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Abstract: Traffic signal optimization in motorcycle-dominated environments 

remains a critical challenge in many developing cities, where the heterogeneity 

and high dynamics of traffic flows often limit the effectiveness of traditional 

control methods. This study introduces an approach that integrates computer 

vision, microscopic traffic simulation and heuristic optimization to design 

signals of motorcycle-dominated mixed traffic intersections. By leveraging 

visual data through modern object detection techniques, the proposed 

framework enables a more comprehensive and precisely of key traffic 

parameters including traffic volume and travel time - overcoming the limitations 

of conventional field surveys and loop detectors. These data are then utilized 

for developing and calibrating VISSIM models to accurately reflect reality. Rule-

based and multi-start local search heuristics are implemented with VISSIM and 

Python to iteratively refine signal timing plans, aiming to minimize travel time 

and queue lengths at intersections. A case study conducted at a motorcycle-

dominated intersection in Hanoi, Vietnam demonstrates the potential of this 

integration to improve both operational efficiency and adaptability of signal 

control systems. The chosen solution performs much better than the existing 

situation, with the average queue length and travel time reduced by 

approximately 52.5% and 16.3% correspondingly. The findings can prove the 

feasibility and accuracy of proposed integrated framework that traffic engineers 

and decision-makers might apply in motorcycle-dominated mixed traffic 

environments in practice. 

Keywords: traffic signal optimization, computer vision, VISSIM, heuristic 

search, motorcycle-dominated intersections. 

 

 

1. Introduction 

Traffic congestion poses a significant and 

growing challenge to urban mobility, economic 

productivity, and environmental sustainability in 

cities worldwide. The issue is particularly acute in 

many Southeast Asian nations, including Vietnam, 

Indonesia, and Thailand, where transportation 

infrastructure struggles to accommodate rapidly 
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growing numbers of vehicles, predominantly 

motorcycles [1, 2]. This motorcycle-dominated 

traffic creates a unique and complex 

heterogeneous flow, characterized by non-lane-

based movements, high densities, and dynamic 

vehicle interactions, which profoundly impacts 

intersection performance [3, 4]. 

Signalized intersections, as critical nodes in 

the urban network, are primary sources of delay, 

fuel consumption, and emissions in these 

environments. Conventional traffic signal control 

strategies, often derived from principles 

established for homogeneous car traffic, frequently 

prove inadequate for managing the intricate 

dynamics of mixed flows with high motorcycle 

proportions [5]. The effectiveness of any signal 

optimization effort is fundamentally contingent on 

the accuracy and comprehensiveness of its input 

data, namely traffic volumes and performance 

measures like travel time and queue length [6]. 

Traditional data collection methods, including 

manual surveys and inductive loops, are often 

incapable of capturing the full complexity of 

motorcycle-dominated traffic streams, typically 

sampling only a small fraction of vehicles and 

struggling with vehicle classification in dense, 

mixed conditions [7]. 

Recent advancements in computer vision, 

particularly deep learning–based object detection 

models such as YOLO, have demonstrated 

transformative potential for traffic data extraction 

[8]. Nevertheless, most existing studies employ 

these technologies in isolation, focusing on 

detection accuracy rather than leveraging the 

extracted data for optimizing motorcycle-

dominated signalized intersections. Although 

microscopic traffic simulation platforms such as 

VISSIM are widely used for performance 

evaluation [9], and heuristic optimization 

techniques are increasingly applied for signal 

timing optimization [10], few studies have 

established an integrated methodological 

framework that couples high-fidelity computer 

vision–based data extraction with simulation and 

iterative heuristic search, particularly under 

motorcycle-dominated mixed traffic conditions. As 

a result, this study proposes a novel integrated 

framework that combines computer vision, 

microscopic simulation (VISSIM) and heuristic 

search in finding near-optimal solutions for signals 

plan of intersections.  

The remainder of this paper is structured as 

follows. Section 2 provides a review of related 

literature. Section 3 details the proposed integrated 

methodology. Section 4 presents a case study in 

Hanoi, Vietnam. Section 5 discusses the results 

and concludes with key findings and suggestions 

for future research. 

2. Literature Review 

The optimization of motorcycle-dominated 

signalized intersections can remain a significant 

challenge in urban areas because of complexity 

related to data collection and design process. The 

unique characteristics of motorcycle traffic - such 

as their small size, high maneuverability, and non-

lane-based movement - render conventional traffic 

analysis and control strategies, often developed for 

homogeneous car traffic, less effective. A 

substantial body of research has employed 

microscopic traffic simulation (e.g. VISSIM) to 

understand these complex dynamics. Studies 

consistently highlight the impact of motorcycle-

specific behaviors, revealing that allowing 

motorcycles to filter and position themselves ahead 

of cars can reduce start-up lost time and overall 

travel time [11, 12]. Further analyses of 

heterogeneous traffic in cities have used VISSIM to 

quantify key performance metrics such as delay 

and queue length [13].  

Traditional methods relying on manual 

counts, loop detectors, or low-frequency GPS data 

have inherent limitations. Manual counts are labor-

intensive and sample only a small fraction of the 

traffic stream, while methods using GPS trajectory 

data often struggle with low-frequency data, 

leading to estimations that may not capture full 

traffic variability [14]. The recent application of 

computer vision, specifically YOLO, for object 
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detection and analysis points towards a paradigm 

shift, offering the potential to automatically and 

accurately track nearly all vehicles (90-95%) within 

view of camera on-site [8, 11]. This might provide a 

rich, high-resolution dataset for travel time and 

queue length calculation that was previously 

unattainable at scale. The critical advantage might 

be the ability to extract comprehensive travel time 

data directly from video feeds, which serves as the 

essential ground truth for building and calibrating 

highly accurate VISSIM models - a foundational 

step that is often compromised in previous studies 

due to data paucity. 

Building upon the need for adaptive control, 

advanced computational intelligence approaches 

have been explored. Vuong et al. [15] proposed an 

adaptive traffic signal control method for an 

isolated intersection under mixed traffic conditions 

in Hanoi using an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) integrated with VISSIM and 

MATLAB. The model employed inputs of maximum 

queue length and vehicle arrivals to infer phase 

urgency and dynamically adjust green durations 

within fixed cycle times derived from the Webster 

formula. The ANFIS controller adaptively tuned 

membership functions through hybrid learning to 

minimize delay and travel time under motorcycle-

dominated traffic. While the approach 

demonstrates strong adaptability, it maintains a 

fixed cycle length and relies on a rule-based 

learning mechanism. This can highlight a common 

limitation in the field: even sophisticated adaptive 

controllers often operate within a constrained 

search space. The accuracy and performance of 

these systems, including the underlying simulation 

models used for their development, appear to be 

limited by accuracy of VISSIM models. 

A critical aspect of modeling mixed traffic for 

signal optimization is the accurate conversion of 

heterogeneous traffic volumes into a uniform unit. 

A study by Roy et al. [16] optimized signal timing 

under heterogeneous traffic using a direction-wise 

dynamic Passenger Car Equivalent (PCE) model. 

The approach recalculated saturation flow and total 

intersection delay based on adaptive PCE values 

derived from classified vehicle counts and queuing 

analysis. Signal timing parameters were then 

adjusted to minimize total delay. Their findings 

indicated that static PCE assumptions significantly 

underestimated actual delay, highlighting the need 

for direction-specific calibration when optimizing 

signalized intersections in mixed traffic 

environments. 

Several methods have been developed to 

determine the Passenger Car Unit (PCU) in 

heterogeneous traffic flow, such as the 

homogenization coefficient method, semi-empirical 

method, Walker’s method, headway method, 

multiple linear regression, and simulation-based 

approaches [17]. However, these methods were 

primarily formulated for car-dominated traffic and 

might be therefore unsuitable for environments 

with dominance of motorcycles, particularly in 

Southeast Asian cities. Building upon and 

improving the aforementioned methods, Cao and 

Sano [17] introduced a methodology for estimating 

the Motorcycle Equivalent Unit (MCU) that better 

reflects the characteristics of urban traffic in Hanoi, 

as well as for evaluating the capacity of urban 

roads under mixed traffic conditions. Based on this 

conceptual background, the study develops a more 

context-sensitive framework to analyze 

motorcycle-dominated mixed traffic flow, 

emphasizing the dynamic relationship between 

vehicle speed, space occupancy, and road 

capacity. 

Heuristic optimization methods have been 

applied in transportation and traffic control 

problems where the search space is complex and 

exact optimization is computationally infeasible. 

Unlike traditional mathematical programming 

techniques, heuristics aim to obtain good-though 

not necessarily optimal-solutions within a 

reasonable computational time [18]. In traffic signal 

optimization, heuristic approaches are particularly 

useful because of the nonlinear and stochastic 

nature of vehicle interactions in microscopic 

simulation models [10]. Among heuristic methods, 
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local search is one of the most fundamental 

techniques. It starts from an initial solution and 

iteratively explores its neighborhood to find 

improved solutions according to a defined objective 

function [19]. Although local search can efficiently 

converge with high-quality solutions, it often gets 

trapped in local optima. To overcome this limitation, 

multi-start local search (MSLS) strategies have 

been developed, which repeatedly restart the 

search from multiple initial solutions [18]. Another 

commonly used approach is the greedy heuristic, 

which constructs a solution step-by-step by making 

the locally optimal choice at each iteration [20]. 

While greedy algorithms are computationally 

efficient and easy to implement, they may yield 

suboptimal global performance due to their myopic 

decision-making. Nonetheless, greedy strategies 

are often integrated into hybrid or simulation-based 

frameworks to provide quick initial estimates of 

signal timings or phase splits before applying more 

sophisticated search techniques [21]. Recent 

studies have increasingly revisited rule-based 

heuristics as an interpretable and operationally 

safe alternative to purely search-based methods in 

traffic signal control. A recent review highlights how 

hybrid control frameworks preserve the core “plan 

authority” of rule-based systems (cycle / split / 

offset decisions) while overlaying adaptive 

heuristics or data-driven adjustments, thus 

ensuring both real-world deployability and 

performance gains [22]. 

To address these gaps, the present study 

adopts a simulation-based heuristic framework 

using Python–VISSIM integration to iteratively 

search for globally improved signal timing plans by 

varying both green splits and cycle times. This 

methodology directly addresses the identified 

research gaps by creating a closed-loop 

optimization system. It first leverages the robust 

travel time, queue length and traffic volume data 

extracted by AI models that is used in the study of 

Vu et al.  [8], to develop and calibrate a highly 

accurate VISSIM model. This well-tuned model 

then acts as a reliable evaluation function within a 

heuristic search process, where Python scripts 

systematically alter signal parameters and VISSIM 

simulations assess their impact on key 

performance indicators. This integration of high-

resolution data, multi-model evaluation, and 

iterative simulation-based search moves beyond 

the isolated application of these technologies 

towards a holistic and data-driven optimization 

system, capable of conducting a global search for 

optimal signal timings that are specifically tailored 

to the complex dynamics of motorcycle-dominated 

intersections. 

3. Methodology  

The methodological framework of this 

research that includes sequential six-stage 

workflow is illustrated in the first subsection. The 

second subsection states application of YOLO for 

vehicle detection and data extraction which details 

the computer vision techniques used to derive 

accurate traffic parameters from video footage. The 

third subsection describes the hybrid optimization 

algorithm that refines the signal timings. 

3.1. Methodological framework 

The research methodology follows a 

systematic six-stage framework designed to 

optimize signalized intersections in motorcycle-

dominated environments through the integration of 

computer vision, simulation modeling, and heuristic 

optimization in Fig. 1. 

Stage 1: Collection data by camera. Field 

data was collected at a signalized intersection by 

camera. Simultaneous recording was initiated 

using cameras strategically positioned at each 

approach of the intersection, providing 

comprehensive, multi-directional coverage of all 

traffic movements, queue length and vehicle 

interactions. This setup enabled the detailed 

observation of traffic stream behavior across all 

approaches, forming an empirical foundation for 

subsequent computer vision analysis and model 

calibration. 

Stage 2: Traffic parameters determined by 

computer vision. The video footage from the 

cameras was processed using an advanced 
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computer vision pipeline built upon the YOLO 

architecture. This deep learning model was 

specifically fine-tuned for Vietnamese traffic 

conditions, enabling highly accurate detection and 

classification of 15 distinct vehicle types. The 

system employed the ByteTrack multi-object 

tracking algorithm to maintain consistent vehicle 

identities across frames, even though challenging 

scenarios such as occlusions at the congested 

intersection. This robust tracking capability was 

essential for generating reliable vehicle trajectories 

and ensuring data integrity throughout the analysis 

period. 

The extraction of quantitative traffic 

parameters was achieved through strategically 

placed virtual detection lines at each intersection 

approach. Vehicle travel times were calculated with 

precision by recording timestamps when vehicles 

crossed successive detection lines. The computer 

vision system automatically compiled 

comprehensive traffic volume counts for each 

movement, classified by vehicle type, creating a 

rich dataset that captured the intricate dynamics of 

motorcycle-dominated traffic flow. This data 

extraction methodology successfully achieved 

approximately 90-95% coverage of the vehicle 

stream, far surpassing the limitations of traditional 

manual observation methods [8]. This will be 

further explained in section 3.2. 

Stage 3: Develop VISSIM simulation by 

calibrating traffic parameters from Stage 2. A 

microscopic simulation model was developed in 

VISSIM to replicate the observed intersection 

geometry, signals and traffic conditions. The model 

was rigorously calibrated using the computer 

vision-derived parameters from Stage 2, including 

travel time. Queue length is used for the VISSIM 

calibration process. However, real queue length is 

counted by manual in this research. Multiple 

calibration iterations were performed until the 

simulated travel times and queue lengths 

demonstrated statistical alignment with field 

observations, ensuring the model accurately 

represented real-world intersection operations. 

 
Fig. 1. Methodological framework 
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Stage 4a: Determine signal phase based on 

Webster’s method. Initial signal timing parameters 

were calculated using Webster's formula adapted 

for heterogeneous traffic conditions. Two distinct 

conversion approaches were implemented: PCU 

factors that normalize all vehicles to PCU and MCU 

factors that normalize all vehicles to equivalent 

motorcycles. This dual-conversion methodology 

generated alternative signal timing plans reflecting 

different optimization perspectives for mixed traffic 

environments, which will be discussed in more 

detail in section 3.3. 

Stage 4b: Determine existing signal phase in 

operation at the intersection. The current signal 

timing plan operating at the study intersection was 

thoroughly documented, including phase 

sequences, cycle lengths, green splits, and amber 

intervals. This existing configuration served as the 

baseline scenario for comparative performance 

evaluation against the optimized timing plans 

developed through the research methodology. 

Stage 5: Implement heuristics using VISSIM 

and Python. An integrated optimization framework 

was developed using Python-VISSIM COM 

interface to systematically refine signal timing 

parameters through two complementary heuristic 

approaches. The initial solutions for this 

optimization process were derived from Stage 4, 

comprising both the existing signal timing (Stage 

4b) and the Webster-optimized plans using PCU 

and MCU conversions (Stage 4a). These three 

distinct initial solutions served as starting points for 

parallel optimization pathways in multi-start 

heuristic, ensuring comprehensive exploration of 

the solution space. 

Based on the study of [23], the following 

default parameters of VISSIM in the research are 

used for this study: Desired speed distribution of 

bus and car; Motorcycle desired speed distribution; 

Average standstill distance; Minimum lateral 

distance driving at 50 km/h; motorcycle 

acceleration and deceleration parameters. In 

addition, maximum deceleration for cooperative 

braking is modified in this research to compare 

travel time between VISSIM model and reality. 

The optimization employed a hybrid strategy 

combining Rule-Based Heuristic and Multi-Start 

Local Search (MSLS) methodologies. For each 

initial solution, the Rule-Based Heuristic first 

performed localized adjustments to green splits 

based on predefined improvement rules targeting 

travel time and queue length reduction. 

Subsequently, the MSLS algorithm initiated 

multiple optimization trajectories from these refined 

solutions, systematically exploring neighboring 

regions in the parameter space to escape local 

optima. This dual-layer approach enabled both 

intensive local refinement and extensive global 

exploration, with each candidate solution evaluated 

through multiple VISSIM simulation runs to ensure 

statistical significance and reliability of 

performance metrics, which will be discussed in 

section 3.4. 

Stage 6: Evaluate the best signal phasing 

plan based on queue length and travel time. The 

performance evaluation of candidate signal timing 

plans was conducted based on two critical 

performance indicators: the average vehicle travel 

time through the intersection approach and the 

average queue length across all approaches.  

3.2. Application of YOLO for vehicle detection 

and data extraction 

Accurate vehicle detection and tracking are 

fundamental to extracting reliable traffic 

parameters. This study employs the YOLOv8 (You 

Only Look Once version 8) model, building upon 

the enhanced architecture proposed by Vu et al. [8] 

for robust vehicle detection in complex traffic 

scenarios. The model was pre-trained on a 

comprehensive dataset containing over one million 

annotated vehicle instances across 15 vehicle 

types, ensuring high detection accuracy in mixed 

traffic conditions typical of motorcycle-dominated 

intersections. Although newer versions of YOLO 

(e.g., v11 and v12) have been released, the 

framework of Vu et al. [8] was specifically optimized 

and validated for dense, heterogeneous traffic 

environments in Southeast Asia. Its large-scale, 
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domain-specific dataset and proven robustness 

make YOLOv8 a more reliable choice for this 

study’s application context compared to the 

generic configurations of later base-versions. 

The detection process begins by processing 

input video frames through the YOLO network, 

which outputs bounding boxes with corresponding 

class labels and confidence scores for each 

detected vehicle. To establish temporal 

consistency and enable trajectory analysis across 

consecutive frames, ByteTrack - a multi-object 

tracking algorithm is integrated [24]. This tracking 

module associates detections over time by 

calculating feature similarities and motion patterns, 

effectively maintaining vehicle identities through 

occlusions and complex interactions. 

The vehicle detection and tracking process 

was implemented using the YOLOv8 architecture. 

To ensure optimal performance in the specific 

context of Vietnamese traffic conditions, the model 

was pre-trained on a comprehensive local dataset 

containing diverse vehicle types and traffic 

scenarios [8]. The trained model demonstrated 

high detection accuracy, achieving a mean 

Average Precision (mAP@0.5) of 0.91 on 

validation set, confirming its reliability for 

subsequent traffic parameter extraction. 

For travel time extraction, virtual detection 

lines are strategically placed at the entry and exit 

points of the intersection approach. Two distinct 

virtual lines are digitally established perpendicular 

to the traffic flow at strategic locations: one 

upstream (entry point) and one downstream (exit 

point) of the intersection approach. These lines are 

marked in VISSIM simulation at stage 3 in Fig. 1. 

The multi-object tracking algorithm maintains 

consistent vehicle identities (IDs) across frames, 

generating continuous trajectories for each 

detected vehicle. The travel time measurement 

protocol is executed as follows: when a vehicle's 

bounding box centroid crosses the first virtual line, 

a precise timestamp (T1) is recorded. The system 

continues tracking the same vehicle ID until its 

centroid crosses the second virtual line, where a 

second timestamp (T2) is registered. The travel 

time (TT) for that specific vehicle is then computed 

as: 

TT = T1 – T2 (1) 

This process is automatically repeated for all 

successfully tracked vehicles, generating a 

comprehensive dataset of individual travel times 

across the intersection approach. This method 

enables the capture of nearly the entire vehicle 

stream, significantly surpassing the limited 

sampling capabilities of manual observation or 

fixed-loop detectors. Moreover, traffic volumes are 

quantified by counting vehicles crossing virtual 

detection lines during specific analysis intervals, 

employing the traffic counting model established by 

Vu et al. [8]. This automated vision-based 

approach generates a rich, high-resolution dataset 

of travel times and traffic composition, serving as 

the empirical foundation for both simulation model 

calibration and signal system optimization. 

To assess the performance of the proposed 

framework, all experiments were carried out on a 

workstation equipped with an AMD Ryzen 

Threadripper 3960X 24-core processor, 128 GB of 

RAM, and an NVIDIA GeForce RTX 3090 GPU with 

24 GB of memory. Under this hardware setup, the 

system consistently achieved an average inference 

speed of approximately 27 frames per second 

(FPS) on 1080p video streams, even in high-

density and heterogeneous traffic conditions. 

These results indicate that the model is well-suited 

for deployment in practical urban monitoring 

environments. 

3.3. Implement heuristics using VISSIM and 

Python 

This section details the comprehensive 

heuristic optimization framework that integrates 

VISSIM simulations with Python control logic to 

systematically identify optimal signal timing 

parameters. The framework employs a hybrid three 

methodology, sequentially combining Rule-Based 

Heuristics, Local Search, and Multi-Start 

Heuristics. This structured approach, detailed in 

eleven sequential steps (as illustrated in Fig. 2.), 
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ensures a thorough exploration of the solution 

space, beginning with rapid, rule-guided 

improvements and progressing to intensive local 

and global search to converge on a robust, high-

performing signal plan. 

Step 1: Initial solution selection method. The 

optimization process commences by selecting 

initial signal timing parameters derived from Stage 

4 of the methodological framework. This includes 

choose distinct starting points: the existing signal 

timing configuration (State 4b), and the two 

Webster formula based on PCU and MCU 

conversions (State 4a). These diverse initial 

solutions ensure comprehensive exploration of the 

solution space from multiple perspectives. 

 Step 2: Create initial solution. Cycle length, 

phase sequence, and green splits are determined 

for the initial solution.   

Step 3: Run initial solution in VISSIM and 

Python. The integrated simulation-execution 

framework is initiated, where Python scripts 

automatically configure and execute the VISSIM 

simulation with the initial signal timing parameters. 

Step 4: Determine Outputs. Key performance 

indicators are extracted from the simulation output, 

including queue lengths for all intersection 

approaches and travel times for all traffic 

movements. These metrics are systematically 

recorded for subsequent comparative analysis. 

Step 5: Find new solution according to rule-

based heuristic. Rule-based heuristics is applied 

where approach-specific green times are adjusted 

based on queue length performance. Approaches 

exhibiting queue lengths longer than the average 

one receive a 1 second green time increase, while 

those with shorter-than-average queues decrease 

a 1 second green time reduction, maintaining 

constant cycle length through compensatory 

adjustments. 

Step 6: Run new solution in VISSIM and 

Python. The modified signal timing parameters are 

implemented in the simulation environment, and 

the updated configuration is executed through the 

Python-controlled VISSIM interface to evaluate 

performance of the adjusted solution. 

Step 7: Determine best solution from iteration 

1 to existing iteration. Performance metrics from 

successive iterations are compared to identify 

progressive improvements. If convergence criteria 

are not met - defined as the reduction in average 

queue length compared to the best solution from 

previous iterations is less than 1 % - the process 

returns to Step 5 for further iterative refinement 

through the 5-6-7 loop.  

Step 8: Retain the final best solution that is 

evaluated. Upon achieving convergence, the best-

performing signal timing configuration from the 

rule-based heuristic optimization is retained as the 

locally optimized solution for the current initial 

starting point. 

Step 9: Local search. To ensure robustness 

and escape potential local optima, a local search is 

conducted by exploring neighboring solutions 

around the identified optimum. The cycle time is 

increased and decreased by 4 seconds. Green 

splits are added for all phases in cycle time. This 

process re-executes Steps 2 through 8 with 

strategically varied initial conditions within the 

vicinity of the current best solution. 

Step 10: Multi-start heuristics. A 

comprehensive search strategy is implemented by 

repeating the entire optimization procedure (Steps 

1 through 8) for each of the three distinct initial 

solutions derived from different traffic conversion 

methodologies. They can be existing situation, 

Webster formula with PCU and MCU. This multi-

start approach ensures global exploration of the 

solution space from diverse starting points. 

Step 11: Chosen Solution. The final optimal 

signal timing plan is selected from the collection of 

solutions generated through the multi-start 

heuristic process. This chosen solution 

demonstrates superior performance across 

evaluation criteria, minimizing both average travel 

time and maximum queue length across the 

intersection approaches, representing the globally 

optimal configuration identified through the 

exhaustive search methodology. 
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4. Case study 

 Pham Ngoc Thach – Luong Dinh Cua 

intersection in Hanoi, Vietnam (shown in Fig. 3) is 

chosen as a case study. It can be named as a four-

leg junction or double closely spaced T- 

intersections. A notable feature of the site is the 

presence of pedestrian overpasses, which provide 

an elevated and unobstructed vantage point for 

data acquisition. Traffic data were collected 

through high-definition video recordings between 

13:00-14:00 on March 3, 2024. In addition to video 

signals data, on-site geometric surveys were 

conducted to record key intersection attributes, 

including lane widths and lengths, approach 

spacing, and stop-line locations. These data are 

inputs for developing VISSIM models.

 
Fig. 2. Method Implement heuristics using VISSIM and Python 

This case study is executed sequentially 

according to the stages outlined in section 3.1. The 

initial stage, high-resolution cameras were 

strategically positioned at each leg of the 

intersection complex to capture comprehensive 

traffic movements across all approaches. The 

video footage from all cameras was processed 

through an advanced computer vision pipeline 

utilizing the YOLOv8 architecture and ByteTrack 

algorithm. Virtual detection lines were strategically 

placed at all entry and exit points of the intersection 

approaches, enabling precise calculation of travel 

times and accurate traffic volume counts. The 

model initially classified vehicles into 15 detailed 

categories. In this case study, the results of traffic 

counts were grouped into four types: motorcycles, 

passenger cars, trucks, and coaches that are 

presented in Table 1, providing the essential input 

parameters for subsequent simulation modeling 

and optimization processes.  

At stage 3, a detailed microscopic simulation 

model was subsequently developed in VISSIM to 

accurately replicate the intersection's geometry, 

lane configurations, and traffic flow characteristics. 
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The model incorporated the extracted traffic 

composition data from Stage 2, along with 

observed driver behavior parameters specific to 

motorcycle-dominated traffic conditions, including 

reduced vehicle following distances, and lane-

changing behavior 

 
Fig. 3. Layout of Pham Ngoc Thach – Luong Dinh Cua intersection 

Table 1. The traffic volume for all approaches within the intersection on March 3, 2024 

No. Movement Motorcycle Car Coach Truck Total (veh/h) 

1 Approach 1 - Go straight 3252 496 40 4 3792 

2 Approach 1 - Turn right 256 36 0 0 292 

3 Approach 2 - Turn left 356 68 4 0 428 

4 Approach 2 - Turn right 508 84 0 0 592 

5 Approach 3 - Go straight 2828 400 28 12 3268 

6 Approach 3 - Turn right 180 8 0 0 188 

7 Approach 4 - Turn right 288 20 0 0 308 

8 Approach 4 - Turn left 192 8 0 0 200 

9 Cross-section below the pedestrian bridge - Turn left 276 20 0 0 296 

10 Cross-section below the pedestrian bridge - Go straight 3032 428 28 12 3500 

11 Cross-section below the pedestrian bridge - Turn left 508 12 0 0 520 

12 Cross-section below the pedestrian bridge - Go straight 3252 568 40 4 3864 

The calibration process involved iterative 

adjustments to key behavioral parameters 

including queue length and travel time. The final 

calibrated model achieved strong statistical 

validation with minimal error margins. The 

validation results presented in Tables 2 and 3 

demonstrate the model's accuracy in replicating 

real-world queue formation patterns and travel 
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time, confirming that the parameter adjustments 

successfully produced a simulation environment 

that closely matches field conditions and provides 

a reliable platform for subsequent signal 

optimization experiments. 

Table 2 presents a comparison between the 

observed queue lengths from the field survey and 

the values obtained from the VISSIM model. The 

differences in queue lengths between reality and 

VISSIM results are small, ranging from -10.5% to -

6.7% (0.6m to 1.6m). As a result, the VISSIM 

model demonstrates relatively high accuracy in 

simulating queue lengths at the approaches, with 

only minor deviations from the field survey results. 

Table 3 presents a comparison between the 

travel times between two cross-sections obtained 

from AI models and VISSIM for different directions. 

The results show that differences ranging from -

5.7% to 7.4% are less than 4 seconds. Therefore, 

the VISSIM model demonstrates relatively high 

accuracy in travel times. Proceeding with the 

framework, at Stage 4a, Webster's signal timing 

method is applied, employing a dual-conversion 

methodology. The heterogeneous traffic volumes 

are processed using both PCU and MCU values to 

calculate distinct sets of optimal cycle lengths and 

phase splits, thereby generating two theoretically 

optimized scenarios for the intersection's specific 

traffic composition. 

In addition, Stage 4b involves the detailed 

documentation of the intersection's existing signal 

control strategy. This existing operational plan 

serves as the crucial baseline scenario, enabling a 

comparative performance evaluation against the 

proposed models in subsequent stages.  

At stage 5, the Python-VISSIM optimization 

framework was implemented, executing the 

eleven-step heuristic procedure described in 

Section 3.4. The algorithm systematically 

evaluated signal timing parameters, iterating 

through rule-based adjustments and multi-start 

local searches initiated from the three scenarios 

(existing situation, PCU-Webster, MCU-Webster). 

For existing situation, cycle time is 98 s while these 

values for PCU-Webster and MCU-Webster are 

108 and 89 s respectively. For local search 

heuristic, the cycle time of each scenario is 

changed ±4-seconds, resulting in nine total 

scenarios for optimization. 

At stage 6, the summarized results of this 

optimization process are summarized in Table 4, 

which presents a comparative analysis of key 

performance indicators across different solutions. 

For each scenario with different cycle time, Table 4 

shows the average queue length and travel time for 

both the initial solution (iteration 1) and the final 

solution at the converged iteration (iteration n). 

 Table 4 indicates that the final solution at the 

converged iteration is better than the initial solution 

at iteration 1 for all scenarios. The chosen solution 

of all scenarios has cycle time of 89 seconds with 

average queue length and travel time of 5.7 meters 

and 42.2 second respectively. This best solution 

performs much better than the current signal plan 

on March 3, 2024, with the average queue length 

and travel time reduced by approximately 52.5% 

and 16.3%, correspondingly. This solution is 

achieved from the initial solution based on Webster 

formula with motorcycle equivalent and converged 

at iteration 7. This seems to be consistent with 

motorcycle-dominated mixed traffic environments. 

This is because the roadway capacity is converted 

into motorcycle units, and other vehicle types are 

also normalized into motorcycle equivalents. 

Based on the Webster formula, this study 

generated the initial solution, then applied a rule-

based heuristic that produced the best solution 

(consistent with the proposed framework) at the 7th 

iteration. With the initial solution based on Webster 

formula with the best solution PCU, the optimal 

plan has a cycle time of 104s, with an average 

queue length and average travel time of 6.9 m and 

44.7 s, respectively. This best solution also 

performs much better than the existing situation, 

reducing the average queue length and travel time 

by approximately 42.5% and 11.3%, respectively. 

These results demonstrate that the integrated 

framework combining computer vision-based data 
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extraction, microscopic simulation, and heuristics 

to optimize signalized intersections dominated by 

motorcycles in this study is both feasible and 

effective. It can provide a practical approach for 

optimizing motorcycle-dominated signalized 

intersections, leading to measurable 

improvements in operational efficiency and traffic 

performance. 

Table 2. Comparison of Queue Lengths between Field Survey and VISSIM Results 
 

Queue length at 
approach 1 

Queue length at 
approach 2  

Queue length at 
approach 3  

Average 

Reality by manual (meters) 9.0 10.0 26.0 15.0 

VISSIM (meters) 8.1 9.4 24.4 14.0 

Difference ratio (%) -10.5 -6.8 -6.7 -7.5 

Table 3. Comparison of Travel Times between Field Survey and VISSIM Results 

Direction Real travel time (seconds) Travel time in VISSIM (seconds)  Difference ratio (%) 

 Section 2 to 1 58 61.5 5.7 

 Section 1 to 2  121 117.1 -3.4 

 Section 3 to 4  36 34.0 -5.7 

 Section 4 to 3  112 108.4 -3.4 

 Section 5 to 6 40 43.2 7.4 

 Section 6 to 5 153 149.3 -2.5 

Average 86.7 85.6 -1.3 

Table 4. Evaluation of Queue Length and Travel Time Convergence across Different Signal Cycle Times 

    
Average queue length 

(meters) 
Average travel time 

(seconds) 

Cycle time is 98 s 
Iteration 1(existing situation) 12.0 50.4 

Converge at Iteration 10 10.4 49.7 

Cycle time is 102 s 
Iteration 1 14.5 53.7 

Converge at Iteration 10 11.5 51.6 

Cycle time is 94 s 
Iteration 1 12.0 48.9 

Converge at Iteration 6 10.4 44.8 

Cycle time is 108 s 
Iteration 1 7.9 48.3 

Converge at Iteration 8  7.0 44.8 

Cycle time is 112 s 
Iteration 1 8.2 48.5 

Converge at Iteration 10 7.5 46.4 

Cycle time is 104 s 
Iteration 1 7.5 48.2 

Converge at Iteration 7 6.9 44.7 

Cycle time is 89 s 
Iteration 1 6.8 46.1 

Converge at Iteration 7 5.7 42.2 

Cycle time is 93 s 
Iteration 1 6.7 44.3 

Converge at Iteration 10 6.5 43.2 

Cycle time is 85 s 
Iteration 1 7.2 47.5 

Converge at Iteration 6 6.1 42.6 
 

5. Conclusion 

This study proposed an integrated 

methodology combining computer vision, 

microscopic simulation, and heuristics to optimize 

signalized intersections dominated by motorcycles. 

The main contributions of this paper include: (i) 

Traffic volume and travel time counted by AI 

models, alongside manually measured queue 

lengths, served as inputs for developing and 

calibrating a VISSIM model tailored to a 
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motorcycle-dominated mixed traffic environment. 

An accurate VISSIM model that appropriately 

reflects reality is crucial as a basis for evaluating 

proposed signal phasing plans; (ii) A combination 

of multi-start local search and rule-based heuristics 

was employed to identify the optimal solution for 

signal cycle and phasing at the intersection, based 

on the two key performance indicators: travel time 

through the intersection and queue length; (iii) A 

method for determining the initial solution was 

proposed using the traditional Webster formula 

with conversion to motorcycle equivalents. This 

approach appears suitable for mixed traffic flows 

with high motorcycle proportions and is 

demonstrated in the case study results; and (iv) 

The integrated model proposed in this paper runs 

automatically in Python via the COM interface. This 

significantly reduces processing time for finding a 

near-optimal solution. 

The research model was applied to an 

intersection in Hanoi. This intersection is more 

complex than a typical four-legged junction, as it 

can be considered as two closely spaced three-

legged intersections. The results indicate that the 

chosen solution was found when the initial solution 

was determined using the Webster formula with 

MCU. This chosen solution showed considerable 

improvement over the existing situation in terms of 

both average queue length and average travel time 

through the intersection. This demonstrates the 

feasibility and effectiveness of the proposed 

research. Given the widespread installation of low-

cost cameras at intersections and the popularity of 

integration with programming environments (e.g. 

Python) of microscopic traffic simulation (e.g. 

VISSIM and SUMO), traffic engineers and 

decision-makers can apply the integrated model 

from this paper in practice. 

However, this study has following limitations. 

From the camera data, the vehicle queue length 

before the stop line at the signalized intersection 

has not been determined by AI models. Future 

research will address this issue by developing AI 

models to automatically extract this parameter, 

thereby providing optimal input for developing and 

calibrating microscopic traffic simulation models 

best suited for simulating motorcycle-dominated 

mixed traffic signalized intersections. 

While the integration of multi-start local 

search and rule-based heuristics in this study 

proved effective and reduced computation time for 

finding a near-optimal solution, future work will 

explore the combination with other Heuristics (e.g., 

Simulated Annealing) and Reinforcement Learning 

to identify even better solutions. 

Furthermore, this study optimized the signal 

timing based on the morning peak hour demand 

pattern. While this demonstrates the framework's 

effectiveness under high-demand conditions, the 

performance of the optimized plan during off-peak 

hours or other distinct periods, such as the evening 

peak with potentially different directional splits. 

Future research should therefore focus on 

evaluating the robustness of the optimized 

solutions across multiple time periods and 

developing adaptive signal control strategies that 

can dynamically respond to temporal variations in 

traffic demand.  
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