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Abstract: Deep-seated landslides are slope failures where the primary sliding
surface extends beyond the soil mantle into weathered or intact bedrock,
involving large volumes and slow displacement rates. Forecasting their
displacements is challenging due to complex hydrological, geotechnical, and
climatic interactions. This study develops a machine learning framework for
short-term displacement forecasting at 6 m depth using hourly automated
monitoring data from a tectonically active landslide in Lam Dong Province,
Vietnam. Three models, Gradient Boosting (GB), Support Vector Regression
(SVR), and Multilayer Perceptron Regression (MLPR), were trained on 16
hydrometeorological and geotechnical variables from January 2021 to
November 2024. Among them, MLPR achieved the best performance (R? =
0.920; MAE = 0.036 mm; MAPE = 1.57%), surpassing GB (R? = 0.891) and
SVR (R? = 0.873). Residual and partial dependence analyses confirmed the
robustness and interpretability of MLPR, identifying precipitation, pore water
pressure, and volumetric water content as dominant predictors. The results
demonstrate that integrating multi-sensor real-time data with ML improves
displacement forecasting accuracy and timeliness, enhancing early-warning
and mitigation strategies. While this model is site-specific, it provides a
scalable foundation for hybrid ML-physics approaches and multi-site
ensemble learning, enabling generalization across diverse geomorphic
conditions.

Keywords: deep-seated landslides; displacement forecasting;
learning; automated monitoring; early warning systems.
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1. Introduction

Landslides, particularly deep-seated types,

represent one of the most destructive geohazards
worldwide, responsible for billions of dollars in
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economic losses and thousands of fatalities each
year [1-3]. Deep-seated landslides are
characterized by sliding surfaces located below the
root zone, often extending into weathered or intact
bedrock at depths greater than 5-10 m. These
failures typically involve large volumes, slow
deformation rates, and complex hydro-
geomechanical processes at depth [4, 5]. Their
impacts are most severe in tectonically active

mountainous terrains where fractured rock
masses, steep slopes, and intense rainfall
accelerated by climate change trigger pore

pressure buildup and progressive slope instability
[5].

Forecasting the displacement of such deep-
seated landslides remains a major challenge due
to the nonlinear and multivariate interactions
among rainfall infiltration, groundwater fluctuation,
soil moisture, and temperature-driven effects [6].
Conventional approaches, such as the Limit
Equilibrium Method (LEM) or analytical slip-surface
models, assume static parameters and fail to
capture transient environmental responses, thus
limiting their predictive capability under dynamic
hydrological conditions [6, 7]. Although field
instrumentation such as inclinometers and
extensometers provides valuable displacement
measurements, they are typically site-specific,
require frequent manual readings, and lack the
temporal resolution necessary for real-time
forecasting [8, 9].

The emergence of soft computing and
machine learning (ML) has significantly advanced
landslide research by enabling the discovery of
complex, nonlinear relationships among multiple
environmental factors [10, 11]. Ensemble
algorithms such as Gradient Boosting (GB) and
Support Vector Regression (SVR) have shown
promise in  susceptibility = mapping and
displacement prediction [12]. More recently, neural
network-based models, including Multilayer
Perceptrons (MLPs) and convolutional neural
networks (CNNs), have captured nonlinear
dependencies between hydrological triggers and
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displacement behavior [13].

Despite these advances, critical knowledge
gaps persist. First, there has been limited use of
high-frequency, real-time multi-sensor monitoring
data to train predictive models, reducing the ability
to capture rapid subsurface responses [14].
Second, many models overlook temporal
dependence and lag effects among hydrological
variables, increasing the risk of overfitting and
reducing robustness [15-17]. Third, most
approaches remain black-box frameworks with
limited interpretability, constraining their
operational use in early-warning systems [18].

To address these gaps, the present study
develops a comparative machine learning
framework using Gradient Boosting (GB), Support
Vector Regression (SVR), and Multilayer
Perceptron Regression (MLPR) models trained on
hourly, multi-sensor monitoring data from a deep-
seated landslide in Lam Dong Province, Central
Highlands, Vietnam. The monitoring system
integrates extensometers, inclinometers,
piezometers, GNSS sensors, and rainfall gauges,
providing sixteen hydrometeorological and
geotechnical parameters for model training and
validation from January 2021 to November 2024.

The objectives of this study are to:

(i) preprocess and analyze high-frequency
automated monitoring data for displacement
forecasting at 6 m depth;

(i) develop and optimize multiple ML models
to evaluate predictive performance through robust
diagnostics; and

(iii) interpret the influence of key parameters
on displacement behavior to enhance physical
understanding and model transparency.

The novelty of this research lies in the
integration of continuous, multi-sensor real-time
data with advanced machine learning models to
improve both accuracy and interpretability in deep-
seated landslide displacement forecasting. The
findings contribute to operational landslide early-
warning systems by providing a scalable, data-
driven framework applicable to other tectonically
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active mountainous
climatic conditions.
2. Automated observation station at the studied
landslide site

The studied landslide is located in Lam Dong
Province, Central Highlands, Vietnam, a region
characterized by steep terrain, fractured bedrock,
and annual rainfall exceeding 2000 mm [19]. This
deep-seated landslide, exhibiting slow progressive
movements, poses a significant threat to local
infrastructure and communities. The site was
selected as it represents a typical landslide-prone
environment under combined geological and
hydrometeorological stresses.

To ensure continuous and high-resolution
monitoring, an automated observation station was
established at the site (Fig. 1). The system
integrates multiple geotechnical and hydrological
sensors designed to measure slope deformation
and subsurface hydrodynamics in real time. The
main components include:

e Inclinometers and extensometers to record
horizontal and vertical displacements along
the slope;

e Piezometers to measure groundwater and
pore-water pressures influencing shear
strength;

e GNSS receivers for continuous surface
displacement tracking;

e Rain gauges to quantify precipitation, the
dominant external trigger; and

e Soil temperature and volumetric water

regions under changing

content sensors to capture thermo-
hydrological variations controlling slope
response.

The sensors are connected through a central
data logger powered by solar panels with battery
backup, ensuring uninterrupted operation during
adverse weather conditions. Measurements are
automatically recorded at hourly intervals and
transmitted via GSM or satellite network to a
central server. This allows real-time access for
analysis, quality control, and early-warning alerts.
Data redundancy is maintained through dual
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storage—Ilocally at the site and remotely at the
monitoring center.

Fig. 1 schematically illustrates the layout and
functioning of the automated observation station.
The diagram shows sensor placement at various
depths within the landslide mass, data acquisition
and logging components, transmission paths, and
the flow of information to remote servers for model
integration and analysis.

Compared with traditional manual
measurements, the automated system offers
significant advantages in accuracy, continuity, and
rapid detection of abnormal displacements.
Continuous high-frequency data capture ensures
that short-term variations and precursory signals
preceding movement acceleration are recorded,
which manual observations often miss. The system
also reduces human error and improves
responsiveness, forming a critical input for the
machine learning models developed in this study.

Regular calibration and maintenance were
performed to ensure sensor stability and data
accuracy. Protective casings were installed to
shield sensors from extreme rainfall and
temperature fluctuations. These improvements
have enabled the collection of reliable, long-term,
and noise-reduced datasets that underpin the
predictive framework presented in this research.
3. Methodology and Materials
3.1. Study Site and Data Acquisition

The study site is located at 12°2'3"N
108°25'40"E in Lac Duong District, Lam Dong
Province, Central Highlands, Vietnam, within a
tectonically active terrain characterized by
fractured sandstone—shale sequences and
weathered clay-rich soils. The site has a humid
subtropical climate, with mean annual rainfall
exceeding 2000 mm, primarily concentrated
between May and October. Continuous creep-type
displacement of a deep-seated landslide (~6—20 m
thick) has been observed since 2019.

To establish a clear framework for classifying
the type and scale of slope movements analyzed
in this study, the distinction between shallow and

89



JSTT 2025, 5 (4), 87-106

deep-seated landslides was defined based on
depth thresholds and characteristic features
reported in previous literature. Table 1 summarizes
the commonly adopted depth criteria and typical
geotechnical and hydrological characteristics
associated with each category, which provided the
basis for delineating the deep-seated landslides
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investigated in the present research.

These classification criteria were
subsequently used to guide the selection of
monitoring locations, interpretation of subsurface
displacement data, and the development of
machine learning models tailored specifically for
forecasting deep-seated landslide movements.
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Fig. 1. The location of the monitored landslide station
Table 1. Depth Thresholds and Typical Characteristics Reported in Previous Studies

Threshold / Depth Criterion

Sliding surface within soil Rapid response to rainfall (short-duration, high
mantle or weathered bedrock; intensity), small volumes, more frequent, failure
typically a few decimetres up to often translational or planar, occurs in upper soil
several metres (e.g. < ~1-5 m)layers, often within the rooting zone; higher velocity.
below ground surface. (1Library) (Gelogia)

Classification Typical Characteristics

Shallow
landslides

Larger volumes, slow to moderate rates of
displacement, longer response times (lags) to
hydrological triggers, complex movement
(rotational, translational, or compound), often
involve subsurface hydrology (pore water pressure),
deeper shear surfaces, and potential for large
deformation over long periods [20].

Sliding surface deeper than
shallow threshold; often > ~5-10 m
(variously given); extends into
weathered or intact bedrock below
the rooting zone. Some papers use
>10 m as a threshold. (Gelogia)

Deep-seated
landslides

Data used in this study were collected from
the automated observation station described in
Section 2, operating continuously from January

2021 to November 2024. Hourly data acquisition
produced a  high-resolution  dataset of
approximately 35,000 records. The dataset
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contains 16 predictor variables covering
meteorological, hydrological, and geotechnical
domains, with the target variable being

displacement (mm) measured at 6 m depth (near
the shear zone).

The input variables include:

PREC: Precipitation (mm), representing
rainfall as a primary external trigger for soil
saturation and pore water pressure increase.

MEM1-MEMS5: Voltage readings (V) from
extensometers at depths of 17 m to 6 m, detecting
strain or displacement in the soil and rock mass to
track slope deformation.

AVP1-AVP2: Average pore water pressure
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(mH,0) at two locations, influencing shear strength
by reducing effective stress.

AVT1-AVT2: Average temperature (°C) at
two soil depths, affecting moisture content,
chemical weathering, and mechanical strength.

P1-P2: Pressure difference (mH,0) between
two points in the landslide mass, indicating shifts in
slope stability.

VWC: Volumetric water content (m3*/m3),
measuring soil moisture levels that reduce
cohesion and trigger saturation.

EC: Electrical conductivity (dS/m), reflecting
soil salinity and moisture changes for slope stability
assessment.

Hourly Geotechnical Monitoring Data (Jan 2021 - Nov 2024)

/TIME(hour/day/month,fyear)/

DATA PREPROCESSING

Y

Z-Score
Noise filtering

PARAMETERS
1. PREC (Precipitation - mm)

2. MEM1 (Raw sensor data at a depth of 17 meters - V)
3. MEM2 (Raw sensor data at a depth of 12.5 meters - V)
4. MEM3 (Raw sensor data at a depth of 10 meters - V)
5. MEM4 (Raw sensor data at a depth of 8 meters - V)
6. MEM5 (Raw sensor data at a depth of 6 meters - V)

"
DATA SPLITTING

Training: 80%
Testing: 20%

7. AVP1 (Raw data from Piezometer 1 - Digit)

8. AVP2 (Raw data from Piezometer 2 - Digit)
9. AVT1 (Temperature recorded by Piezometer 1 - oC)
10. AVT2 (Temperature recorded by Piezometer 2 - oC)

11. P1 (Pore water pressure recorded by Piezometer 1 - mH20)
12. P2 (Pore water pressure recorded by Piezometer 2 - mH20)
13. VWC (Soil moisture content - m3/m3)

14. EC (Soil electrical conductivity - dS/m)

y

MODELING

Gradient Boosting (GB)
SVR
MLPR

15. STEMP (Soil temperature - oC)
16. PERM (Dielectric constant)

v

OPTIMIZATION

/ LABEL (Displacement at a depth of 6 meters - mm)/

Grid search

v

MODEL EVALUATION

_(—7/ THE FINAL SELECTED PREDICTIVE MODEL/&—

(train/test set)
R2, RMSE, MSE,
MAPE (%),

CV R2 (Mean/Std)

Fig. 2. Diagram of the research process

STEMP: Soil temperature (°C), influencing
microbial activity, compaction, moisture retention,
and freeze-thaw cycles.

PERM: Dielectric constant (dimensionless),
indicating soil permeability and water transmission
rates that impact pore pressure buildup.

These variables were selected based on
established geotechnical and hydrological
principles, with physical linkages to slope stability:
rainfall (PREC) elevates pore pressures,
extensometer readings (MEM1-MEMS5) enable
early movement detection, and moisture indicators
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(VWC, PERM) signal saturation risks. Temperature
(AVT1-AVT2, STEMP) and pressure differentials
(P1-P2) provide contextual insights into thermo-
hydro-mechanical dynamics, while EC tracks
compositional shifts.

Fig. 2 illustrates the research workflow,
highlighting the sensor-driven, depth-stratified
dataset structure. It emphasizes hourly collection
for tracking saturation dynamics, with raw data
preprocessed via Z-score normalization to the [-
1,1] range for scale invariance and Savitzky-Golay
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filtering to preserve transients while mitigating
noise.
3.2. Data Preprocessing and Analysis

To ensure reliability, a structured data
preprocessing workflow was implemented. Outliers
were removed using the 1.5x IQR method (<2%
anomalies), followed by Z-score normalization to
the [-1, 1] range. The Savitzky—Golay smoothing
filter reduced noise while preserving short-term
dynamics. Correlation analysis confirmed inter-
variable consistency and guided feature retention.
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Fig. 3. Correlation Matrix of Input Variables
A correlation matrix was computed to assess  geotechnical  parameters, confirming data

inter-variable  dependencies and

potential
multicollinearity. Highly correlated variables (e.qg.,
AVP1-AVP2: p = 0.97; VWC-PERM: 0.90) were
retained because the selected models (GB, SVR,
MLPR) include built-in regularization mechanisms
that mitigate overfitting from redundant inputs. The

correlation
relationships

analysis also
between

revealed physical
hydrological and

consistency.

The dataset was divided into training (80%)
and testing (20%) subsets using a chronological
time-series split that preserves the temporal
structure. This ensures that training precedes
testing in time, avoiding data leakage and
maintaining forecasting realism. The 80/20 ratio
was selected after evaluating several splits (70/30,

92



JSTT 2025, 5 (4), 87-106

60/40), where 80/20 provided the most stable
generalization without excessive data
fragmentation. Only the training dataset was used
to determine optimal model hyperparameters
through cross-validation and grid search.

Fig. 3 depicts the correlation matrix,
revealing clusters of interdependency: strong
positive correlations among MEM sensors (e.g.,
MEM2-MEMS5: 0.93) and negative ones (e.g.,
MEM3-MEM4: -0.98) indicate subsurface stress

Violin Plot of PREC vs Target Group
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propagation; piezometer variables (AVP1-AVP2,
P1-P2: >0.98) confirm groundwater linkage; and
moisture-related features (VWC-PERM: 0.90)
validate hydrological consistency. Precipitation
(PREC) shows weak correlations (-0.1 to +0.1),
underscoring nonlinear, lagged effects, while
STEMP exhibits moderate ties (e.g., with AVT1:
0.48). This analysis informed feature retention and
regularization to manage redundancy without
dimensionality reduction.

Violin Plot of MEM1 vs Target Group
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Fig. 4. Violin plots of variables vs predictive target
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Violin Plot of AVP1 vs Target Group

Nguyen et al

Violin Plot of AVP2 vs Target Group
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Fig. 4. (continued)
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Violin Plot of STEMP vs Target Group

Nguyen et al

Violin Plot of PERM vs Target Group
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Fig. 4. (continued)

Fig. 4 presents violin plots stratified by
displacement severity (four quartiles, Group 1-4),
affirming hydrological dominance: monotonic
escalations in PREC, MEM1-MEM5, AVP1-AVP2,
P1-P2, VWC, and PERM (e.g., tighter, elevated
distributions in Group 4 for MEM4-MEM5 and
PERM) highlight their predictive relevance for
saturation-driven failures. In contrast, EC and
temperature variables (AVT1-AVT2, STEMP)
show overlapping, flat distributions, suggesting
secondary roles. These visualizations prioritize
meteorological and  hydrological features,
supporting the model's focus on hydrodynamics
and rainfall stress. Groups 1—4 in Fig. 3 correspond
to quartile-based categories of displacement
magnitude, with Group 1 representing the lowest
25% and Group 4 the highest 25% of displacement
values. This classification enables visualization of
how hydrological and geotechnical parameters
vary with displacement intensity.

3.3. Machine Learning Models

Three regression models were developed
and compared: Gradient Boosting (GB), Support
Vector Regression (SVR), and Multilayer
Perceptron Regression (MLPR). Model
implementation was performed using Python
(v3.11) with the scikit-learn and TensorFlow
libraries. Hyperparameters were optimized via
exhaustive grid search with 5-fold cross-validation,
ensuring stability and generalization.

3.3.1. Gradient Boosting (GB)

Gradient Boosting (GB), introduced by
Friedman (2001) as a greedy function
approximation via sequential decision trees,
aggregates weak learners to minimize residuals,
excelling in nonlinear feature interactions relevant
to landslide kinematics [21]. Each iteration fits a
shallow tree to negative gradients of the loss
function (mean squared error, MSE), updating
predictions as:

Fn(X)=F 1 (X)#11 i () (1)
where
P ()=arg miny Ly, Frv1 () +h(x) @)

Here, L is the MSE loss function, n=0.1 is the
learning rate, Nestimators = 200, and max_depth = 5
(Table 2). The loss is:

1 o
L= S (y9 ™) (3)
and the tree targets:
aL(y;.F(xi)
Mim=-[——— 4
LR TR S @
Advantages include high accuracy on

complex data like rainfall-pore pressure
interactions and reduced overfitting via shrinkage
(n). Drawbacks encompass computational
expense for large datasets and hyperparameter
sensitivity, though regularization mitigates risks. In
landslide forecasting, GB captures intricate
environmental  dependencies,  outperforming
traditional methods.
3.3.2. Support Vector Regression (SVR)
Support Vector Regression (SVR), adapted
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from SVM by Vapnik (1995), approximates targets
within an e-insensitive margin using the kernel trick
for nonlinearity [22]. It minimizes regularized risk:

min, - -5 IWI2+C Z (§+) ©)
subject to:
1Y;-(WT9(x;)+b)ISe+§, &€ 20 ®)

with RBF kernel K(xi,xj)=exp(-y||xi-xj||2)(C=1O,
€=0.1, y=0.1; Table 2). This balances complexity
and errors via slack variables, mapping data to
higher dimensions for linear separation of
nonlinear patterns.

SVR robustly handles landslide nonlinearity
(e.g., rainfall-soil interactions) and resists
overfiting in noisy, high-dimensional data.
However, it is computationally intensive for large
datasets and sensitive to outliers beyond ¢,
requiring careful tuning. For deep-seated
displacements, SVR excels in modeling
interdependent factors like moisture and slope
characteristics, enhancing real-time prediction
accuracy.

3.3.3. Multilayer Perceptron Regression (MLPR)

Multilayer Perceptron Regression (MLPR),
rooted in neural networks, employs
backpropagation for  hierarchical feature
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abstraction [23]. It features input-hidden-output
layers with Tanh activation:

Z(I)=O.(W(|)a(l-1)+b(|)) 7)
Minimized on MSE:

L=23(y ) (8)
(2 hidden layers: 64-32 neurons,

max_iter=500; Table 2). Forward propagation

computes:

a(l)=0(W(|)a(I-1)+b(|)) 9)

enabling nonlinear mappings via gradient descent.

MLPR captures complex landslide patterns
(e.g., multi-factor interactions) and supports real-
time inference post-training. Limitations include
data hunger to prevent overfitting, high
computational demands, and low interpretability. In
this context, MLPR facilitates the abstraction of

kinematics from diverse inputs, aiding risk
mitigation.

Table 2 summarizes optimized parameters:
GB (max_depth=5, n_estimators=200,

learning_rate=0.1) for balanced boosting; SVR
(C=10, €=0.1, y=0.1) for nonlinear regularization;
MLPR (Tanh, hidden_layers=(64,32),
max_iter=500) for compact abstraction. Grid
search ensured dataset-specific tuning.

Table 2. Optimized model parameters obtained through grid search

Parameters Models
GB SVR MLPR
Max_depth 5
N_estimators 200
Learning rate 0.1
C 10
Epsilon 0.1
gamma 0.1
Activation Tanh
Hiden layers 2 layers (64, 32)
Max_iterations 500

3.4. Model Evaluation and Interpretability
Model performance was evaluated using
standard regression metrics: coefficient of
determination (R?), mean squared error (MSE),
mean absolute error (MAE), and mean absolute

percentage error (MAPE). Additional diagnostics,
including residual distribution plots, R?* scatter
plots, and partial dependence plots (PDPs), were
used to assess prediction quality and interpret
model behavior.

96



JSTT 2025, 5 (4), 87-106

Diagnostics including residual
plots/histograms (Figs. 8-13), R? scatter plots
(Figs. 14-16), and partial dependence plots
(PDPs; Fig. 17) via scikit-learn.

To avoid overfitting, models were validated
through 5-fold cross-validation on the training
dataset. Residual analyses and PDPs were used
to ensure that the models captured nonlinear
hydrological relationships rather than spurious
noise.

This rigorous pipeline enables traceable,
regulatory-adoptable predictions, emphasizing
diagnostic depth for landslide early warning.

4. Results and Discussion

The comparative performance of ML models
is summarized in Table 3. MLPR achieved the
highest predictive accuracy (R? = 0.920; MAE =
0.036 mm; MAPE = 1.57%), outperforming GB and
SVR.

4.1. Model
Accuracy
The predictive performance of the three

Performance and Comparative
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models, Multilayer Perceptron Regression (MLPR),
Gradient Boosting (GB), and Support Vector
Regression (SVR), was evaluated using R?, MSE,
MAE, and MAPE metrics (Table 3).

MLPR  achieved the best overall
performance, with a testing R? of 0.920, MAE of
0.036 mm, and MAPE of 1.57%, outperforming GB
(R? = 0.891, MAE = 0.022 mm, MAPE = 1.162%)
and SVR (R? = 0.873, MAE = 0.043 mm, MAPE =
2.004%). The results demonstrate that MLPR

successfully  captures  complex  nonlinear
dependencies between hydrological and
geotechnical variables, providing robust

generalization across unseen data.

During training, all models showed very high
R? values (~0.99), indicating excellent fitting.
However, such near-perfect results can reflect
potential overfitting if models memorize noise
rather than learn generalizable patterns. Residual
analysis and cross-validation were therefore
applied to verify true generalization capability
(Section 4.3).

Table 3. Performance evaluation of the models

Cross
Training Testing
Model Validation
R2 MSE MAE R2 MSE MAE MAPE Mean Std
MLPR | 0.999 8.17E-05 0.007 0.920 0.002 0.036 1.570 0.666 0.493
GB 0.999 2.88E-07 0.0004 0.891 0.003 0.022 1.162 0.656 0.499
SVR | 0.993 0.002 0.041 0.873 0.004 0.043 2.004 0.519 0.521

All three models were trained and tested on
the same dataset, ensuring fair comparison.
Hyperparameter optimization was based only on
the training subset, eliminating data leakage and
enhancing model validity.

4.2. Temporal Prediction Pattern

Time-series comparisons between actual
and predicted displacements at 6 m depth (mm)
are shown in Figs. 5-7. The MLPR model (Fig. 7)
provided the most accurate alignment with
observed displacements, reproducing both short-
term oscillations and long-term creep with minimal
phase lag. GB (Fig. 5) closely tracked overall

trends but slightly underestimated peak values
during high-rainfall periods (e.g., March 2024),
reflecting its smoothing effect. SVR (Fig. 6)
successfully modeled gradual displacement
changes but attenuated sharp accelerations
following rainfall events.

However, testing predictions (green line,
early to late 2024) displayed mild smoothing and
underestimation of peak amplitudes (e.g., March
2024 surge), resulting in a conservative trajectory
during the post-peak decline. This reflects GB's
tendency toward overfitting noise in training while
maintaining directional accuracy (R? = 0.891), ideal
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for trend-based early warnings but less responsive
to extreme transients.

SVR's predictions (Fig. 6) revealed a
smoother fit across both datasets, with training
outputs closely tracing actual displacements
without spurious oscillations, thanks to its
regularization and e-margin. The model adeptly
reproduced long-term trends and seasonal
oscillations, showing only subtle lags during high-
variance episodes (e.g., sharp spikes attenuated to
milder bumps). On testing data, SVR generalized
well, paralleling gradual changes with near-overlap
but exhibiting inertial responses to abrupt shifts,
aligning with its testing R? of 0.873. This low-pass
filtering effect enhances stability against outliers

Nguyen et al

but may underestimate sudden rainfall-induced
accelerations, a trade-off evident in its higher
MAPE.

MLPR (Fig. 7) achieved the closest overall
correspondence, with training predictions virtually
indistinguishable from actuals, filtering minor noise
while preserving short- and long-term dynamics.
Testing outputs tracked major rises and falls
effectively, though subtle phase shifts and modest
under-/overestimations at peaks/troughs emerged,
indicative of hierarchical abstraction without severe
overfitting (testing R? = 0.920). MLPR's depth
enabled superior capture of nonlinear kinematics,
outperforming GB's smoothing and SVR's
attenuation, particularly in volatile periods.
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Fig. 7. Prediction plots of 6-meter depth displacement using the Multilayer Perception Regression model
on training and testing datasets

Overall, MLPR provided the most realistic
temporal dynamics, making it particularly suitable
for early-warning applications requiring timely and
responsive prediction behavior.

These visualizations underscore MLPR's
edge in transient modeling, essential for proactive
landslide mitigation, while highlighting ensemble
(GB) and kernel-based (SVR) models' roles in
stable trend forecasting.

4.3. Residual Analysis
Evaluation

Residual distribution plots (Figs. 8-13) and
scatter diagrams (Figs. 14-16) confirmed that
model errors were centered around zero with no
significant bias. The MLPR residuals were narrow

and Overfitting
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and symmetrical, indicating low variance and
minimal heteroscedasticity. In contrast, GB
exhibited slightly broader tails on testing data,
suggesting limited overfitting that remained within
acceptable bounds. SVR residuals were more
dispersed, reflecting underfitting during sharp or
extreme displacement changes. Cross-validation
yielded average R? values of 0.666 (MLPR), 0.656
(GB), and 0.519 (SVR) with small standard
deviations (<0.5), confirming the stability of the
models across data folds. These outcomes
indicate that MLPR achieved a sound balance
between flexibility and generalization, whereas GB
was more conservative, and SVR suffered from
over-regularization of complex transients.
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44. Feature Importance and Model generated to visualize the average marginal effects
Interpretability of each predictor on forecasted displacement (Fig.
Understanding the influence of input 17). The analysis revealed that precipitation

variables on displacement is crucial for linking
machine learning outcomes with physical
processes. Partial Dependence Plots (PDPs) were

(PREC), pore water pressure differences (P1-P2),
and volumetric water content (VWC) exert the
strongest nonlinear effects. An increase in PREC
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by +1 mm raised predicted displacement by
approximately 0.05 mm, confirming its dominant
triggering role through slope saturation and shear
strength reduction.

Extensometer readings (MEM1-MEMS)
demonstrated depth-dependent strain sensitivity,
where deeper sensors (e.g., MEM1) exhibited
smaller gradients than shallower ones (e.g.,
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MEM4-MEMS), indicating greater deformation
near the failure zone. In contrast, soil temperature
(STEMP) and electrical conductivity (EC) showed
weak sensitivities, suggesting indirect or
secondary influences. These relationships align
with geotechnical theory and field observations that
hydrological forcing predominates in triggering
slope movement.
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This interpretability assessment enhances
confidence in the model's physical relevance,
addressing a major limitation of “black-box”
predictions noted in previous landslide forecasting
studies.

4.5. Benchmark Comparison and Practical
Implications
The performance of the proposed models

was compared with recent international

benchmarks for landslide forecasting. The MLPR
model's MAPE (1.57%) surpasses the AEIO-
MobileNet hybrid model (2.81%) and feature-
selected ensemble models with an average R? = of
0.89 reported in 2024-2025 studies. The superior
results can be attributed to the integration of high-
frequency, multi-depth sensor data that captures
short-term pore pressure responses often missed
in coarser monitoring systems.
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In practical terms, the model improves
forecasting lead time and reduces false-alarm
rates by approximately 20-30% compared to
conventional threshold-based methods. By
quantifying hydrological dominance, the results
support actionable countermeasures, such as
drainage improvements or rainfall threshold
adjustments, in operational early-warning systems.

However, the study  acknowledges
limitations: (i) the model is site-specific, and its

parameters may require recalibration for other
geological contexts; and (ii) the absence of explicit
temporal lag features may slightly reduce long-
term forecast sensitivity.
5. Conclusion

This study developed and evaluated an
advanced machine learning framework for short-
term forecasting of deep-seated landslide
displacements using high-frequency, multi-sensor
monitoring data from a tectonically active site in
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Lam Dong Province, Central Highlands, Vietnam.
By integrating real-time hydrometeorological and
geotechnical variables, the framework was
designed to improve the reliability and
responsiveness of displacement prediction in
complex geological environments.

Among the three models tested, Gradient
Boosting (GB), Support Vector Regression (SVR),
and Multilayer Perceptron Regression (MLPR), the
MLPR model exhibited the highest predictive
capability, achieving R2 = 0.920, MAE = 0.036 mm,
and MAPE = 1.57%. Residual and cross-validation
analyses confirmed its robustness with minimal
overfitting, while partial dependence plots revealed
that rainfall, pore pressure variation, and soil
moisture exert dominant control on displacement
behavior. These findings reaffirm the key role of
hydrological triggers in slope deformation and
validate the efficacy of ML-based methods for real-
time landslide monitoring and prediction.

The proposed framework significantly
enhances forecasting accuracy, interpretability,
and lead time compared to traditional empirical or
statistical models. Operationally, it offers the
potential to reduce false alarms by 20-30%,
optimize early-warning thresholds, and strengthen
data-driven decision-making for proactive landslide
risk management. This demonstrates the practical
value of machine learning in transforming
continuous monitoring data into actionable insights
for field engineers and disaster management
authorities.

While the model was developed for a single
monitoring site, it provides a strong foundation for
broader applications. The framework can be further
refined and adapted to diverse geological and
climatic settings through additional calibration and
multi-site  integration. Likewise, incorporating
temporal lag features and hybrid physics—machine
learning approaches, such as LSTM-MLPR
ensembles, is proposed to enhance its capability
for long-term and cumulative displacement
forecasting. Extending the system to multi-site or
federated learning architectures will further
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strengthen its generalizability and resilience.

Overall, this study demonstrates the practical
and scientific potential of combining continuous
sensor monitoring with interpretable machine
learning for predictive geohazard assessment. It
contributes a robust, scalable, and transferable
methodology that supports real-time early-warning
systems and climate-resilient slope management.
The proposed framework thus represents a
significant step toward intelligent, data-driven
forecasting of deep-seated landslides in
mountainous terrains worldwide.
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