
adaptive ftraffic signal control method for an
isolated intersection under mixed traffic conditions
in Hanoi using an Adaptive Neuro-Fuzzy Inference
System (ANFIS) integrated with VISSIM and
MATLAB. The model employed inputs of maximum
queue length and vehicle arrivals to infer phase
urgency and dynamically adjust green durations
within fixed cycle times derived from the Webster
formula. The ANFIS controller adaptively tuned
membership functions through hybrid learning to
minimize delay and travel time under motorcycle-
dominated traffic. = While the  approach
demonstrates strong adaptability, it maintains a
fixed cycle length and relies on a rule-based
learning mechanism. This can highlight a common
limitation in the field: even sophisticated adaptive
controllers often operate within a constrained
search space. The accuracy and performance of
these systems, including the underlying simulation
models used for their development, appear to be
limited by accuracy of VISSIM models.

A critical aspect of modeling mixed traffic for
signal optimization is the accurate conversion of
heterogeneous traffic volumes into a uniform unit.
A study by Roy et al. [16] optimized signal timing
under heterogeneous traffic using a direction-wise
dynamic Passenger Car Equivalent (PCE) model.
The approach recalculated saturation flow and total
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intersection delay based on adaptive PCE values
derived from classified vehicle counts and queuing
analysis. Signal timing parameters were then
adjusted to minimize total delay. Their findings
indicated that static PCE assumptions significantly
underestimated actual delay, highlighting the need
for direction-specific calibration when optimizing
signalized intersections in  mixed ftraffic
environments.

Several methods have been developed to
determine the Passenger Car Unit (PCU) in
heterogeneous traffic flow, such as the
homogenization coefficient method, semi-empirical
method, Walker's method, headway method,
multiple linear regression, and simulation-based
approaches [17]. However, these methods were
primarily formulated for car-dominated traffic and
might be therefore unsuitable for environments
with dominance of motorcycles, particularly in
Southeast Asian cities. Building upon and
improving the aforementioned methods, Cao and
Sano [17] introduced a methodology for estimating
the Motorcycle Equivalent Unit (MCU) that better
reflects the characteristics of urban traffic in Hanoi,
as well as for evaluating the capacity of urban
roads under mixed traffic conditions. Based on this
conceptual background, the study develops a more
context-sensitive framework to analyze
motorcycle-dominated mixed  traffic  flow,
emphasizing the dynamic relationship between
vehicle speed, space occupancy, and road
capacity.

Heuristic optimization methods have been
applied in transportation and traffic control
problems where the search space is complex and
exact optimization is computationally infeasible.
Unlike traditional mathematical programming
techniques, heuristics aim to obtain good-though
not necessarily optimal-solutions within a
reasonable computational time [18]. In traffic signal
optimization, heuristic approaches are particularly
useful because of the nonlinear and stochastic
nature of vehicle interactions in microscopic
simulation models [10]. Among heuristic methods,
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local search is one of the most fundamental
techniques. It starts from an initial solution and
iteratively explores its neighborhood to find
improved solutions according to a defined objective
function [19]. Although local search can efficiently
converge with high-quality solutions, it often gets
trapped in local optima. To overcome this limitation,
multi-start local search (MSLS) strategies have
been developed, which repeatedly restart the
search from multiple initial solutions [18]. Another
commonly used approach is the greedy heuristic,
which constructs a solution step-by-step by making
the locally optimal choice at each iteration [20].
While greedy algorithms are computationally
efficient and easy to implement, they may yield
suboptimal global performance due to their myopic
decision-making. Nonetheless, greedy strategies
are often integrated into hybrid or simulation-based
frameworks to provide quick initial estimates of
signal timings or phase splits before applying more
sophisticated search techniques [21]. Recent
studies have increasingly revisited rule-based
heuristics as an interpretable and operationally
safe alternative to purely search-based methods in
traffic signal control. A recent review highlights how
hybrid control frameworks preserve the core “plan
authority” of rule-based systems (cycle / split /
offset decisions) while overlaying adaptive
heuristics or data-driven adjustments, thus
ensuring both real-world deployability and
performance gains [22].

To address these gaps, the present study
adopts a simulation-based heuristic framework
using Python-VISSIM integration to iteratively
search for globally improved signal timing plans by
varying both green splits and cycle times. This
methodology directly addresses the identified
research gaps by creating a closed-loop
optimization system. It first leverages the robust
travel time, queue length and traffic volume data
extracted by Al models that is used in the study of
Vu et al. [8], to develop and calibrate a highly
accurate VISSIM model. This well-tuned model
then acts as a reliable evaluation function within a
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heuristic search process, where Python scripts
systematically alter signal parameters and VISSIM
simulations assess their impact on key
performance indicators. This integration of high-
resolution data, multi-model evaluation, and
iterative simulation-based search moves beyond
the isolated application of these technologies
towards a holistic and data-driven optimization
system, capable of conducting a global search for
optimal signal timings that are specifically tailored
to the complex dynamics of motorcycle-dominated
intersections.

3. Methodology

The methodological framework of this
research that includes sequential six-stage
workflow is illustrated in the first subsection. The
second subsection states application of YOLO for
vehicle detection and data extraction which details
the computer vision techniques used to derive
accurate traffic parameters from video footage. The
third subsection describes the hybrid optimization
algorithm that refines the signal timings.

3.1. Methodological framework

The research methodology follows a
systematic six-stage framework designed to
optimize signalized intersections in motorcycle-
dominated environments through the integration of
computer vision, simulation modeling, and heuristic
optimization in Fig. 1.

Stage 1: Collection data by camera. Field
data was collected at a signalized intersection by
camera. Simultaneous recording was initiated
using cameras strategically positioned at each
approach  of the intersection, providing
comprehensive, multi-directional coverage of all
traffic movements, queue length and vehicle
interactions. This setup enabled the detailed
observation of traffic stream behavior across all
approaches, forming an empirical foundation for
subsequent computer vision analysis and model
calibration.

Stage 2: Traffic parameters determined by
computer vision. The video footage from the
cameras was processed using an advanced
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computer vision pipeline built upon the YOLO
architecture. This deep learning model was
specifically fine-tuned for Vietnamese traffic
conditions, enabling highly accurate detection and
classification of 15 distinct vehicle types. The
system employed the ByteTrack multi-object
tracking algorithm to maintain consistent vehicle
identities across frames, even though challenging
scenarios such as occlusions at the congested
intersection. This robust tracking capability was
essential for generating reliable vehicle trajectories
and ensuring data integrity throughout the analysis
period.

The extraction of quantitative traffic
parameters was achieved through strategically
placed virtual detection lines at each intersection
approach. Vehicle travel times were calculated with
precision by recording timestamps when vehicles
crossed successive detection lines. The computer
vision system automatically compiled
comprehensive traffic volume counts for each
movement, classified by vehicle type, creating a
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rich dataset that captured the intricate dynamics of
motorcycle-dominated traffic flow. This data
extraction methodology successfully achieved
approximately 90-95% coverage of the vehicle
stream, far surpassing the limitations of traditional
manual observation methods [8]. This will be
further explained in section 3.2.

Stage 3: Develop VISSIM simulation by
calibrating traffic parameters from Stage 2. A
microscopic simulation model was developed in
VISSIM to replicate the observed intersection
geometry, signals and traffic conditions. The model
was rigorously calibrated using the computer
vision-derived parameters from Stage 2, including
travel time. Queue length is used for the VISSIM
calibration process. However, real queue length is
counted by manual in this research. Multiple
calibration iterations were performed until the

simulated travel times and queue lengths
demonstrated statistical alignment with field
observations, ensuring the model accurately

represented real-world intersection operations.

Collection data by camera

(1)

|

Traffic parameters determined
by computer vision

|

Develop VISSIM simulation by
calibrating traffic parameters
from State 2

| Determine signal phase
based on
Webster’'s method

Determine existing |
signal phase in operation
at the intersection

Implement heuristics using
VISSIM and Python

v

Evaluate the best signal
phasing plan based on
queue length and travel time

(6)

Fig. 1. Methodological framework
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Stage 4a: Determine signal phase based on
Webster’s method. Initial signal timing parameters
were calculated using Webster's formula adapted
for heterogeneous traffic conditions. Two distinct
conversion approaches were implemented: PCU
factors that normalize all vehicles to PCU and MCU
factors that normalize all vehicles to equivalent
motorcycles. This dual-conversion methodology
generated alternative signal timing plans reflecting
different optimization perspectives for mixed traffic
environments, which will be discussed in more
detail in section 3.3.

Stage 4b: Determine existing signal phase in
operation at the intersection. The current signal
timing plan operating at the study intersection was
thoroughly = documented, including phase
sequences, cycle lengths, green splits, and amber
intervals. This existing configuration served as the
baseline scenario for comparative performance
evaluation against the optimized timing plans
developed through the research methodology.

Stage 5: Implement heuristics using VISSIM
and Python. An integrated optimization framework
was developed using Python-VISSIM COM
interface to systematically refine signal timing
parameters through two complementary heuristic
approaches. The initial solutions for this
optimization process were derived from Stage 4,
comprising both the existing signal timing (Stage
4b) and the Webster-optimized plans using PCU
and MCU conversions (Stage 4a). These three
distinct initial solutions served as starting points for
parallel optimization pathways in multi-start
heuristic, ensuring comprehensive exploration of
the solution space.

Based on the study of [23], the following
default parameters of VISSIM in the research are
used for this study: Desired speed distribution of
bus and car; Motorcycle desired speed distribution;
Average standstill distance; Minimum lateral
distance driving at 50 km/h; motorcycle
acceleration and deceleration parameters. In
addition, maximum deceleration for cooperative
braking is modified in this research to compare
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travel time between VISSIM model and reality.

The optimization employed a hybrid strategy
combining Rule-Based Heuristic and Multi-Start
Local Search (MSLS) methodologies. For each
initial solution, the Rule-Based Heuristic first
performed localized adjustments to green splits
based on predefined improvement rules targeting
travel time and queue length reduction.
Subsequently, the MSLS algorithm initiated
multiple optimization trajectories from these refined
solutions, systematically exploring neighboring
regions in the parameter space to escape local
optima. This dual-layer approach enabled both
intensive local refinement and extensive global
exploration, with each candidate solution evaluated
through multiple VISSIM simulation runs to ensure
statistical  significance  and  reliability  of
performance metrics, which will be discussed in
section 3.4.

Stage 6: Evaluate the best signal phasing
plan based on queue length and travel time. The
performance evaluation of candidate signal timing
plans was conducted based on two critical
performance indicators: the average vehicle travel
time through the intersection approach and the
average queue length across all approaches.

3.2. Application of YOLO for vehicle detection
and data extraction

Accurate vehicle detection and tracking are
fundamental to extracting reliable traffic
parameters. This study employs the YOLOvVS8 (You
Only Look Once version 8) model, building upon
the enhanced architecture proposed by Vu et al. [8]
for robust vehicle detection in complex traffic
scenarios. The model was pre-trained on a
comprehensive dataset containing over one million
annotated vehicle instances across 15 vehicle
types, ensuring high detection accuracy in mixed
traffic conditions typical of motorcycle-dominated
intersections. Although newer versions of YOLO
(e.g., v11 and v12) have been released, the
framework of Vu et al. [8] was specifically optimized
and validated for dense, heterogeneous traffic
environments in Southeast Asia. Its large-scale,
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domain-specific dataset and proven robustness
make YOLOv8 a more reliable choice for this
study’s application context compared to the
generic configurations of later base-versions.

The detection process begins by processing
input video frames through the YOLO network,
which outputs bounding boxes with corresponding
class labels and confidence scores for each
detected vehicle. To establish temporal
consistency and enable trajectory analysis across
consecutive frames, ByteTrack - a multi-object
tracking algorithm is integrated [24]. This tracking
module associates detections over time by
calculating feature similarities and motion patterns,
effectively maintaining vehicle identities through
occlusions and complex interactions.

The vehicle detection and tracking process
was implemented using the YOLOvV8 architecture.
To ensure optimal performance in the specific
context of Viethamese traffic conditions, the model
was pre-trained on a comprehensive local dataset
containing diverse vehicle types and traffic
scenarios [8]. The trained model demonstrated
high detection accuracy, achieving a mean
Average Precision (mAP@0.5) of 0.91 on
validation set, confirming its reliability for
subsequent traffic parameter extraction.

For travel time extraction, virtual detection
lines are strategically placed at the entry and exit
points of the intersection approach. Two distinct
virtual lines are digitally established perpendicular
to the ftraffic flow at strategic locations: one
upstream (entry point) and one downstream (exit
point) of the intersection approach. These lines are
marked in VISSIM simulation at stage 3 in Fig. 1.
The multi-object tracking algorithm maintains
consistent vehicle identities (IDs) across frames,
generating continuous trajectories for each
detected vehicle. The travel time measurement
protocol is executed as follows: when a vehicle's
bounding box centroid crosses the first virtual line,
a precise timestamp (T+) is recorded. The system
continues tracking the same vehicle ID until its
centroid crosses the second virtual line, where a
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second timestamp (T) is registered. The travel
time (TT) for that specific vehicle is then computed
as:

TT=T1-T2(1)

This process is automatically repeated for all
successfully tracked vehicles, generating a
comprehensive dataset of individual travel times
across the intersection approach. This method
enables the capture of nearly the entire vehicle
stream, significantly surpassing the limited
sampling capabilities of manual observation or
fixed-loop detectors. Moreover, traffic volumes are
quantified by counting vehicles crossing virtual
detection lines during specific analysis intervals,
employing the traffic counting model established by
Vu et al. [8]. This automated vision-based
approach generates a rich, high-resolution dataset
of travel times and traffic composition, serving as
the empirical foundation for both simulation model
calibration and signal system optimization.

To assess the performance of the proposed
framework, all experiments were carried out on a
workstation equipped with an AMD Ryzen
Threadripper 3960X 24-core processor, 128 GB of
RAM, and an NVIDIA GeForce RTX 3090 GPU with
24 GB of memory. Under this hardware setup, the
system consistently achieved an average inference
speed of approximately 27 frames per second
(FPS) on 1080p video streams, even in high-
density and heterogeneous traffic conditions.
These results indicate that the model is well-suited
for deployment in practical urban monitoring
environments.

3.3. Implement heuristics using VISSIM and
Python

This section details the comprehensive
heuristic optimization framework that integrates
VISSIM simulations with Python control logic to
systematically identify optimal signal timing
parameters. The framework employs a hybrid three
methodology, sequentially combining Rule-Based
Heuristics, Local Search, and Multi-Start
Heuristics. This structured approach, detailed in
eleven sequential steps (as illustrated in Fig. 2.),
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ensures a thorough exploration of the solution
space, beginning with rapid, rule-guided
improvements and progressing to intensive local
and global search to converge on a robust, high-
performing signal plan.

Step 1: Initial solution selection method. The
optimization process commences by selecting
initial signal timing parameters derived from Stage
4 of the methodological framework. This includes
choose distinct starting points: the existing signal
timing configuration (State 4b), and the two
Webster formula based on PCU and MCU
conversions (State 4a). These diverse initial
solutions ensure comprehensive exploration of the
solution space from multiple perspectives.

Step 2: Create initial solution. Cycle length,
phase sequence, and green splits are determined
for the initial solution.

Step 3: Run initial solution in VISSIM and
Python. The integrated simulation-execution
framework is initiated, where Python scripts
automatically configure and execute the VISSIM
simulation with the initial signal timing parameters.

Step 4: Determine Outputs. Key performance
indicators are extracted from the simulation output,
including queue lengths for all intersection
approaches and travel times for all traffic
movements. These metrics are systematically
recorded for subsequent comparative analysis.

Step 5: Find new solution according to rule-
based heuristic. Rule-based heuristics is applied
where approach-specific green times are adjusted
based on queue length performance. Approaches
exhibiting queue lengths longer than the average
one receive a 1 second green time increase, while
those with shorter-than-average queues decrease
a 1 second green time reduction, maintaining
constant cycle length through compensatory
adjustments.

Step 6: Run new solution in VISSIM and
Python. The modified signal timing parameters are
implemented in the simulation environment, and
the updated configuration is executed through the
Python-controlled VISSIM interface to evaluate
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performance of the adjusted solution.

Step 7: Determine best solution from iteration
1 to existing iteration. Performance metrics from
successive iterations are compared to identify
progressive improvements. If convergence criteria
are not met - defined as the reduction in average
queue length compared to the best solution from
previous iterations is less than 1 % - the process
returns to Step 5 for further iterative refinement
through the 5-6-7 loop.

Step 8: Retain the final best solution that is
evaluated. Upon achieving convergence, the best-
performing signal timing configuration from the
rule-based heuristic optimization is retained as the
locally optimized solution for the current initial
starting point.

Step 9: Local search. To ensure robustness
and escape potential local optima, a local search is
conducted by exploring neighboring solutions
around the identified optimum. The cycle time is
increased and decreased by 4 seconds. Green
splits are added for all phases in cycle time. This
process re-executes Steps 2 through 8 with
strategically varied initial conditions within the
vicinity of the current best solution.

Step 10:  Multi-start  heuristics. A
comprehensive search strategy is implemented by
repeating the entire optimization procedure (Steps
1 through 8) for each of the three distinct initial
solutions derived from different traffic conversion
methodologies. They can be existing situation,
Webster formula with PCU and MCU. This multi-
start approach ensures global exploration of the
solution space from diverse starting points.

Step 11: Chosen Solution. The final optimal
signal timing plan is selected from the collection of

solutions generated through the multi-start
heuristic  process. This chosen solution
demonstrates superior performance across

evaluation criteria, minimizing both average travel
time and maximum queue length across the
intersection approaches, representing the globally
optimal configuration identified through the
exhaustive search methodology.
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4. Case study

Pham Ngoc Thach — Luong Dinh Cua
intersection in Hanoi, Vietnam (shown in Fig. 3) is
chosen as a case study. It can be named as a four-
leg junction or double closely spaced T-
intersections. A notable feature of the site is the
presence of pedestrian overpasses, which provide
an elevated and unobstructed vantage point for

(1)

Initial solution
selection method
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data acquisition. Traffic data were collected
through high-definition video recordings between
13:00-14:00 on March 3, 2024. In addition to video
signals data, on-site geometric surveys were
conducted to record key intersection attributes,
including lane widths and lengths, approach
spacing, and stop-line locations. These data are
inputs for developing VISSIM models.

(2)

| Create initial |

solution

Y

Determine
(4) | outputs: queue length
and travel time

Run initial solution in

VISSIM and Python )

A 4
(5)| Find new solution
according to rule-
based heuristic

Y

Run new solution in

VISSIM and Python (6)

(7)

etermine
best solution
from iteration 1
to existing
iteration

SDUGBJBAUOO-UON

Convergence

(10) Multi-start Heuristics

(9) Local
Search

(8)
Retain final
best solution
hat is evaluate

(11)| Chosen solution |«

Fig. 2. Method Implement heuristics using VISSIM and Python

This case study is executed sequentially
according to the stages outlined in section 3.1. The
initial  stage, high-resolution cameras were
strategically positioned at each leg of the
intersection complex to capture comprehensive
traffic movements across all approaches. The
video footage from all cameras was processed
through an advanced computer vision pipeline
utilizing the YOLOV8 architecture and ByteTrack
algorithm. Virtual detection lines were strategically
placed at all entry and exit points of the intersection
approaches, enabling precise calculation of travel

times and accurate traffic volume counts. The
model initially classified vehicles into 15 detailed
categories. In this case study, the results of traffic
counts were grouped into four types: motorcycles,
passenger cars, trucks, and coaches that are
presented in Table 1, providing the essential input
parameters for subsequent simulation modeling
and optimization processes.

At stage 3, a detailed microscopic simulation
model was subsequently developed in VISSIM to
accurately replicate the intersection's geometry,
lane configurations, and traffic flow characteristics.
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incorporated the extracted traffic
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motorcycle-dominated traffic conditions, including
reduced vehicle following distances, and lane-
changing behavior
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Fig. 3. Layout of Pham Ngoc Thach — Luong Dinh Cua intersection
Table 1. The traffic volume for all approaches within the intersection on March 3, 2024

No. Movement Motorcycle Car Coach Truck Total (veh/h)
1 Approach 1 - Go straight 3252 496 40 4 3792
2 Approach 1 - Turn right 256 36 0 0 292
3 Approach 2 - Turn left 356 68 4 0 428
4 Approach 2 - Turn right 508 84 0 0 592
5 Approach 3 - Go straight 2828 400 28 12 3268
6 Approach 3 - Turn right 180 8 0 0 188
7 Approach 4 - Turn right 288 20 0 0 308
8 Approach 4 - Turn left 192 8 0 0 200
9  Cross-section below the pedestrian bridge - Turn left 276 20 0 0 296
10 Cross-section below the pedestrian bridge - Go straight 3032 428 28 12 3500
11 Cross-section below the pedestrian bridge - Turn left 508 12 0 0 520
12 Cross-section below the pedestrian bridge - Go straight 3252 568 40 4 3864
The calibration process involved iterative  validation with minimal error margins. The

validation results presented in Tables 2 and 3
demonstrate the model's accuracy in replicating
real-world queue formation patterns and travel

adjustments to key behavioral parameters
including queue length and travel time. The final
calibrated model achieved strong statistical
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time, confirming that the parameter adjustments
successfully produced a simulation environment
that closely matches field conditions and provides
a reliable platform for subsequent signal
optimization experiments.

Table 2 presents a comparison between the
observed queue lengths from the field survey and
the values obtained from the VISSIM model. The
differences in queue lengths between reality and
VISSIM results are small, ranging from -10.5% to -
6.7% (0.6m to 1.6m). As a result, the VISSIM
model demonstrates relatively high accuracy in
simulating queue lengths at the approaches, with
only minor deviations from the field survey results.

Table 3 presents a comparison between the
travel times between two cross-sections obtained
from Al models and VISSIM for different directions.
The results show that differences ranging from -
5.7% to 7.4% are less than 4 seconds. Therefore,
the VISSIM model demonstrates relatively high
accuracy in travel times. Proceeding with the
framework, at Stage 4a, Webster's signal timing
method is applied, employing a dual-conversion
methodology. The heterogeneous traffic volumes
are processed using both PCU and MCU values to
calculate distinct sets of optimal cycle lengths and
phase splits, thereby generating two theoretically
optimized scenarios for the intersection's specific
traffic composition.

In addition, Stage 4b involves the detailed
documentation of the intersection's existing signal
control strategy. This existing operational plan
serves as the crucial baseline scenario, enabling a
comparative performance evaluation against the
proposed models in subsequent stages.

At stage 5, the Python-VISSIM optimization
framework was implemented, executing the
eleven-step heuristic procedure described in
Section 3.4. The algorithm systematically
evaluated signal timing parameters, iterating
through rule-based adjustments and multi-start
local searches initiated from the three scenarios
(existing situation, PCU-Webster, MCU-Webster).
For existing situation, cycle time is 98 s while these
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values for PCU-Webster and MCU-Webster are
108 and 89 s respectively. For local search
heuristic, the cycle time of each scenario is
changed +4-seconds, resulting in nine total
scenarios for optimization.

At stage 6, the summarized results of this
optimization process are summarized in Table 4,
which presents a comparative analysis of key
performance indicators across different solutions.
For each scenario with different cycle time, Table 4
shows the average queue length and travel time for
both the initial solution (iteration 1) and the final
solution at the converged iteration (iteration n).

Table 4 indicates that the final solution at the
converged iteration is better than the initial solution
at iteration 1 for all scenarios. The chosen solution
of all scenarios has cycle time of 89 seconds with
average queue length and travel time of 5.7 meters
and 42.2 second respectively. This best solution
performs much better than the current signal plan
on March 3, 2024, with the average queue length
and travel time reduced by approximately 52.5%
and 16.3%, correspondingly. This solution is
achieved from the initial solution based on Webster
formula with motorcycle equivalent and converged
at iteration 7. This seems to be consistent with
motorcycle-dominated mixed traffic environments.
This is because the roadway capacity is converted
into motorcycle units, and other vehicle types are
also normalized into motorcycle equivalents.
Based on the Webster formula, this study
generated the initial solution, then applied a rule-
based heuristic that produced the best solution
(consistent with the proposed framework) at the 7th
iteration. With the initial solution based on Webster
formula with the best solution PCU, the optimal
plan has a cycle time of 104s, with an average
queue length and average travel time of 6.9 m and
44.7 s, respectively. This best solution also
performs much better than the existing situation,
reducing the average queue length and travel time
by approximately 42.5% and 11.3%, respectively.
These results demonstrate that the integrated
framework combining computer vision-based data
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extraction, microscopic simulation, and heuristics
to optimize signalized intersections dominated by
motorcycles in this study is both feasible and
effective. It can provide a practical approach for
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optimizing motorcycle-dominated  signalized
intersections, leading to measurable

improvements in operational efficiency and traffic
performance.

Table 2. Comparison of Queue Lengths between Field Survey and VISSIM Results

Queue length at  Queue length at  Queue length at  Average
approach 1 approach 2 approach 3
Reality by manual (meters) 9.0 10.0 26.0 15.0
VISSIM (meters) 8.1 9.4 24.4 14.0
Difference ratio (%) -10.5 -6.8 -6.7 -7.5

Table 3. Comparison of Travel Times between Field Survey and VISSIM Results

Direction Real travel time (seconds) Travel time in VISSIM (seconds) Difference ratio (%)
Section 2 to 1 58 61.5 5.7
Section 110 2 121 117.1 -3.4
Section 3t0 4 36 34.0 -5.7
Section 4 to 3 112 108.4 -3.4
Section 510 6 40 43.2 7.4
Section 6to 5 153 149.3 -2.5

Average 86.7 85.6 -1.3

Table 4. Evaluation of Queue Length and Travel Time Convergence across Different Signal Cycle Times

Average queue length Average travel time

(meters) (seconds)
Cycle time is 98 s Iteration 1(eXIst|r?g situation)
Converge at lteration 10 10.4 49.7
i 14.5 53.7
Cycle time is 102 s lteration 1 _
Converge at lteration 10 11.5 51.6
L Iteration 1 12.0 48.9
Cycle time is 94 s
Y Converge at lteration 6 10.4 448
L Iteration 1 7.9 48.3
Cycle time is 108 s
Y Converge at lteration 8 7.0 448
L Iteration 1 8.2 48.5
Cycle time is 112 s
Y Converge at lteration 10 7.5 46.4
S Iteration 1 7.5 48.2
Cycle time is 104 s
y Converge at Iteration 7 6.9 447
S Iteration 1 6.8 46.1
Cycle time is 89 s
y Converge at Iteration 7 5.7 42.2
L Iteration 1 6.7 44.3
Cycle time is 93 s
Y Converge at Iteration 10 6.5 43.2
i 7.2 47.5
Cycle time is 85 s lteration 1 _
Converge at lteration 6 6.1 42.6

5. Conclusion

This study proposed an integrated
methodology = combining  computer  vision,
microscopic simulation, and heuristics to optimize
signalized intersections dominated by motorcycles.

The main contributions of this paper include: (i)
Traffic volume and travel time counted by Al
models, alongside manually measured queue
lengths, served as inputs for developing and
calibrating a VISSIM model tailored to a
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motorcycle-dominated mixed traffic environment.
An accurate VISSIM model that appropriately
reflects reality is crucial as a basis for evaluating
proposed signal phasing plans; (ii) A combination
of multi-start local search and rule-based heuristics
was employed to identify the optimal solution for
signal cycle and phasing at the intersection, based
on the two key performance indicators: travel time
through the intersection and queue length; (iii) A
method for determining the initial solution was
proposed using the traditional Webster formula
with conversion to motorcycle equivalents. This
approach appears suitable for mixed traffic flows
with  high motorcycle proportions and is
demonstrated in the case study results; and (iv)
The integrated model proposed in this paper runs
automatically in Python via the COM interface. This
significantly reduces processing time for finding a
near-optimal solution.

The research model was applied to an
intersection in Hanoi. This intersection is more
complex than a typical four-legged junction, as it
can be considered as two closely spaced three-
legged intersections. The results indicate that the
chosen solution was found when the initial solution
was determined using the Webster formula with
MCU. This chosen solution showed considerable
improvement over the existing situation in terms of
both average queue length and average travel time
through the intersection. This demonstrates the
feasibility and effectiveness of the proposed
research. Given the widespread installation of low-
cost cameras at intersections and the popularity of
integration with programming environments (e.g.
Python) of microscopic traffic simulation (e.g.
VISSIM and SUMO), traffic engineers and
decision-makers can apply the integrated model
from this paper in practice.

However, this study has following limitations.
From the camera data, the vehicle queue length
before the stop line at the signalized intersection
has not been determined by Al models. Future
research will address this issue by developing Al
models to automatically extract this parameter,
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thereby providing optimal input for developing and
calibrating microscopic traffic simulation models
best suited for simulating motorcycle-dominated
mixed traffic signalized intersections.

While the integration of multi-start local
search and rule-based heuristics in this study
proved effective and reduced computation time for
finding a near-optimal solution, future work will
explore the combination with other Heuristics (e.g.,
Simulated Annealing) and Reinforcement Learning
to identify even better solutions.

Furthermore, this study optimized the signal
timing based on the morning peak hour demand
pattern. While this demonstrates the framework's
effectiveness under high-demand conditions, the
performance of the optimized plan during off-peak
hours or other distinct periods, such as the evening
peak with potentially different directional splits.
Future research should therefore focus on
evaluating the robustness of the optimized
solutions across multiple time periods and
developing adaptive signal control strategies that
can dynamically respond to temporal variations in
traffic demand.

Acknowledgments

This work was supported by the Vietnamese
Ministry of Education and Training under Grant
B2025-XDA-03.

References

[1] K. Wilinski, S. Pathak. (2022). Mobility in The
Developing Country. The Case Study of
Bangkok Metropolitan Region. Komunikacie.
24(3), A112-A122.
https://doi.org/10.26552/com.C.2022.3.A112-
A122

[2] D.N. Huu, V.N. Ngoc. (2021). Analysis Study of
Current Transportation Status in Vietnam’s
Urban Traffic and The Transition to Electric
Two-wheelers Mobility. Sustainability, 13(10),
5577. https://doi.org/10.3390/su13105577

[3] T.V. Mathew, P. Radhakrishnan. (2010).
Calibration of Microsimulation Models for
Nonlane-based Heterogeneous Traffic at
Signalized Intersections. Journal of Urban

153



JSTT 2025, 5 (4), 141-155

Planning and Development, 136(1), 59-66.
https://doi.org/10.1061/(ASCE)0733-
9488(2010)136:1(59)

[4] L. Ambarwati., A.J. Pel, R. Verhaeghe, B. Arem.
(2014). Empirical Analysis of Heterogeneous
Traffic Flow and Calibration of Porous Flow
Model. Transportation Research Part C:
Emerging  Technologies, 48, 418-436.
https://doi.org/10.1016/j.trc.2014.09.017

[5] Z. Majstorovié, L. Tigljari¢, E. Ivanjko, T. Cari¢.
(2023). Urban Traffic Signal Control Under
Mixed Traffic Flows: Literature review. Applied
Sciences, 13(7), 4484.
https://doi.org/10.3390/app13074484

[6] D. Leitner, P. Meleby, L. Miao. (2022). Recent
Advances in Traffic Signal Performance
Evaluation. Journal  of  Traffic  and
Transportation Engineering (English Edition),
9(4), 507-531.
https://doi.org/10.1016/j.jtte.2022.06.002

[7] Z. Marszalek, K. Duda. (2024). Validation of
Multi-Frequency Inductive-Loop Measurement
System for Parameters of Moving Vehicle
Based on Laboratory Model. Sensors, 24(22),
7244 https://doi.org/10.3390/s24227244

[8] T. Vu, H.N. Thai, V.N. Pham, H.T. Vu, A.T.
Luong, T.V. Luong. (2025). Counting Mixed
Traffic  Volumes at Motorcycle-Dominated
Intersections by Using Computer Vision.
International Journal of Intelligent
Transportation Systems Research, 23, 146-
164. https://doi.org/10.1007/s13177-024-
00442-z

[9] S. Hadi, Khairurrasyid. (2024). Performance
Analysis of Unsignalized Intersection Using
PTV VISSIM Software Modeling (Case Study of
Sakra 4-way Intersection, East Lombok). /OP
Conference Series: Earth and Environmental
Science, 5th International Conference on
Coastal and Delta Areas, 1321, 012027. IOP

Publishing. doi:10.1088/1755-
1315/1321/1/012027
[10] B. Park, J. Schneeberger. (2003).

Microscopic Simulation Model Calibration and

Vu et al

Validation: Case Study of VISSIM Simulation
Model for a Coordinated Actuated Signal
System. Transportation Research Record,
1856(1), 185-192.
https://doi.org/10.3141/1856-20

[11]  A. Charef, Z. Jarir, M. Quafafou. (2024).
The Impact of Motorcycle Positioning on Start-
up Lost Time: The Empirical Case Study of
Signalized Intersections in Marrakech Using
VISSIM. Engineering, Technology & Applied
Science Research, 14(3), 14313-14318.
https://doi.org/10.48084/etasr.7141

[12] N.F. Paiman, A. Hamzah, M.S. Solah, A.H.
Ariffin, M.S.A. Khalid, K.AA. Kassim, S.Z.
Ishak, H. Imanaga, H. Ishida. (2020).
Motorcycle Positioning in Queues at Signalized
Intersections in City of Klang Valley. Jurnal
Kejuruteraan S, 3(1), 89-93.
DOI:10.17576/jkukm-2020-si3(1)-14

[13] X.-C. Vuong, R.-F. Mou, H.-S Nguyen, T.-T.
Vu. (2019). Signal Timing Optimization of
Isolated Intersection for Mixed Traffic Flow in
Hanoi City of Vietham using VISSIM.
International Conference on Smart Vehicular
Technology, Transportation, Communication
and Applications. Springer, pp. 133-139.
https://doi.org/10.1007/978-3-030-04582-1_15

[14] L. Tang, Z. Kan, X. Zhang, X. Yang, F.
Huang, Q. Li. (2016). Travel Time Estimation at
Intersections Based on Low-frequency Spatial-

temporal GPS  Trajectory Big Data.
Cartography and Geographic Information
Science, 43(5), 417-426.

https://doi.org/10.1080/15230406.2015.113064
9

[15] X.C. Vuong, R.-F. Mou, TT. Vu, HW
Nguyen. (2021). An Adaptive Method for An
Isolated Intersection Under Mixed Traffic
Conditions in Hanoi Based on ANFIS Using
VISSIM-MATLAB. IEEE Access, 9, 166328-
166338. doi: 10.1109/ACCESS.2021.3135418

[16] B. Roy, S.A. Suma, MD. Hadiuzzaman, S.
Barua, SK. Mashrur. (2021). Optimization of
Delay Time at Signalized Intersections Using

154



JSTT 2025, 5 (4), 141-155

Direction-Wise Dynamic PCE Value.
International ~ Journal  of  Transportation
Engineering, 8(3), 279-298.

10.22119/ijte.2020.225672.1514

[17] N.Y. Cao, K. Sano. (2012). Estimating
Capacity and Motorcycle Equivalent Units on
Urban Roads in Hanoi, Vietham. Journal of
Transportation Engineering, 138(6), 776-785.
https://doi.org/10.1061/(ASCE)TE.1943-
5436.0000382

[18] E.G. Talbi. (2009). Metaheuristics: From
Design to Implementation. John Wiley & Sons.

[19] J.K.Lenstra, E. Aarts. (2018). Local Search
in Combinatorial Optimization. Princeton
University Press.

[20] R. Mart, P.M. Pardalos, M.G. Resende.
(2018). Handbook of Heuristics. Springer
Cham.

[21] J. Lee, B. Park, I. Yun. (2013). Cumulative
Travel-time Responsive Real-time Intersection
Control Algorithm in The Connected Vehicle
Environment. Journal of Transportation
Engineering, 139(10), 1020-1029.

Vu et al

https://doi.org/10.1061/(ASCE)TE.1943-
5436.0000587

[22] F. Kurniawan, H. Agustian, D. Dermawan,
R. Nurdin, N. Ahmadi, O. Dinaryanto. (2025).
Hybrid Rule-Based and Reinforcement
Learning for Urban Signal Control in
Developing Cities: A Systematic Literature
Review and Practice Recommendations for
Indonesia. Applied Sciences, 15(19), 10761.
https://doi.org/10.3390/app151910761

[23] T. Vu, J. Preston. (2023). Microscopic
Simulation Model for Motorcycle Dominated
Networks: A Case Study of a VISSIM
Simulation Model for a Mixed Traffic Corridor.
IOP Conference Series: Materials Science and
Engineering. IOP Publishing, 1289, 012045.
doi:10.1088/1757-899X/1289/1/012045

[24] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng,
Z. Yuan, P. Luo, W. Liu, X. Wang. (2022).
ByteTrack: Multi-object Tracking by Associating
Every Detection Box. Computer Vision — ECCV
2022. Springer Cham, pp. 1-21.

155



