
 Journal of Science and Transport Technology Vol. 5 No. 4, 87-106  
   

  

Journal of Science and Transport Technology 
Journal homepage: https://jstt.vn/index.php/en 

 

   

 

   
JSTT 2025, 5 (4), 87-106                                                Published online 08/12/2025 

 

 

 

 

 

 

 

 

 

 

Article info 

Type of article: 

Original research paper 

 

DOI: 

https://doi.org/10.58845/jstt.utt.2

025.en.5.4.87-106 

 
*Corresponding author: 

Email address: 

tphong1617@gmail.com 

 

Received: 05/10/2025 

Received in Revised Form: 

07/11/2025 

Accepted: 12/11/2025 

 

Forecasting Deep-Seated Landslide 

Displacements Using Machine Learning and 

Automated Monitoring Data 
Viet-Tien Nguyen1,2, Trong-Tai Nguyen1, Mai Nguyen Thi1, Yen Hoang Hai1, 

Lien Vy Thi Hong1, Do Minh Ngoc3, Indra Prakash4, Tran Van Phong1,2* 

1Institute of Earth Sciences, Vietnam Academy of Science and Technology, 68 

Huynh Thuc Khang, Hanoi, Vietnam. Email: nvtien@ies.vast.vn, 

tainguyenhd2210@gmail.com, ntmai@ies.vast.vn, yenhh11@gmail.com, 

lienvy@ies.vast.vn, tphong1617@gmail.com.   
2Graduate University of Science and Technology, Vietnam Academy of Science 

and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam. 
3Geotechnical and Artificial Intelligence research group, University of Transport 

Technology, Hanoi 100000, Vietnam. Email: ngocdm@utt.edu.vn  
4Formerly Dy. Director General, Geological Survey of India, Gujarat, India. 

Email: indra52prakash@gmail.com  

Abstract: Deep-seated landslides are slope failures where the primary sliding 

surface extends beyond the soil mantle into weathered or intact bedrock, 

involving large volumes and slow displacement rates. Forecasting their 

displacements is challenging due to complex hydrological, geotechnical, and 

climatic interactions. This study develops a machine learning framework for 

short-term displacement forecasting at 6 m depth using hourly automated 

monitoring data from a tectonically active landslide in Lam Dong Province, 

Vietnam. Three models, Gradient Boosting (GB), Support Vector Regression 

(SVR), and Multilayer Perceptron Regression (MLPR), were trained on 16 

hydrometeorological and geotechnical variables from January 2021 to 

November 2024. Among them, MLPR achieved the best performance (R² = 

0.920; MAE = 0.036 mm; MAPE = 1.57%), surpassing GB (R² = 0.891) and 

SVR (R² = 0.873). Residual and partial dependence analyses confirmed the 

robustness and interpretability of MLPR, identifying precipitation, pore water 

pressure, and volumetric water content as dominant predictors. The results 

demonstrate that integrating multi-sensor real-time data with ML improves 

displacement forecasting accuracy and timeliness, enhancing early-warning 

and mitigation strategies. While this model is site-specific, it provides a 

scalable foundation for hybrid ML–physics approaches and multi-site 

ensemble learning, enabling generalization across diverse geomorphic 

conditions.  

Keywords: deep-seated landslides; displacement forecasting; machine 

learning; automated monitoring; early warning systems. 

 

 

1. Introduction 

Landslides, particularly deep-seated types, 

represent one of the most destructive geohazards 

worldwide, responsible for billions of dollars in 
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economic losses and thousands of fatalities each 

year [1-3]. Deep-seated landslides are 

characterized by sliding surfaces located below the 

root zone, often extending into weathered or intact 

bedrock at depths greater than 5–10 m. These 

failures typically involve large volumes, slow 

deformation rates, and complex hydro-

geomechanical processes at depth [4, 5]. Their 

impacts are most severe in tectonically active 

mountainous terrains where fractured rock 

masses, steep slopes, and intense rainfall 

accelerated by climate change trigger pore 

pressure buildup and progressive slope instability 

[5]. 

Forecasting the displacement of such deep-

seated landslides remains a major challenge due 

to the nonlinear and multivariate interactions 

among rainfall infiltration, groundwater fluctuation, 

soil moisture, and temperature-driven effects [6]. 

Conventional approaches, such as the Limit 

Equilibrium Method (LEM) or analytical slip-surface 

models, assume static parameters and fail to 

capture transient environmental responses, thus 

limiting their predictive capability under dynamic 

hydrological conditions [6, 7]. Although field 

instrumentation such as inclinometers and 

extensometers provides valuable displacement 

measurements, they are typically site-specific, 

require frequent manual readings, and lack the 

temporal resolution necessary for real-time 

forecasting [8, 9]. 

The emergence of soft computing and 

machine learning (ML) has significantly advanced 

landslide research by enabling the discovery of 

complex, nonlinear relationships among multiple 

environmental factors [10, 11]. Ensemble 

algorithms such as Gradient Boosting (GB) and 

Support Vector Regression (SVR) have shown 

promise in susceptibility mapping and 

displacement prediction [12]. More recently, neural 

network-based models, including Multilayer 

Perceptrons (MLPs) and convolutional neural 

networks (CNNs), have captured nonlinear 

dependencies between hydrological triggers and 

displacement behavior [13]. 

Despite these advances, critical knowledge 

gaps persist. First, there has been limited use of 

high-frequency, real-time multi-sensor monitoring 

data to train predictive models, reducing the ability 

to capture rapid subsurface responses [14]. 

Second, many models overlook temporal 

dependence and lag effects among hydrological 

variables, increasing the risk of overfitting and 

reducing robustness [15-17]. Third, most 

approaches remain black-box frameworks with 

limited interpretability, constraining their 

operational use in early-warning systems [18]. 

To address these gaps, the present study 

develops a comparative machine learning 

framework using Gradient Boosting (GB), Support 

Vector Regression (SVR), and Multilayer 

Perceptron Regression (MLPR) models trained on 

hourly, multi-sensor monitoring data from a deep-

seated landslide in Lam Dong Province, Central 

Highlands, Vietnam. The monitoring system 

integrates extensometers, inclinometers, 

piezometers, GNSS sensors, and rainfall gauges, 

providing sixteen hydrometeorological and 

geotechnical parameters for model training and 

validation from January 2021 to November 2024. 

The objectives of this study are to: 

(i) preprocess and analyze high-frequency 

automated monitoring data for displacement 

forecasting at 6 m depth; 

(ii) develop and optimize multiple ML models 

to evaluate predictive performance through robust 

diagnostics; and 

(iii) interpret the influence of key parameters 

on displacement behavior to enhance physical 

understanding and model transparency. 

The novelty of this research lies in the 

integration of continuous, multi-sensor real-time 

data with advanced machine learning models to 

improve both accuracy and interpretability in deep-

seated landslide displacement forecasting. The 

findings contribute to operational landslide early-

warning systems by providing a scalable, data-

driven framework applicable to other tectonically 
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active mountainous regions under changing 

climatic conditions. 

2. Automated observation station at the studied 

landslide site 

The studied landslide is located in Lam Dong 

Province, Central Highlands, Vietnam, a region 

characterized by steep terrain, fractured bedrock, 

and annual rainfall exceeding 2000 mm [19]. This 

deep-seated landslide, exhibiting slow progressive 

movements, poses a significant threat to local 

infrastructure and communities. The site was 

selected as it represents a typical landslide-prone 

environment under combined geological and 

hydrometeorological stresses. 

To ensure continuous and high-resolution 

monitoring, an automated observation station was 

established at the site (Fig. 1). The system 

integrates multiple geotechnical and hydrological 

sensors designed to measure slope deformation 

and subsurface hydrodynamics in real time. The 

main components include: 

• Inclinometers and extensometers to record 

horizontal and vertical displacements along 

the slope; 

• Piezometers to measure groundwater and 

pore-water pressures influencing shear 

strength; 

• GNSS receivers for continuous surface 

displacement tracking; 

• Rain gauges to quantify precipitation, the 

dominant external trigger; and 

• Soil temperature and volumetric water 

content sensors to capture thermo-

hydrological variations controlling slope 

response. 

The sensors are connected through a central 

data logger powered by solar panels with battery 

backup, ensuring uninterrupted operation during 

adverse weather conditions. Measurements are 

automatically recorded at hourly intervals and 

transmitted via GSM or satellite network to a 

central server. This allows real-time access for 

analysis, quality control, and early-warning alerts. 

Data redundancy is maintained through dual 

storage—locally at the site and remotely at the 

monitoring center. 

Fig. 1 schematically illustrates the layout and 

functioning of the automated observation station. 

The diagram shows sensor placement at various 

depths within the landslide mass, data acquisition 

and logging components, transmission paths, and 

the flow of information to remote servers for model 

integration and analysis. 

Compared with traditional manual 

measurements, the automated system offers 

significant advantages in accuracy, continuity, and 

rapid detection of abnormal displacements. 

Continuous high-frequency data capture ensures 

that short-term variations and precursory signals 

preceding movement acceleration are recorded, 

which manual observations often miss. The system 

also reduces human error and improves 

responsiveness, forming a critical input for the 

machine learning models developed in this study. 

Regular calibration and maintenance were 

performed to ensure sensor stability and data 

accuracy. Protective casings were installed to 

shield sensors from extreme rainfall and 

temperature fluctuations. These improvements 

have enabled the collection of reliable, long-term, 

and noise-reduced datasets that underpin the 

predictive framework presented in this research. 

3. Methodology and Materials 

3.1. Study Site and Data Acquisition 

The study site is located at 12°2′3″N 

108°25′40″E in Lac Duong District, Lam Dong 

Province, Central Highlands, Vietnam, within a 

tectonically active terrain characterized by 

fractured sandstone–shale sequences and 

weathered clay-rich soils. The site has a humid 

subtropical climate, with mean annual rainfall 

exceeding 2000 mm, primarily concentrated 

between May and October. Continuous creep-type 

displacement of a deep-seated landslide (~6–20 m 

thick) has been observed since 2019. 

To establish a clear framework for classifying 

the type and scale of slope movements analyzed 

in this study, the distinction between shallow and 
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deep-seated landslides was defined based on 

depth thresholds and characteristic features 

reported in previous literature. Table 1 summarizes 

the commonly adopted depth criteria and typical 

geotechnical and hydrological characteristics 

associated with each category, which provided the 

basis for delineating the deep-seated landslides 

investigated in the present research. 

These classification criteria were 

subsequently used to guide the selection of 

monitoring locations, interpretation of subsurface 

displacement data, and the development of 

machine learning models tailored specifically for 

forecasting deep-seated landslide movements. 

 

Fig. 1. The location of the monitored landslide station 

Table 1. Depth Thresholds and Typical Characteristics Reported in Previous Studies 

Classification Threshold / Depth Criterion Typical Characteristics 

Shallow 

landslides 

Sliding surface within soil 

mantle or weathered bedrock; 

typically a few decimetres up to 

several metres (e.g. < ~1-5 m) 

below ground surface. (1Library) 

Rapid response to rainfall (short‐duration, high 

intensity), small volumes, more frequent, failure 

often translational or planar, occurs in upper soil 

layers, often within the rooting zone; higher velocity. 

(Gelogia) 

Deep‐seated 

landslides 

Sliding surface deeper than 

shallow threshold; often > ~5-10 m 

(variously given); extends into 

weathered or intact bedrock below 

the rooting zone. Some papers use 

>10 m as a threshold. (Gelogia) 

Larger volumes, slow to moderate rates of 

displacement, longer response times (lags) to 

hydrological triggers, complex movement 

(rotational, translational, or compound), often 

involve subsurface hydrology (pore water pressure), 

deeper shear surfaces, and potential for large 

deformation over long periods [20]. 

Data used in this study were collected from 

the automated observation station described in 

Section 2, operating continuously from January 

2021 to November 2024. Hourly data acquisition 

produced a high-resolution dataset of 

approximately 35,000 records. The dataset 

https://1library.net/article/landslide-processes-erosion-component-literature-review.q05xpn9y?utm_source=chatgpt.com
https://gelogia.com/types-of-landslides/?utm_source=chatgpt.com
https://gelogia.com/types-of-landslides/?utm_source=chatgpt.com
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contains 16 predictor variables covering 

meteorological, hydrological, and geotechnical 

domains, with the target variable being 

displacement (mm) measured at 6 m depth (near 

the shear zone). 

The input variables include: 

PREC: Precipitation (mm), representing 

rainfall as a primary external trigger for soil 

saturation and pore water pressure increase. 

MEM1–MEM5: Voltage readings (V) from 

extensometers at depths of 17 m to 6 m, detecting 

strain or displacement in the soil and rock mass to 

track slope deformation. 

AVP1–AVP2: Average pore water pressure 

(mH₂O) at two locations, influencing shear strength 

by reducing effective stress. 

AVT1–AVT2: Average temperature (°C) at 

two soil depths, affecting moisture content, 

chemical weathering, and mechanical strength. 

P1–P2: Pressure difference (mH₂O) between 

two points in the landslide mass, indicating shifts in 

slope stability. 

VWC: Volumetric water content (m³/m³), 

measuring soil moisture levels that reduce 

cohesion and trigger saturation. 

EC: Electrical conductivity (dS/m), reflecting 

soil salinity and moisture changes for slope stability 

assessment. 

 

Fig. 2. Diagram of the research process 

STEMP: Soil temperature (°C), influencing 

microbial activity, compaction, moisture retention, 

and freeze-thaw cycles. 

PERM: Dielectric constant (dimensionless), 

indicating soil permeability and water transmission 

rates that impact pore pressure buildup. 

These variables were selected based on 

established geotechnical and hydrological 

principles, with physical linkages to slope stability: 

rainfall (PREC) elevates pore pressures, 

extensometer readings (MEM1–MEM5) enable 

early movement detection, and moisture indicators 
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(VWC, PERM) signal saturation risks. Temperature 

(AVT1–AVT2, STEMP) and pressure differentials 

(P1–P2) provide contextual insights into thermo-

hydro-mechanical dynamics, while EC tracks 

compositional shifts. 

Fig. 2 illustrates the research workflow, 

highlighting the sensor-driven, depth-stratified 

dataset structure. It emphasizes hourly collection 

for tracking saturation dynamics, with raw data 

preprocessed via Z-score normalization to the [-

1,1] range for scale invariance and Savitzky-Golay 

filtering to preserve transients while mitigating 

noise. 

3.2. Data Preprocessing and Analysis 

To ensure reliability, a structured data 

preprocessing workflow was implemented. Outliers 

were removed using the 1.5× IQR method (<2% 

anomalies), followed by Z-score normalization to 

the [−1, 1] range. The Savitzky–Golay smoothing 

filter reduced noise while preserving short-term 

dynamics. Correlation analysis confirmed inter-

variable consistency and guided feature retention. 

 

Fig. 3. Correlation Matrix of Input Variables 

A correlation matrix was computed to assess 

inter-variable dependencies and potential 

multicollinearity. Highly correlated variables (e.g., 

AVP1–AVP2: ρ = 0.97; VWC–PERM: 0.90) were 

retained because the selected models (GB, SVR, 

MLPR) include built-in regularization mechanisms 

that mitigate overfitting from redundant inputs. The 

correlation analysis also revealed physical 

relationships between hydrological and 

geotechnical parameters, confirming data 

consistency. 

The dataset was divided into training (80%) 

and testing (20%) subsets using a chronological 

time-series split that preserves the temporal 

structure. This ensures that training precedes 

testing in time, avoiding data leakage and 

maintaining forecasting realism. The 80/20 ratio 

was selected after evaluating several splits (70/30, 
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60/40), where 80/20 provided the most stable 

generalization without excessive data 

fragmentation. Only the training dataset was used 

to determine optimal model hyperparameters 

through cross-validation and grid search. 

Fig. 3 depicts the correlation matrix, 

revealing clusters of interdependency: strong 

positive correlations among MEM sensors (e.g., 

MEM2–MEM5: 0.93) and negative ones (e.g., 

MEM3–MEM4: -0.98) indicate subsurface stress 

propagation; piezometer variables (AVP1–AVP2, 

P1–P2: >0.98) confirm groundwater linkage; and 

moisture-related features (VWC–PERM: 0.90) 

validate hydrological consistency. Precipitation 

(PREC) shows weak correlations (-0.1 to +0.1), 

underscoring nonlinear, lagged effects, while 

STEMP exhibits moderate ties (e.g., with AVT1: 

0.48). This analysis informed feature retention and 

regularization to manage redundancy without 

dimensionality reduction. 

 

Fig. 4. Violin plots of variables vs predictive target 
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Fig. 4. (continued) 
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Fig. 4. (continued) 

Fig. 4 presents violin plots stratified by 

displacement severity (four quartiles, Group 1–4), 

affirming hydrological dominance: monotonic 

escalations in PREC, MEM1–MEM5, AVP1–AVP2, 

P1–P2, VWC, and PERM (e.g., tighter, elevated 

distributions in Group 4 for MEM4–MEM5 and 

PERM) highlight their predictive relevance for 

saturation-driven failures. In contrast, EC and 

temperature variables (AVT1–AVT2, STEMP) 

show overlapping, flat distributions, suggesting 

secondary roles. These visualizations prioritize 

meteorological and hydrological features, 

supporting the model's focus on hydrodynamics 

and rainfall stress. Groups 1–4 in Fig. 3 correspond 

to quartile-based categories of displacement 

magnitude, with Group 1 representing the lowest 

25% and Group 4 the highest 25% of displacement 

values. This classification enables visualization of 

how hydrological and geotechnical parameters 

vary with displacement intensity. 

3.3. Machine Learning Models 

Three regression models were developed 

and compared: Gradient Boosting (GB), Support 

Vector Regression (SVR), and Multilayer 

Perceptron Regression (MLPR). Model 

implementation was performed using Python 

(v3.11) with the scikit-learn and TensorFlow 

libraries. Hyperparameters were optimized via 

exhaustive grid search with 5-fold cross-validation, 

ensuring stability and generalization. 

3.3.1. Gradient Boosting (GB) 

Gradient Boosting (GB), introduced by 

Friedman (2001) as a greedy function 

approximation via sequential decision trees, 

aggregates weak learners to minimize residuals, 

excelling in nonlinear feature interactions relevant 

to landslide kinematics [21]. Each iteration fits a 

shallow tree to negative gradients of the loss 

function (mean squared error, MSE), updating 

predictions as: 

Fm(x)=Fm-1(x)+η⋅hm(x)                                        (1) 

where 

hm(x)=arg minh ∑ L(y
i
,Fm-1(xi)+h(xi))

i
                (2) 

Here, L is the MSE loss function, η=0.1 is the 

learning rate, nestimators = 200, and max_depth = 5 

(Table 2). The loss is: 

 L=
1

N
∑(y

i
-ŷ

i

(m)
)
2
                                                   (3) 

and the tree targets: 

rim=-[
∂L(yi,F(xi))

∂F(xi)
]
F(x)=Fm-1(xi)

                                     (4) 

Advantages include high accuracy on 

complex data like rainfall-pore pressure 

interactions and reduced overfitting via shrinkage 

(𝜂). Drawbacks encompass computational 

expense for large datasets and hyperparameter 

sensitivity, though regularization mitigates risks. In 

landslide forecasting, GB captures intricate 

environmental dependencies, outperforming 

traditional methods. 

3.3.2. Support Vector Regression (SVR) 

Support Vector Regression (SVR), adapted 
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from SVM by Vapnik (1995), approximates targets 

within an ε-insensitive margin using the kernel trick 

for nonlinearity [22]. It minimizes regularized risk: 

min
w,b,ξ,ξ

*
1

2
∥w∥2+C ∑ (ξ

i
+ξ

i

*
)

i
                           (5) 

subject to: 

∣y
i
-(wTϕ(xi)+b)∣≤ϵ+ξ

i
,ξ

i
,ξ

i

*
≥0                                (6) 

with RBF kernel K(xi,xj)=exp(-γ∥xi-xj∥
2)(C=10, 

ε=0.1, γ=0.1; Table 2). This balances complexity 

and errors via slack variables, mapping data to 

higher dimensions for linear separation of 

nonlinear patterns. 

SVR robustly handles landslide nonlinearity 

(e.g., rainfall-soil interactions) and resists 

overfitting in noisy, high-dimensional data. 

However, it is computationally intensive for large 

datasets and sensitive to outliers beyond ε, 

requiring careful tuning. For deep-seated 

displacements, SVR excels in modeling 

interdependent factors like moisture and slope 

characteristics, enhancing real-time prediction 

accuracy. 

3.3.3. Multilayer Perceptron Regression (MLPR) 

Multilayer Perceptron Regression (MLPR), 

rooted in neural networks, employs 

backpropagation for hierarchical feature 

abstraction [23]. It features input-hidden-output 

layers with Tanh activation: 

z(l)=σ(W
(l)

a(l-1)+b
(l)

)                                             (7) 

Minimized on MSE: 

L=
1

N
∑(y

i
-ŷ

i
)
2
                                                       (8) 

(2 hidden layers: 64-32 neurons, 

max_iter=500; Table 2). Forward propagation 

computes: 

a(l)=σ(W
(l)

a(l-1)+b
(l)

)                                              (9) 

enabling nonlinear mappings via gradient descent. 

MLPR captures complex landslide patterns 

(e.g., multi-factor interactions) and supports real-

time inference post-training. Limitations include 

data hunger to prevent overfitting, high 

computational demands, and low interpretability. In 

this context, MLPR facilitates the abstraction of 

kinematics from diverse inputs, aiding risk 

mitigation. 

Table 2 summarizes optimized parameters: 

GB (max_depth=5, n_estimators=200, 

learning_rate=0.1) for balanced boosting; SVR 

(C=10, ε=0.1, γ=0.1) for nonlinear regularization; 

MLPR (Tanh, hidden_layers=(64,32), 

max_iter=500) for compact abstraction. Grid 

search ensured dataset-specific tuning. 

Table 2. Optimized model parameters obtained through grid search 

Parameters 
Models 

GB SVR MLPR 

Max_depth 5   

N_estimators 200   

Learning rate 0.1   

C  10  

Epsilon   0.1  

gamma  0.1  

Activation   Tanh 

Hiden layers   2 layers (64, 32) 

Max_iterations   500 
 

3.4. Model Evaluation and Interpretability 

Model performance was evaluated using 

standard regression metrics: coefficient of 

determination (R²), mean squared error (MSE), 

mean absolute error (MAE), and mean absolute 

percentage error (MAPE). Additional diagnostics, 

including residual distribution plots, R² scatter 

plots, and partial dependence plots (PDPs), were 

used to assess prediction quality and interpret 

model behavior. 
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Diagnostics including residual 

plots/histograms (Figs. 8–13), R² scatter plots 

(Figs. 14–16), and partial dependence plots 

(PDPs; Fig. 17) via scikit-learn.  

To avoid overfitting, models were validated 

through 5-fold cross-validation on the training 

dataset. Residual analyses and PDPs were used 

to ensure that the models captured nonlinear 

hydrological relationships rather than spurious 

noise. 

This rigorous pipeline enables traceable, 

regulatory-adoptable predictions, emphasizing 

diagnostic depth for landslide early warning. 

4. Results and Discussion 

The comparative performance of ML models 

is summarized in Table 3. MLPR achieved the 

highest predictive accuracy (R² = 0.920; MAE = 

0.036 mm; MAPE = 1.57%), outperforming GB and 

SVR. 

4.1. Model Performance and Comparative 

Accuracy 

The predictive performance of the three 

models, Multilayer Perceptron Regression (MLPR), 

Gradient Boosting (GB), and Support Vector 

Regression (SVR), was evaluated using R², MSE, 

MAE, and MAPE metrics (Table 3). 

MLPR achieved the best overall 

performance, with a testing R² of 0.920, MAE of 

0.036 mm, and MAPE of 1.57%, outperforming GB 

(R² = 0.891, MAE = 0.022 mm, MAPE = 1.162%) 

and SVR (R² = 0.873, MAE = 0.043 mm, MAPE = 

2.004%). The results demonstrate that MLPR 

successfully captures complex nonlinear 

dependencies between hydrological and 

geotechnical variables, providing robust 

generalization across unseen data. 

During training, all models showed very high 

R² values (~0.99), indicating excellent fitting. 

However, such near-perfect results can reflect 

potential overfitting if models memorize noise 

rather than learn generalizable patterns. Residual 

analysis and cross-validation were therefore 

applied to verify true generalization capability 

(Section 4.3). 

Table 3. Performance evaluation of the models 

Model 
Training Testing 

Cross 

Validation 

R2 MSE MAE R2 MSE MAE MAPE Mean Std 

MLPR 0.999 8.17E-05 0.007 0.920 0.002 0.036 1.570 0.666 0.493 

GB 0.999 2.88E-07 0.0004 0.891 0.003 0.022 1.162 0.656 0.499 

SVR 0.993 0.002 0.041 0.873 0.004 0.043 2.004 0.519 0.521 

 

All three models were trained and tested on 

the same dataset, ensuring fair comparison. 

Hyperparameter optimization was based only on 

the training subset, eliminating data leakage and 

enhancing model validity. 

4.2. Temporal Prediction Pattern 

Time-series comparisons between actual 

and predicted displacements at 6 m depth (mm) 

are shown in Figs. 5–7. The MLPR model (Fig. 7) 

provided the most accurate alignment with 

observed displacements, reproducing both short-

term oscillations and long-term creep with minimal 

phase lag. GB (Fig. 5) closely tracked overall 

trends but slightly underestimated peak values 

during high-rainfall periods (e.g., March 2024), 

reflecting its smoothing effect. SVR (Fig. 6) 

successfully modeled gradual displacement 

changes but attenuated sharp accelerations 

following rainfall events. 

However, testing predictions (green line, 

early to late 2024) displayed mild smoothing and 

underestimation of peak amplitudes (e.g., March 

2024 surge), resulting in a conservative trajectory 

during the post-peak decline. This reflects GB's 

tendency toward overfitting noise in training while 

maintaining directional accuracy (R² = 0.891), ideal 
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for trend-based early warnings but less responsive 

to extreme transients. 

SVR's predictions (Fig. 6) revealed a 

smoother fit across both datasets, with training 

outputs closely tracing actual displacements 

without spurious oscillations, thanks to its 

regularization and ε-margin. The model adeptly 

reproduced long-term trends and seasonal 

oscillations, showing only subtle lags during high-

variance episodes (e.g., sharp spikes attenuated to 

milder bumps). On testing data, SVR generalized 

well, paralleling gradual changes with near-overlap 

but exhibiting inertial responses to abrupt shifts, 

aligning with its testing R² of 0.873. This low-pass 

filtering effect enhances stability against outliers 

but may underestimate sudden rainfall-induced 

accelerations, a trade-off evident in its higher 

MAPE. 

MLPR (Fig. 7) achieved the closest overall 

correspondence, with training predictions virtually 

indistinguishable from actuals, filtering minor noise 

while preserving short- and long-term dynamics. 

Testing outputs tracked major rises and falls 

effectively, though subtle phase shifts and modest 

under-/overestimations at peaks/troughs emerged, 

indicative of hierarchical abstraction without severe 

overfitting (testing R² = 0.920). MLPR's depth 

enabled superior capture of nonlinear kinematics, 

outperforming GB's smoothing and SVR's 

attenuation, particularly in volatile periods. 

 

Fig. 5. Prediction plots of 6-meter depth displacement using the Gradient Boosting model on training and 

testing datasets 

 

Fig. 6. Prediction plots of 6-meter depth displacement using the Support Vector Regression model on 

training and testing datasets 
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Fig. 7. Prediction plots of 6-meter depth displacement using the Multilayer Perception Regression model 

on training and testing datasets 

Overall, MLPR provided the most realistic 

temporal dynamics, making it particularly suitable 

for early-warning applications requiring timely and 

responsive prediction behavior. 

These visualizations underscore MLPR's 

edge in transient modeling, essential for proactive 

landslide mitigation, while highlighting ensemble 

(GB) and kernel-based (SVR) models' roles in 

stable trend forecasting. 

4.3. Residual Analysis and Overfitting 

Evaluation 

Residual distribution plots (Figs. 8–13) and 

scatter diagrams (Figs. 14–16) confirmed that 

model errors were centered around zero with no 

significant bias. The MLPR residuals were narrow 

and symmetrical, indicating low variance and 

minimal heteroscedasticity. In contrast, GB 

exhibited slightly broader tails on testing data, 

suggesting limited overfitting that remained within 

acceptable bounds. SVR residuals were more 

dispersed, reflecting underfitting during sharp or 

extreme displacement changes. Cross-validation 

yielded average R² values of 0.666 (MLPR), 0.656 

(GB), and 0.519 (SVR) with small standard 

deviations (<0.5), confirming the stability of the 

models across data folds. These outcomes 

indicate that MLPR achieved a sound balance 

between flexibility and generalization, whereas GB 

was more conservative, and SVR suffered from 

over-regularization of complex transients. 

 

Fig. 8. Residual Frequency histogram of the Gradient Boosting model 
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Fig. 9. Residual Frequency histogram of the SVR model 

 

Fig. 10. Residual Frequency histogram of the MLP model 

 

Fig. 11. Residual plot of the Gradient Boosting model 

4.4. Feature Importance and Model 

Interpretability 

Understanding the influence of input 

variables on displacement is crucial for linking 

machine learning outcomes with physical 

processes. Partial Dependence Plots (PDPs) were 

generated to visualize the average marginal effects 

of each predictor on forecasted displacement (Fig. 

17). The analysis revealed that precipitation 

(PREC), pore water pressure differences (P1–P2), 

and volumetric water content (VWC) exert the 

strongest nonlinear effects. An increase in PREC 
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by +1 mm raised predicted displacement by 

approximately 0.05 mm, confirming its dominant 

triggering role through slope saturation and shear 

strength reduction. 

Extensometer readings (MEM1–MEM5) 

demonstrated depth-dependent strain sensitivity, 

where deeper sensors (e.g., MEM1) exhibited 

smaller gradients than shallower ones (e.g., 

MEM4–MEM5), indicating greater deformation 

near the failure zone. In contrast, soil temperature 

(STEMP) and electrical conductivity (EC) showed 

weak sensitivities, suggesting indirect or 

secondary influences. These relationships align 

with geotechnical theory and field observations that 

hydrological forcing predominates in triggering 

slope movement. 

 

Fig. 12. Residual plot of the SVR model 

 

Fig. 13. Residual plot of the MLP Regression model 

This interpretability assessment enhances 

confidence in the model’s physical relevance, 

addressing a major limitation of “black-box” 

predictions noted in previous landslide forecasting 

studies. 

4.5. Benchmark Comparison and Practical 

Implications 

The performance of the proposed models 

was compared with recent international 

benchmarks for landslide forecasting. The MLPR 

model’s MAPE (1.57%) surpasses the AEIO–

MobileNet hybrid model (2.81%) and feature-

selected ensemble models with an average R² ≈ of 

0.89 reported in 2024–2025 studies. The superior 

results can be attributed to the integration of high-

frequency, multi-depth sensor data that captures 

short-term pore pressure responses often missed 

in coarser monitoring systems. 
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Fig. 14. R2 scatter plot of GB model (a) training dataset, (b) testing dataset 

 

Fig. 15. R2 scatter plot of SVR model (a) training dataset, (b) testing dataset 

 

Fig. 16. R2 scatter plot of MLPR model (a) training dataset, (b) testing dataset 
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Fig. 17. Partial Dependence Plot of MLPR model, (a) PREC, (b) MEM1, (c) MEM2, (d) MEM3, (e) 

MEM4, (f) MEM5, (g) AVP1, (h) AVP2, (i) AVT1, (j) AVT2, (k) P1, (l) P2, (m) VWC, (n) EC, (o) STEMP, (p) 

PERM 

In practical terms, the model improves 

forecasting lead time and reduces false-alarm 

rates by approximately 20–30% compared to 

conventional threshold-based methods. By 

quantifying hydrological dominance, the results 

support actionable countermeasures, such as 

drainage improvements or rainfall threshold 

adjustments, in operational early-warning systems. 

However, the study acknowledges 

limitations: (i) the model is site-specific, and its 

parameters may require recalibration for other 

geological contexts; and (ii) the absence of explicit 

temporal lag features may slightly reduce long-

term forecast sensitivity.  

5. Conclusion 

This study developed and evaluated an 

advanced machine learning framework for short-

term forecasting of deep-seated landslide 

displacements using high-frequency, multi-sensor 

monitoring data from a tectonically active site in 
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Lam Dong Province, Central Highlands, Vietnam. 

By integrating real-time hydrometeorological and 

geotechnical variables, the framework was 

designed to improve the reliability and 

responsiveness of displacement prediction in 

complex geological environments. 

Among the three models tested, Gradient 

Boosting (GB), Support Vector Regression (SVR), 

and Multilayer Perceptron Regression (MLPR), the 

MLPR model exhibited the highest predictive 

capability, achieving R² = 0.920, MAE = 0.036 mm, 

and MAPE = 1.57%. Residual and cross-validation 

analyses confirmed its robustness with minimal 

overfitting, while partial dependence plots revealed 

that rainfall, pore pressure variation, and soil 

moisture exert dominant control on displacement 

behavior. These findings reaffirm the key role of 

hydrological triggers in slope deformation and 

validate the efficacy of ML-based methods for real-

time landslide monitoring and prediction. 

The proposed framework significantly 

enhances forecasting accuracy, interpretability, 

and lead time compared to traditional empirical or 

statistical models. Operationally, it offers the 

potential to reduce false alarms by 20–30%, 

optimize early-warning thresholds, and strengthen 

data-driven decision-making for proactive landslide 

risk management. This demonstrates the practical 

value of machine learning in transforming 

continuous monitoring data into actionable insights 

for field engineers and disaster management 

authorities. 

While the model was developed for a single 

monitoring site, it provides a strong foundation for 

broader applications. The framework can be further 

refined and adapted to diverse geological and 

climatic settings through additional calibration and 

multi-site integration. Likewise, incorporating 

temporal lag features and hybrid physics–machine 

learning approaches, such as LSTM–MLPR 

ensembles, is proposed to enhance its capability 

for long-term and cumulative displacement 

forecasting. Extending the system to multi-site or 

federated learning architectures will further 

strengthen its generalizability and resilience. 

Overall, this study demonstrates the practical 

and scientific potential of combining continuous 

sensor monitoring with interpretable machine 

learning for predictive geohazard assessment. It 

contributes a robust, scalable, and transferable 

methodology that supports real-time early-warning 

systems and climate-resilient slope management. 

The proposed framework thus represents a 

significant step toward intelligent, data-driven 

forecasting of deep-seated landslides in 

mountainous terrains worldwide. 
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