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Abstract: This study aims to accurately predict two important parameters for 

evaluating the quality of Portland Cement Concrete (PCC) pavement: the 

modulus of subgrade reaction (Z1) and the elastic modulus of concrete slab 

(Z2). To achieve this, advanced Machine Learning (ML) models were used, 

including ANN-TLBO, ANN-BBO, and ANN-GA. These hybrid models combine 

Artificial Neural Network (ANN) with optimization techniques such as Teaching 

Learning-Based Optimization (TLBO), Biogeography-Based Optimization 

(BBO), and Genetic Algorithm (GA). The dataset used for modeling consists of 

510 Falling Weight Deflectometer (FWD) tests from National Highway 18 in 

Quang Ninh Province, Vietnam. Standard statistical measures were used to 

validate and compare the performance of the models. Results showed that all 

three models performed well, with ANN-TLBO achieving the best results for 

predicting Z1 and Z2. Thus, the ANN-TLBO model can be used for accurate 

prediction of these important parameters for evaluating PCC pavement quality. 

Keywords: Falling weight Deflectometer; Elastic modulus; ANN-TLBO; ANN-

GA; ANN-BBO. 

 

 

1. Introduction 

Falling Weight Deflectometer, generally 

known as the FWD test, is a routinely used 

standard nondestructive test method for structural 

condition of Portland Cement Concrete (PCC) 

pavements to estimate the modulus of pavement 

layers by performing Back-calculation [1] and to 

simulate the displacement response of traffic loads 

[2]. FWD evaluates the structural adequacy along 

with giving considerable information about 

pavement layers as well as its subsurface 

conditions, including subgrade [3]. Results of the 

FWD test are widely utilized as the main strategy 

of many countries for the maintenance of 

pavements to estimate the in-situ stiffness of 

pavement layers [2, 4].Two important parameters 
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are obtained from FWD test namely modulus of 

subgrade reaction (Z1) and elastic modulus of slab 

(Z2), which are often used for evaluating the quality 

of PCC pavement. It is costly and time consuming 

to determine these important parameters by 

conducting FWD test. Therefore, there is a need to 

develop and apply new approaches for the 

prediction of these parameters based on simple 

and easily determined factors with high accuracy.  

In recent years, Machine learning (ML) or 

Artificial Intelligence (AI) techniques have been 

developed and effectively applied in solving 

various engineering problems including material 

sciences [5]. Han, Ma, Chen and Fan [6] attempted 

to evaluate the dynamic modulus of pavement by 

using Artificial Neural Network (ANN) approach. 

According to them, one of the major limitations of 

the conventional FWD algorithm is yielding of 

unreliable results in the form of non-uniqueness of 

the solution, which is attained from the back 

calculation process, thus amplifying the total 

residual error. However, with the initiation of the AI 

technology, a new FWD back calculation model 

was proposed that incorporated ANN, which 

received immense attention. In another study, 

Vyas, Singh and Srivastava [3] trained various 

ANN-based models with different number of hidden 

layers and neurons and it revealed that these 

models exhibited superior performance over non-

intelligent approaches particularly in the case of 

non-linear problems of pavement engineering. It 

also showed that the predicted deflections after 

deploying the ANN were in good agreement with 

computed deflections from the hypothetical model. 

In addition, the back calculated layer moduli 

determined from a novel ML model namely Genetic 

Algorithm (GA)-ANN model also compared well 

with the hypothetical model based on FWD test. 

However, only few studies have been conducted to 

explore the ANN deployment for determination of 

deflection of the road pavement system, by 

incorporating layer moduli and its thicknesses in 

the form of input parameters [7]. In addition, in 

order to improve the performance of ML models, 

various optimization techniques such as Artificial 

Bee Colony [8, 9], Ant Colony Algorithm (ACA) [10], 

Bat Algorithm (BA), Biogeography-Based 

Optimization (BBO) [11-13], Cuckoo Search (CS) 

[14], Differential Evolution (DE) [15], Evolutionary 

Strategies [16, 17], Genetic Algorithms (GAs) [8, 

13, 18], Grenade Explosion Method (GEM) [19], 

Harmony Search (HS) [20], Intelligent Water Drops 

(IWDs) [21], Particle Swarm Optimization (PSO) 

[22], Monkey Search [23], and the Teaching 

Learning-Based Optimization (TLBO) [24, 25] can 

be used for better prediction. 

The main objective of this study is to predict 

two parameters of the Falling Weight 

Deflectometer (FWD) test, namely Z1 and Z2, by 

developing three novel hybrid models: ANN-TLBO, 

ANN-BBO, and ANN-GA. These ML models 

combine ANN with various optimization techniques 

such as Teaching-Learning-Based Optimization 

(TLBO), Biogeography-Based Optimization (BBO), 

and GA. The novelty of this paper compared with 

previous published works is that it is the first time 

these novel hybrid models (ANN-TLBO, ANN-BBO, 

and ANN-GA) have been developed and applied to 

improve the prediction of the properties (Z1 and 

Z2) of PCC materials using the FWD test data. To 

achieve the objective, a number of FWD tests 

conducted at National Highway 18, Quang Ninh 

province, Vietnam were collected and prepared the 

database for the modeling. Various validation 

indices, including Coefficient of Correlation (R), 

Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), Error Mean (Em), and Error Standard 

Deviation (Estd), were used to validate and 

compare the performance of the models. Matlab 

software was used for data processing and 

modeling. 

2. Materials and Methods 

2.1. Data used 

In this study, in order to construct the 

database for modeling, FWD tests was carried out 

in Portland cement concrete pavement (PCC 

pavement) of the National Highway 18, Quang 

Ninh province, Vietnam [26] (Fig. 1). The testing 



JSTT 2025, 5 (4), 107-125                                                  Hoang et al 

 

 
109 

route has a length of nearly 18.3 km, the road scale 

includes 2 lanes for cars, the road surface is 11-

12m wide, and the roadbed is 12-14m wide. PCC 

pavement is designed according to AASHTO 

standard [27]. The structural characteristics of 

concrete slabs are as follows: the average slab 

length is 5.0 m, the average slab width is 5.75 m, 

and the thickness of the PCC slab varies from 24 

to 30 cm. Rigid pavement structure consists of 01 

surface layer by PCC slab, 01 base layer by 8% 

Cement treated aggregate base course. Fig. 2 

shows the FWD device used in this project. 

Periodic calibration of the FWD devices is done as 

per AASHTO standard [28]. The technical 

specifications of FWD device were suitable for 

Long-Term Pavement Performance (LTPP) 

program [29]. FWD test procedure meets ASTM 

standards [30, 31]. 

 

Fig. 1. Location of the study area 

 
Fig. 2. FWD device used in this project 

Data collected from 510 FWD tests used for 

modeling include two output parameters: Z1 and 

Z2, and 10 input parameters: surface deflections 

(D0, D12, D24, D36 - deflections at radial distances 

0 inch, 12 inch, 24 inch, 36 inch from the load 

center, respectively), surface temperature (X5), 

surface load (X6), the thickness of the concrete 

slab (X7), 8% cement treated aggregate base 
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course thickness (X8), the thickness of the 

pavement structure (X9), compressive strength of 

concrete slab (X10) [26]. These input parameters 

are considered as affecting factors for estimating 

Z1 and Z2 [32-36]. Calculation of Z1 and Z2 was 

presented in Nguyen, Vu, Nguyen, Jalal, Iqbal, 

Dang, Le, Prakash and Pham [26].  Table1 shows 

the initial statistical analysis of the data used for 

this study. Fig. 3 shows the correlation analysis of 

input variables used for the modeling. It can be 

seen from Fig. 3 that among the input variables, 

surface deflections (X1 – X4) were highly 

correlated. In addition, X7 and X9 were also highly 

correlated. In general, highly correlated variables 

should be considered to be removed for reducing 

the dimension of the data used in the modeling. 

However, considering the importance of the 

variables of surface deflections (X1 – X4) and the 

thickness of the concrete slab (X7), and the 

thickness of the pavement structure (X9) in 

prediction of the FWD parameters, all the variables 

were used for generation of the datasets for 

modeling. 

In essence, decision to retain highly 

correlated parameters was based on the 

significance of these variables in predicting the 

FWD parameters (Z1 and Z2), even though it's 

generally advisable to reduce dimensionality by 

removing correlated variables. This approach 

acknowledges the specific context and importance 

of these variables in this research. 

In the model study, normalization of numeric 

data was done to a common scale for reducing 

the data redundancy and to improve data integrity. 

Following equation was used to normalize the data 

of different ranges of values: 

( ) ( )scaled rawX x /= −   −   (1) 

where α and β are the maximum (highest) and 

minimum (lowest) values of the parameter x. 

Table 1. Statistical analysis of the inputs and outputs used in this study 

No Variables Unit Minimum Maximum Mean Median StD 

1 X1 μm 52.1 641.2 161.522 162.55 59.639 

2 X2 μm 36.4 576.1 142.842 146.7 54.787 

3 X3 μm 33.8 448.4 126.702 130.3 47.508 

4 X4 μm 30.1 317.4 103.154 105.65 37.799 

5 X5 oC 23.1 42.4 29.412 28.9 4.091 

6 X6 kN 38.7 77.41 61.902 63.25 6.447 

7 X7 cm 24 30 27.041 27 1.999 

8 X8 cm 17 20 18.486 18 1.126 

9 X9 cm 41 50 45.527 46 2.313 

10 X10 MPa 18.32 33.33 25.75 25.95 4.377 

11 Z1 kPa/mm 25.06 355.78 88.021 69.975 52.978 

12 Z2 GPa 3.22 60.12 22.978 21.3 9.36 

*St.D. = Standard Deviation. 

2.3. Methods used 

This study used 510 FWD test records 

collected from National Highway 18, Vietnam, 

comprising deflections at radial offsets (D0–D36), 

pavement layer thicknesses, slab concrete 

strength, and temperature. Output variables 

include Z1 and Z2, calculated using standard 

mechanistic backcalculation formulas. All input 

variables were normalized using min–max scaling. 

Two independent ANN models were developed: 

one predicting Z1 and the other predicting Z2. Each 

ANN used 10 hidden neurons with sigmoid 

activation. Optimization of ANN weights and biases 

was performed using TLBO, BBO, and GA. A 

baseline ANN with Adam backpropagation was 

included for comparison. A 70:30 train–test split 

was used, followed by 5‑fold cross‑validation to 

ensure generalization. Hyperparameter sensitivity 
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analyses were performed by varying hidden 

neurons (5, 10, 15) and evolutionary populations 

(20–60). The models were then validated using 

various evaluation indicators such as R, RMSE, 

and MAE (Fig. 4). 

Detail description of the methods used in this 

study are given as follows: 

2.3.1. ANN: Artificial Neural Networks 

Proposed by McCulloch and Pitts [37], ANN 

have been widely used in numerous fields such as 

renewable energies, civil engineering, traffic 

accident prediction [38], geotechnical engineering 

problems [39, 40], heat transfer problems in 

nuclear engineering [41], stock market [42], 

medicine [43, 44], voice recognition, text 

translation [45, 46], among others. It is an efficient 

tool which tends to simulate the structure and 

functionalities of biological neural networks. The 

fundamental building block of each ANN is 

composed of Artificial neuron (An), which is, a 

simple mathematical model (function) [47]. A main 

characteristic of the ANNs is their adaptability to 

changes in the environment by modifying their 

connection structure or strength [48]. It is 

composed of 10 input layers, 01 hidden layers with 

10 neurons, and 01 output layer with two 

independent ANN models used (one for Z1, one for 

Z2). 

Out of these, input layers represent the 

independent variables (X1 to X10), hidden layers 

represent weighted connections between various 

nodes in adjacent layers, and output layer 

consisting of one element, which shows the 

dependent variables (Z1 or Z2).  

 

Fig. 3. Correlation matrix analysis input variables in this study 

2.3.2. TLBO: Teaching Learning-Based 

Optimization 

TLBO is a newly introduced population-

based heuristic stochastic optimization algorithm, 

resembling the Evolutionary Algorithms (EAs), and 

it is inspired by passing on knowledge within a 

classroom environment [24, 25, 49]. The basic 

concept of TLBO is that the learning process of a 

classical school is simulated. Unlike EAs and 

swarm intelligence algorithms (SIs), the learners 

first of all gain knowledge from a teacher (i.e., 

teacher phase) and afterwards from classmates 

(i.e., learner phase). In the first stage, i.e., teacher 

phase, the better the teacher, the more knowledge 

the students would acquire and it is generally 

distributed following the Gaussian law. The right 
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end of the Gaussian distribution represents the 

exceptional students who are capable to grasp all 

the materials taught, the mid part of the Gaussian 

distribution shows the group of students who would 

partially accept new learning materials, whereas, 

the left end of the Gaussian distribution is 

representation of the fact that the teacher would 

pose approximately no direct impact on students’ 

knowledge. In the second stage, i.e., the learner 

phase, a student may learn from their fellow 

students. By and large, the amount of knowledge 

imparted to a student is not only governed by the 

efforts of their teacher but also on interacting with 

fellow students via peer learning [49]. The learners 

are considered to be the search points that are 

distributed in the decision variable space and are 

linked with the population of solutions in EAs and 

SIs. The learner exhibiting the best fitness is 

regarded as the teacher of the class. Črepinšek, 

Liu and Mernik [49] revealed that TLBO out perform 

ABC, DE, PSO, Evolutionary Strategies [16], and 

Grenade Explosion Method (GEM) on various 

continuous non-linear numerical optimization 

problems. In this study, TLBO was used to optimize 

the weights and bias of the ANN predictor for 

prediction of the parameters of FWD test.  

 
Fig. 4. Methodological flowchart of this study. 
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2.3.3. BBO: Biogeography-based optimization 

Introduced by Simon [11], it is also a 

population-based and an evolutionary algorithm 

which is inspired from the natural phenomenon of 

biogeography [13]. It is a random search algorithm 

which assists to search the optimal solutions in the 

case of large and perplex nonlinear space [50]. 

This particular optimization is widely used in variety 

of domains and fields, for instance, feature 

extraction, image processing, image classification, 

and scheduling etc. [51]. It is related to the 

distributed species in nature that explains 

speciation and migration of species among the 

isolated habitats, as well as the extinction of 

species. The fitness function of the BBO is 

evaluated by Habitat suitability index - HIS [49]. 

The BBO contains numerous dependent and 

independent variables. The independent variables 

comprise Suitability Index Variables (SIVs) which 

shows the habitability, for instance, vegetative 

diversity, topographic diversity, rainfall, land area, 

among others. Both the SIV and HIS can be 

regarded as the search space and objective 

function, respectively [52]. 

The development and modification in the  

habitats is with the passage of time and is based 

on the four main concepts [13]: (i) Habitats residing 

in high HSI tend to migrate to relatively low HSI’s 

habitats, (ii) Habitats residing in low HSI tend to 

attract newer immigrants’ habitats in contrast with 

the ones having a reliable health information 

system, (iii) Habitats may witness unexpected 

modifications in their habitats irrespective of the 

corresponding HSI values, and (iv) The elitism 

solutions are stored in the coming generation. In 

this study, BBO was used to optimize the weights 

and bias of the ANN predictor for prediction of the 

parameters of FWD test. 

2.3.4. GA: Genetic Algorithm 

It is a heuristic-based searching algorithm 

incorporating the concepts of natural genetics 

which is inspired from Darwin’s theory of survival of 

fittest [8, 18]. GA is robust solver to evaluate the 

combinational optimization problems across past 

few years [53]. In GA process, the initial population 

comprising chromosomes is created in the very 

first step. After that, the fitness of the chromosome 

within the existing population is determined which 

is followed by the creation of new population. In this 

new population, crossover, mutation, accepting, 

replacing and testing processes are performed to 

reach the optimal solution. If the criterion is not 

satisfied, the loop is restarted and perform all the 

steps (new generation) until the criterion is met to 

obtain the optimal model [54-56]. 

2.3.5. Validation indicators 

In this work, the performance of the 

developed ML models was evaluated with the help 

of five analytical standard parameters: R, RMSE, 

MAE, Em, and Estd. Equations used for the 

calculation of these indices are given below [40, 

57-59]: 

( ) ( )

( ) ( )

n

i i i i

i 1

n n
2 2

i i i i

i 1 i 1

a a p p

R

a a p p

=

= =

− −

=

− −



 

 (2) 

 

( )
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2

i i

i 1

a p
1

RMSE
a n
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−

=
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i i

i 1
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=

−

=
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m i iE a p= −  (5) 
 

( )
n

2

i i

i 1
std

a p

E
n

=

−

=


 
(6) 

Where ai and pi are termed as the ith actual 

and predicted outputs, respectively; a̅i and p̅
i
 refer 

to the mean of the actual and predicted outputs, 

respectively, while n represents the total number of 

specimens. When R exceeds 0.8, it shows robustly 

high correlation among actual and predicted 

observations. RMSE is prominent performance 

measure due to the fact that large errors are 

addressed more efficaciously in contrast to smaller 

errors and its closer or equal value to 0 represents 

minimal error during the prediction [55, 60-62]. But 
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sometimes the RMSE is not expected to yield 

optimal performance thus MAE is measured owing 

to its merit of performing better in presence of 

smooth as well as continuous data. Additionally, 

higher R and lower values of RMSE and MAE, 

exhibit a better model calibration [40, 63, 64]. 

3. Results and discussion 

Using training dataset, three novel hybrid 

models namely ANN-TLBO, ANN-BBO and ANN-

GA were trained and build for prediction of Z1 and 

Z2 whereas using testing dataset these models 

were validated and compared using different 

validation indices RMSE, MAE, R, Em, and Estd. 

Results of models’ validation and their comparison 

are shown in Table 2.  

The ANN-TLBO model yielded the highest R 

values of 0.922 and 0.936 for both the training and 

testing datasets, respectively, in case of Z1 

prediction, followed by ANN-BBO which gave R 

values: 0.893 and 0.906 for training and testing 

datasets, respectively. The ANN-GA yielded the 

lowest values of R with 0.883 and 0.902 for training 

and testing datasets, respectively. Whereas, 

RMSE indicator has shown that in case of ANN-

TLBO model these values are lowest (0.056 for 

training and 0.067 testing both) in comparison to 

other two models: ANN-BBO (0.070 for training and 

0.077 for testing) and ANN-GA (0.065 for training 

and 0.089 for testing). Regarding MAE criteria, the 

ANN-TLBO similarly received the lowest values 

(0.032 for training and 0.035 for testing) compared 

with other models such as ANN-BBO (0.044 for 

training and 0.051 for testing) and ANN-GA (0.038 

for training and 0.051 for testing).  

Table 2. Validation and comparison of the models used for prediction of Z1 and Z2 

No Models 
 Output Z1 Output Z2 

Training Testing Training Testing 

R 

1 ANN - BBO 0.893 0.906 0.835 0.833 

2 ANN - GA 0.883 0.902 0.802 0.794 

3 ANN - TLBO 0.922 0.936 0.913 0.911 

MAE 

1 ANN - BBO 0.044 0.045 0.068 0.070 

2 ANN - GA 0.038 0.051 0.078 0.083 

3 ANN - TLBO 0.032 0.035 0.051 0.054 

RMSE 

1 ANN - BBO 0.070 0.077 0.093 0.089 

2 ANN - GA 0.065 0.089 0.104 0.105 

3 ANN - TLBO 0.056 0.067 0.072 0.071 

Estd 

1 ANN - BBO 0.076 0.013 0.090 -0.006 

2 ANN - GA 0.088 0.011 0.106 -0.005 

3 ANN - TLBO 0.009 0.067 0.072 -0.005 
 

In the case of Z2 prediction models, the ANN-

TLBO received the highest R values of 0.913 and 

0.911 for both the training and testing datasets, 

respectively. Subsequently, the ANN-BBO yielded 

R values equal to 0.835 and 0.833 for training and 

testing datasets, respectively. The ANN-GA yielded 

the lowest values of R with 0.802 and 0.794 for 

training and testing datasets, respectively. With 

RMSE indicator, the ANN-TLBO received the 

lowest values (0.072 for training and 0.071 for 

testing) compared with other models such as ANN-

BBO (0.093 for training and 0.089 for testing) and 

ANN-GA 0.104 for training and 0.105 for testing). 

Regarding MAE criteria, the ANN-TLBO similarly 

received the lowest values (0.051 for training and 

0.054 for testing) compared with other models such 
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as ANN-BBO (0.068 for training and 0.007 for 

testing) and ANN-GA (0.078 for training and 0.083 

for testing).  

Overall, it can be concluded that the ANN-

TLBO model is superior to the other models (ANN-

BBO and ANN-GA) in predicting both Z1 and Z2 

parameters. Results of ANN-TLBO were plotted in 

Fig. 5 to Fig. 9. In Figs. 5a,b,c, the optimization of 

the training data was achieved beyond 100 

iterations for each case of correlation and error for 

evaluating Z1. The convergence towards the 

highest correlation and the lowest error was initially 

fast until 100 iterations, beyond which the 

convergence rate became slower. On the other 

side, the optimization of training data for Z2 depicts 

slower convergence compared to those of Z1. The 

convergence towards highest correlation flattened 

beyond 300 iterations whereas, for the MAE and 

RMSE, the convergence curve flattened beyond 

400 iterations (Figs. 5d,e,f).  
 

  

  

Fig. 5. Optimization procedure of ANN-TLBO for prediction of “Z1” (a) R, (b) MAE, (c) RMSE and “Z2” (d) 

R, (e) MAE, (f) RMSE 

Figs. 6a,b illustrate the comparison of actual 

and the predicted results for prediction of Z1 using 

training and testing datasets, respectively. It can be 

observed that the predicted results closely follow 

the target values. Moreover, most of the prediction 

output of Z1 is conservative to the actual values. 

Figs. 6c,d represent the comparison of predicted 

and actual values of Z2 for training and testing 

datasets, respectively. Like the above discussion 

predicted results in this case also show a close 

agreement with the actual values. In addition, Fig. 

7 and Fig. 8 illustrate error chart and histogram of 
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the ANN-TLBO model whereas Fig. 9 shows the 

plot of the correlation analysis of the results of 

ANN-TLBO for prediction of both Z1 and Z2.  

 

  
Fig. 5. (continued) 

 

 

Fig. 6. Comparison of the predicted and actual results of the ANN-TLBO model for prediction of “Z1” with 

(a) training dataset, (b) testing dataset and “Z2” with (c) training dataset, (d) testing dataset 

Overall, the three novel hybrid models (ANN-

TLBO, ANN-BBO, and ANN-GA) were effective in 

predicting two key parameters (Z1 and Z2) of PCC 

pavements. Among these, the ANN-TLBO model 

outperformed the other two hybrid models (ANN-

BBO and ANN-GA). It is reasonable as these 

models were built from the ML techniques which 

are well-known as advanced and effective 

nondestructive testing techniques used in 

prediction and calculation. In addition, these hybrid 

techniques take the advantages of both ANN and 

optimization techniques (TLBO, BBO, and GA) for 

improving the performance of the prediction. More 

specifically, while TLBO exhibits fast convergence 
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due to the teaching and learning mechanisms and 

it requires fewer control parameters and has a 

simple implementation. In addition, TLBO 

maintains a population of candidate solutions, 

allowing it to explore multiple potential solutions 

simultaneously, and this approach enhances the 

likelihood of finding better solutions compared to 

single-solution algorithms. It is a derivative-free 

optimization algorithm, which means it does not 

require derivatives of the objective function to 

perform optimization. This makes it applicable to 

problems with non-differentiable, noisy, or 

discontinuous objective functions. TLBO has 

shown good performance in handling complex and 

multimodal optimization problems as it is less 

prone to premature convergence, and TLBO's 

population-based nature allows it to scale well with 

increasing problem dimensions, making it useful 

for high-dimensional optimization tasks [65-67]. 

BBO is effective for solving optimization problems 

with multiple objectives and it incorporates 

migration and exchange of information, allowing it 

to explore diverse regions [68], and GA can handle 

a wide range of optimization problems as it allows 

for parallel processing, and it is suitable for 

problems with both discrete and continuous 

variables [69]. In this study, TLBO is more effective 

than other two optimization techniques (BBO and 

GA) in improving the performance of the ANN 

algorithm in prediction of the Z1 and Z2 of the PCC 

pavements. This finding is also in line with other 

published works [70, 71]. 

 

 
Fig. 6. (continued) 

6. Conclusions 

The study demonstrates that a hybrid ANN 

optimized using TLBO can reliably and rapidly 

estimate subgrade modulus (Z1) and slab modulus 

(Z2) from FWD deflection data. ANN‑TLBO 

outperformed GA, BBO, and standard ANN models 

in terms of accuracy, convergence, and residual 

stability. The model effectively addresses the 

limitations of mechanistic backcalculation by 

providing smooth, physically plausible predictions 

even for noisy FWD datasets. 

ANN‑TLBO thus represents a practical 

surrogate tool for large‑scale pavement evaluation 

and can significantly enhance network‑level 

pavement management workflows. Future work 
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will explore physically constrained neural 

architectures, hybrid mechanistic–ML models, and 

mechanistically consistent data augmentation for 

expanding training datasets. 

 

 

Fig. 7. RMSE values; “Z1” with (a) training, (b) testing and “Z2” with (c) training, (d) testing 
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Fig. 8. Em and Estd values of the ANN-TLBO model for prediction of “Z1” with (a) training dataset, (b) 

testing dataset and “Z2” with (c) training dataset, (d) testing dataset 

  

Fig. 9. R values of the ANN-TLBO model for prediction of “Z1” with (a) training dataset, (b) testing 

dataset and “Z2” with (c) training dataset, (d) testing dataset 
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Fig. 9. (continued) 
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