Journal of Science and Transport Technology Vol. 5 No. 4, 107-125

AND TRANSPORT TECHNOLOGY

Journal of Science and Transport Technology
Journal homepage: https://jstt.vn/index.php/en

Article info
Type of article:
Original research paper

DOI:
https://doi.org/10.58845/jstt.utt.2

025.en.5.4.107-125

"Corresponding author:
Email address:
hieutrantrung@utt.edu.vn

Received: 07/09/2025
Received in Revised Form:
08/11/2025

Accepted: 10/12/2025

Estimation of FWD Parameters for Evaluation
of the Quality of Portland Cement Concrete

Pavement

Hoang Ha', Tran Trung Hieu?’, Tran Thi Hong Nhung3, Fazal E. Jalal,
Mudassir Igbal®

'University of Transport and Communications, Lang Thuong, Dong Da, Hanoi,
Vietnam; hoangha@mt.gov.vn

2Geotechnical and Artificial Intelligence research group, 54 Trieu Khuc, Thanh
Liet, Hanoi, Vietnam; hieutrantrung@utt.edu.vn

3Hanoi University, Hanoi 100000, Vietnam; nhungtth@hanu.edu.vn
4Department of Civil Engineering, State Key Laboratory of Ocean Engineering,
Shanghai Jiao Tong University, Shanghai, P.R. China; jalal2412@sijtu.edu.cn
5Department of Civil Engineering, University of Engineering and Technology,
Peshawar, Pakistan; mudassirigbal29@sjtu.edu.cn

Abstract: This study aims to accurately predict two important parameters for
evaluating the quality of Portland Cement Concrete (PCC) pavement: the
modulus of subgrade reaction (Z1) and the elastic modulus of concrete slab
(Z2). To achieve this, advanced Machine Learning (ML) models were used,
including ANN-TLBO, ANN-BBO, and ANN-GA. These hybrid models combine
Artificial Neural Network (ANN) with optimization techniques such as Teaching
Learning-Based Optimization (TLBO), Biogeography-Based Optimization
(BBO), and Genetic Algorithm (GA). The dataset used for modeling consists of
510 Falling Weight Deflectometer (FWD) tests from National Highway 18 in
Quang Ninh Province, Vietnam. Standard statistical measures were used to
validate and compare the performance of the models. Results showed that all
three models performed well, with ANN-TLBO achieving the best results for
predicting Z1 and Z2. Thus, the ANN-TLBO model can be used for accurate
prediction of these important parameters for evaluating PCC pavement quality.
Keywords: Falling weight Deflectometer; Elastic modulus; ANN-TLBO; ANN-
GA; ANN-BBO.

1. Introduction
Falling Weight

Deflectometer,
known as the FWD test, is a routinely used
standard nondestructive test method for structural
condition of Portland Cement Concrete (PCC)
pavements to estimate the modulus of pavement
layers by performing Back-calculation [1] and to
simulate the displacement response of traffic loads

[2]. FWD evaluates the structural adequacy along
with giving considerable information about
pavement layers as well as its subsurface
conditions, including subgrade [3]. Results of the
FWD test are widely utilized as the main strategy
of many countries for the maintenance of
pavements to estimate the in-situ stiffness of
pavement layers [2, 4].Two important parameters

generally
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are obtained from FWD test namely modulus of
subgrade reaction (Z1) and elastic modulus of slab
(Z2), which are often used for evaluating the quality
of PCC pavement. It is costly and time consuming
to determine these important parameters by
conducting FWD test. Therefore, there is a need to
develop and apply new approaches for the
prediction of these parameters based on simple
and easily determined factors with high accuracy.
In recent years, Machine learning (ML) or
Artificial Intelligence (Al) techniques have been
developed and effectively applied in solving
various engineering problems including material
sciences [5]. Han, Ma, Chen and Fan [6] attempted
to evaluate the dynamic modulus of pavement by
using Atrtificial Neural Network (ANN) approach.
According to them, one of the major limitations of
the conventional FWD algorithm is yielding of
unreliable results in the form of non-uniqueness of
the solution, which is attained from the back
calculation process, thus amplifying the total
residual error. However, with the initiation of the Al
technology, a new FWD back calculation model
was proposed that incorporated ANN, which
received immense attention. In another study,
Vyas, Singh and Srivastava [3] trained various
ANN-based models with different number of hidden
layers and neurons and it revealed that these
models exhibited superior performance over non-
intelligent approaches particularly in the case of
non-linear problems of pavement engineering. It
also showed that the predicted deflections after
deploying the ANN were in good agreement with
computed deflections from the hypothetical model.
In addition, the back calculated layer moduli
determined from a novel ML model namely Genetic
Algorithm (GA)-ANN model also compared well
with the hypothetical model based on FWD test.
However, only few studies have been conducted to
explore the ANN deployment for determination of
deflection of the road pavement system, by
incorporating layer moduli and its thicknesses in
the form of input parameters [7]. In addition, in
order to improve the performance of ML models,
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various optimization techniques such as Artificial
Bee Colony [8, 9], Ant Colony Algorithm (ACA) [10],
Bat Algorithm (BA), Biogeography-Based
Optimization (BBO) [11-13], Cuckoo Search (CS)
[14], Differential Evolution (DE) [15], Evolutionary
Strategies [16, 17], Genetic Algorithms (GAs) [8,
13, 18], Grenade Explosion Method (GEM) [19],
Harmony Search (HS) [20], Intelligent Water Drops
(IWDs) [21], Particle Swarm Optimization (PSO)
[22], Monkey Search [23], and the Teaching
Learning-Based Optimization (TLBO) [24, 25] can
be used for better prediction.

The main objective of this study is to predict
two parameters of the Faling Weight
Deflectometer (FWD) test, namely Z1 and Z2, by
developing three novel hybrid models: ANN-TLBO,
ANN-BBO, and ANN-GA. These ML models
combine ANN with various optimization techniques
such as Teaching-Learning-Based Optimization
(TLBO), Biogeography-Based Optimization (BBO),
and GA. The novelty of this paper compared with
previous published works is that it is the first time
these novel hybrid models (ANN-TLBO, ANN-BBO,
and ANN-GA) have been developed and applied to
improve the prediction of the properties (Z1 and
Z2) of PCC materials using the FWD test data. To
achieve the objective, a number of FWD tests
conducted at National Highway 18, Quang Ninh
province, Vietham were collected and prepared the
database for the modeling. Various validation
indices, including Coefficient of Correlation (R),
Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Error Mean (Em), and Error Standard
Deviation (Estd), were used to validate and
compare the performance of the models. Matlab
software was used for data processing and
modeling.

2. Materials and Methods
2.1. Data used

In this study, in order to construct the
database for modeling, FWD tests was carried out
in Portland cement concrete pavement (PCC
pavement) of the National Highway 18, Quang
Ninh province, Vietham [26] (Fig. 1). The testing
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route has a length of nearly 18.3 km, the road scale
includes 2 lanes for cars, the road surface is 11-
12m wide, and the roadbed is 12-14m wide. PCC
pavement is designed according to AASHTO
standard [27]. The structural characteristics of
concrete slabs are as follows: the average slab
length is 5.0 m, the average slab width is 5.75 m,
and the thickness of the PCC slab varies from 24
to 30 cm. Rigid pavement structure consists of 01
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surface layer by PCC slab, 01 base layer by 8%
Cement treated aggregate base course. Fig. 2
shows the FWD device used in this project.
Periodic calibration of the FWD devices is done as
per AASHTO standard [28]. The technical
specifications of FWD device were suitable for
Long-Term Pavement Performance (LTPP)
program [29]. FWD test procedure meets ASTM
standards [30, 31].
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Fig. 1. Location of the study area

Data collected from 510 FWD tests used for
modeling include two output parameters: Z1 and
Z2, and 10 input parameters: surface deflections
(Do, D42, Doy, D3¢ - deflections at radial distances

Fig. 2. FWD device used in this project

0 inch, 12 inch, 24 inch, 36 inch from the load
center, respectively), surface temperature (X5),
surface load (X6), the thickness of the concrete
slab (X7), 8% cement treated aggregate base
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course thickness (X8), the thickness of the
pavement structure (X9), compressive strength of
concrete slab (X10) [26]. These input parameters
are considered as affecting factors for estimating
Z1 and Z2 [32-36]. Calculation of Z1 and Z2 was
presented in Nguyen, Vu, Nguyen, Jalal, Igbal,
Dang, Le, Prakash and Pham [26]. Table1 shows
the initial statistical analysis of the data used for
this study. Fig. 3 shows the correlation analysis of
input variables used for the modeling. It can be
seen from Fig. 3 that among the input variables,
surface deflections (X1 — X4) were highly
correlated. In addition, X7 and X9 were also highly
correlated. In general, highly correlated variables
should be considered to be removed for reducing
the dimension of the data used in the modeling.
However, considering the importance of the
variables of surface deflections (X1 — X4) and the
thickness of the concrete slab (X7), and the
thickness of the pavement structure (X9) in
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prediction of the FWD parameters, all the variables
were used for generation of the datasets for
modeling.

In essence, decision to retain highly
correlated parameters was based on the
significance of these variables in predicting the
FWD parameters (Z1 and Z2), even though it's
generally advisable to reduce dimensionality by
removing correlated variables. This approach
acknowledges the specific context and importance
of these variables in this research.

In the model study, normalization of numeric
data was done to a common scale for reducing
the data redundancy and to improve data integrity.
Following equation was used to normalize the data
of different ranges of values:

Xscaled — (Xraw _B)/(a _B) (1)

where a and B are the maximum (highest) and
minimum (lowest) values of the parameter x.

Table 1. Statistical analysis of the inputs and outputs used in this study

No Variables Unit Minimum Maximum Mean Median StD
1 X1 um 52.1 641.2 161.522 162.55 59.639
2 X2 um 36.4 576.1 142.842 146.7 54.787
3 X3 um 33.8 448.4 126.702 130.3 47.508
4 X4 um 30.1 317.4 103.154 105.65 37.799
5 X5 °C 23.1 42.4 29.412 28.9 4.091
6 X6 kN 38.7 77.41 61.902 63.25 6.447
7 X7 cm 24 30 27.041 27 1.999
8 X8 cm 17 20 18.486 18 1.126
9 X9 cm 41 50 45.527 46 2.313
10 X10 MPa 18.32 33.33 25.75 2595 4.377
11 Z1 kPa/mm  25.06 355.78 88.021 69.975 52.978
12 Z2 GPa 3.22 60.12 22.978 21.3 9.36

*St.D. = Standard Deviation.

2.3. Methods used

This study used 510 FWD test records
collected from National Highway 18, Vietnam,
comprising deflections at radial offsets (D0-D36),
pavement layer thicknesses, slab concrete
strength, and temperature. Output variables
include Z1 and Z2, calculated using standard
mechanistic backcalculation formulas. All input
variables were normalized using min—max scaling.

Two independent ANN models were developed:
one predicting Z1 and the other predicting Z2. Each
ANN used 10 hidden neurons with sigmoid
activation. Optimization of ANN weights and biases
was performed using TLBO, BBO, and GA. A
baseline ANN with Adam backpropagation was
included for comparison. A 70:30 train—test split
was used, followed by 5-fold cross-validation to
ensure generalization. Hyperparameter sensitivity
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analyses were performed by varying hidden
neurons (5, 10, 15) and evolutionary populations
(20-60). The models were then validated using
various evaluation indicators such as R, RMSE,
and MAE (Fig. 4).

Detail description of the methods used in this
study are given as follows:
2.3.1. ANN: Artificial Neural Networks

Proposed by McCulloch and Pitts [37], ANN
have been widely used in numerous fields such as
renewable energies, civil engineering, traffic
accident prediction [38], geotechnical engineering
problems [39, 40], heat transfer problems in
nuclear engineering [41], stock market [42],
medicine [43, 44], voice recognition, text
translation [45, 46], among others. It is an efficient
tool which tends to simulate the structure and
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functionalities of biological neural networks. The
fundamental building block of each ANN is
composed of Artificial neuron (A,), which is, a
simple mathematical model (function) [47]. A main
characteristic of the ANNs is their adaptability to
changes in the environment by modifying their
connection structure or strength [48]. It is
composed of 10 input layers, 01 hidden layers with
10 neurons, and 01 output layer with two
independent ANN models used (one for Z1, one for
Z2).

Out of these, input layers represent the
independent variables (X1 to X10), hidden layers
represent weighted connections between various
nodes in adjacent layers, and output layer
consisting of one element, which shows the
dependent variables (Z1 or Z2).
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Fig. 3. Correlation matrix analysis input variables in this study

23.2. TLBO:
Optimization
TLBO is a newly introduced population-
based heuristic stochastic optimization algorithm,
resembling the Evolutionary Algorithms (EAs), and
it is inspired by passing on knowledge within a
classroom environment [24, 25, 49]. The basic
concept of TLBO is that the learning process of a

Teaching Learning-Based

classical school is simulated. Unlike EAs and
swarm intelligence algorithms (Sls), the learners
first of all gain knowledge from a teacher (i.e.,
teacher phase) and afterwards from classmates
(i.e., learner phase). In the first stage, i.e., teacher
phase, the better the teacher, the more knowledge
the students would acquire and it is generally
distributed following the Gaussian law. The right
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end of the Gaussian distribution represents the
exceptional students who are capable to grasp all
the materials taught, the mid part of the Gaussian
distribution shows the group of students who would
partially accept new learning materials, whereas,
the left end of the Gaussian distribution is
representation of the fact that the teacher would
pose approximately no direct impact on students’
knowledge. In the second stage, i.e., the learner
phase, a student may learn from their fellow
students. By and large, the amount of knowledge
imparted to a student is not only governed by the
efforts of their teacher but also on interacting with
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fellow students via peer learning [49]. The learners
are considered to be the search points that are
distributed in the decision variable space and are
linked with the population of solutions in EAs and
Sls. The learner exhibiting the best fitness is
regarded as the teacher of the class. Crepingek,
Liu and Mernik [49] revealed that TLBO out perform
ABC, DE, PSO, Evolutionary Strategies [16], and
Grenade Explosion Method (GEM) on various
continuous non-linear numerical optimization
problems. In this study, TLBO was used to optimize
the weights and bias of the ANN predictor for
prediction of the parameters of FWD test.

BEGIN

Random data splitting
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Training data

The weights and bias of
: ANN

|

Training phase

Estimate the generated

.
*
--------

L i ..................
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Testing data

ANN
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Fig. 4. Methodological flowchart of this study.

112



JSTT 2025, 5 (4), 107-125

2.3.3. BBO: Biogeography-based optimization

Introduced by Simon [11], it is also a
population-based and an evolutionary algorithm
which is inspired from the natural phenomenon of
biogeography [13]. It is a random search algorithm
which assists to search the optimal solutions in the
case of large and perplex nonlinear space [50].
This particular optimization is widely used in variety
of domains and fields, for instance, feature
extraction, image processing, image classification,
and scheduling etc. [51]. It is related to the
distributed species in nature that explains
speciation and migration of species among the
isolated habitats, as well as the extinction of
species. The fitness function of the BBO is
evaluated by Habitat suitability index - HIS [49].
The BBO contains numerous dependent and
independent variables. The independent variables
comprise Suitability Index Variables (SIVs) which
shows the habitability, for instance, vegetative
diversity, topographic diversity, rainfall, land area,
among others. Both the SIV and HIS can be
regarded as the search space and objective
function, respectively [52].

The development and modification in the
habitats is with the passage of time and is based
on the four main concepts [13]: (i) Habitats residing
in high HSI tend to migrate to relatively low HSI’s
habitats, (ii) Habitats residing in low HSI tend to
attract newer immigrants’ habitats in contrast with
the ones having a reliable health information
system, (iii) Habitats may witness unexpected
modifications in their habitats irrespective of the
corresponding HSI values, and (iv) The elitism
solutions are stored in the coming generation. In
this study, BBO was used to optimize the weights
and bias of the ANN predictor for prediction of the
parameters of FWD test.

2.3.4. GA: Genetic Algorithm

It is a heuristic-based searching algorithm
incorporating the concepts of natural genetics
which is inspired from Darwin’s theory of survival of
fittest [8, 18]. GA is robust solver to evaluate the
combinational optimization problems across past
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few years [53]. In GA process, the initial population
comprising chromosomes is created in the very
first step. After that, the fitness of the chromosome
within the existing population is determined which
is followed by the creation of new population. In this
new population, crossover, mutation, accepting,
replacing and testing processes are performed to
reach the optimal solution. If the criterion is not
satisfied, the loop is restarted and perform all the
steps (new generation) until the criterion is met to
obtain the optimal model [54-56].
2.3.5. Validation indicators

In this work, the performance of the
developed ML models was evaluated with the help
of five analytical standard parameters: R, RMSE,
MAE, Emn, and Esg. Equations used for the
calculation of these indices are given below [40,
57-59]:

3)

(4)

Where a; and p; are termed as the i" actual
and predicted outputs, respectively; a; and p; refer
to the mean of the actual and predicted outputs,
respectively, while n represents the total number of
specimens. When R exceeds 0.8, it shows robustly
high correlation among actual and predicted
observations. RMSE is prominent performance
measure due to the fact that large errors are
addressed more efficaciously in contrast to smaller
errors and its closer or equal value to 0 represents
minimal error during the prediction [55, 60-62]. But
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sometimes the RMSE is not expected to yield
optimal performance thus MAE is measured owing
to its merit of performing better in presence of
smooth as well as continuous data. Additionally,
higher R and lower values of RMSE and MAE,
exhibit a better model calibration [40, 63, 64].
3. Results and discussion

Using training dataset, three novel hybrid
models namely ANN-TLBO, ANN-BBO and ANN-
GA were trained and build for prediction of Z1 and
Z2 whereas using testing dataset these models
were validated and compared using different
validation indices RMSE, MAE, R, Em, and Estd.
Results of models’ validation and their comparison
are shown in Table 2.

The ANN-TLBO model yielded the highest R
values of 0.922 and 0.936 for both the training and
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testing datasets, respectively, in case of Z1
prediction, followed by ANN-BBO which gave R
values: 0.893 and 0.906 for training and testing
datasets, respectively. The ANN-GA yielded the
lowest values of R with 0.883 and 0.902 for training
and testing datasets, respectively. Whereas,
RMSE indicator has shown that in case of ANN-
TLBO model these values are lowest (0.056 for
training and 0.067 testing both) in comparison to
other two models: ANN-BBO (0.070 for training and
0.077 for testing) and ANN-GA (0.065 for training
and 0.089 for testing). Regarding MAE criteria, the
ANN-TLBO similarly received the lowest values
(0.032 for training and 0.035 for testing) compared
with other models such as ANN-BBO (0.044 for
training and 0.051 for testing) and ANN-GA (0.038
for training and 0.051 for testing).

Table 2. Validation and comparison of the models used for prediction of Z1 and Z2

NG Models . Qutput Z1 . . .Output Z2 .
Training Testing Training Testing
R
1 ANN - BBO 0.893 0.906 0.835 0.833
2 ANN - GA 0.883 0.902 0.802 0.794
3 ANN - TLBO 0.922 0.936 0.913 0.911
MAE
1 ANN - BBO 0.044 0.045 0.068 0.070
2 ANN - GA 0.038 0.051 0.078 0.083
3 ANN - TLBO 0.032 0.035 0.051 0.054
RMSE
1 ANN - BBO 0.070 0.077 0.093 0.089
2 ANN - GA 0.065 0.089 0.104 0.105
3 ANN - TLBO 0.056 0.067 0.072 0.071
Estd
1 ANN - BBO 0.076 0.013 0.090 -0.006
2 ANN - GA 0.088 0.011 0.106 -0.005
3 ANN - TLBO 0.009 0.067 0.072 -0.005

In the case of Z2 prediction models, the ANN-
TLBO received the highest R values of 0.913 and
0.911 for both the training and testing datasets,
respectively. Subsequently, the ANN-BBO yielded
R values equal to 0.835 and 0.833 for training and
testing datasets, respectively. The ANN-GA yielded
the lowest values of R with 0.802 and 0.794 for
training and testing datasets, respectively. With

RMSE indicator, the ANN-TLBO received the
lowest values (0.072 for training and 0.071 for
testing) compared with other models such as ANN-
BBO (0.093 for training and 0.089 for testing) and
ANN-GA 0.104 for training and 0.105 for testing).
Regarding MAE criteria, the ANN-TLBO similarly
received the lowest values (0.051 for training and
0.054 for testing) compared with other models such
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as ANN-BBO (0.068 for training and 0.007 for
testing) and ANN-GA (0.078 for training and 0.083
for testing).

Overall, it can be concluded that the ANN-
TLBO model is superior to the other models (ANN-
BBO and ANN-GA) in predicting both Z1 and Z2
parameters. Results of ANN-TLBO were plotted in
Fig. 5 to Fig. 9. In Figs. 5a,b,c, the optimization of
the training data was achieved beyond 100
iterations for each case of correlation and error for
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evaluating Z1. The convergence towards the
highest correlation and the lowest error was initially
fast until 100 iterations, beyond which the
convergence rate became slower. On the other
side, the optimization of training data for Z2 depicts
slower convergence compared to those of Z1. The
convergence towards highest correlation flattened
beyond 300 iterations whereas, for the MAE and
RMSE, the convergence curve flattened beyond
400 iterations (Figs. 5d,e,f).
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Fig. 5. Optimization procedure of ANN-TLBO for prediction of “Z1” (a) R, (b) MAE, (c) RMSE and “Z2” (d)
R, (e) MAE, (f) RMSE

Figs. 6a,b illustrate the comparison of actual
and the predicted results for prediction of Z1 using
training and testing datasets, respectively. It can be
observed that the predicted results closely follow
the target values. Moreover, most of the prediction
output of Z1 is conservative to the actual values.

Figs. 6¢,d represent the comparison of predicted
and actual values of Z2 for training and testing
datasets, respectively. Like the above discussion
predicted results in this case also show a close
agreement with the actual values. In addition, Fig.
7 and Fig. 8 illustrate error chart and histogram of
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the ANN-TLBO model whereas Fig. 9 shows the

plot of the correlation analysis of the results of
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ANN-TLBO for prediction of both Z1 and Z2.
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Fig. 6. Comparison of the predicted and actual results

of the ANN-TLBO model for prediction of “Z1” with

(a) training dataset, (b) testing dataset and “Z2” with (c) training dataset, (d) testing dataset

Overall, the three novel hybrid models (ANN-
TLBO, ANN-BBO, and ANN-GA) were effective in
predicting two key parameters (Z1 and Z2) of PCC
pavements. Among these, the ANN-TLBO model
outperformed the other two hybrid models (ANN-
BBO and ANN-GA). It is reasonable as these
models were built from the ML techniques which

are well-known as advanced and effective
nondestructive testing techniques wused in
prediction and calculation. In addition, these hybrid
techniques take the advantages of both ANN and
optimization techniques (TLBO, BBO, and GA) for
improving the performance of the prediction. More
specifically, while TLBO exhibits fast convergence
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due to the teaching and learning mechanisms and
it requires fewer control parameters and has a
simple implementation. In addition, TLBO
maintains a population of candidate solutions,
allowing it to explore multiple potential solutions
simultaneously, and this approach enhances the
likelihood of finding better solutions compared to
single-solution algorithms. It is a derivative-free
optimization algorithm, which means it does not
require derivatives of the objective function to
perform optimization. This makes it applicable to
problems with non-differentiable, noisy, or
discontinuous objective functions. TLBO has
shown good performance in handling complex and
multimodal optimization problems as it is less
prone to premature convergence, and TLBO's

Hoang et al

population-based nature allows it to scale well with
increasing problem dimensions, making it useful
for high-dimensional optimization tasks [65-67].
BBO is effective for solving optimization problems
with multiple objectives and it incorporates
migration and exchange of information, allowing it
to explore diverse regions [68], and GA can handle
a wide range of optimization problems as it allows
for parallel processing, and it is suitable for
problems with both discrete and continuous
variables [69]. In this study, TLBO is more effective
than other two optimization techniques (BBO and
GA) in improving the performance of the ANN
algorithm in prediction of the Z1 and Z2 of the PCC
pavements. This finding is also in line with other
published works [70, 71].
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Fig. 6. (continued)

6. Conclusions

The study demonstrates that a hybrid ANN
optimized using TLBO can reliably and rapidly
estimate subgrade modulus (Z1) and slab modulus
(Z2) from FWD deflection data. ANN-TLBO
outperformed GA, BBO, and standard ANN models
in terms of accuracy, convergence, and residual

stability. The model effectively addresses the
limitations of mechanistic backcalculation by
providing smooth, physically plausible predictions
even for noisy FWD datasets.

ANN-TLBO thus represents a practical
surrogate tool for large-scale pavement evaluation
and can significantly enhance network-level
pavement management workflows. Future work
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