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Abstract: Being able to accurately predict bike-sharing demand is important 

for Intelligent Transport Systems and traveler information systems. These 

challenges have been addressed in a number of cities worldwide. This article 

uses Random Forest (RF) and k-fold cross-validation to predict the hourly 

count of rental bikes (cnt/h) in the city of Seoul (Korea) using information 

related to rental hour, temperature, humidity, wind speed, visibility, dewpoint, 

solar radiation, snowfall, and rainfall. The performance of the proposed RF 

model is evaluated using three statistical measurements: root mean squared 

error (RMSE), mean absolute error (MAE), and correlation coefficient (R). The 

results show that the RF model has high predictive accuracy with an RMSE of 

210 cnt/h, an MAE of 121 cnt/h, and an R of 0.90. The performance of the RF 

model is also compared with a linear regression model and shows superior 

accuracy. 

Keywords: Bike-sharing demand; travel demand forecasting; machine 

learning; Random Forest. 

 
 
1. Introduction 

The challenges of climate change, global 

automation, and resource depletion are affecting 

every nation on the planet, and they are becoming 

more and more serious, especially for transport 

systems [1]. In response, governments and 

authorities are constantly implementing measures 

to develop more sustainable and resilient transport 

systems, including clean fuel, electric vehicles, 

strict regulations of the demand for private vehicle 

ownership, and the development of efficient public 

transport systems [2]. Bike-sharing systems are 

one of the measures that have been adopted to 

address these challenges [3]. 

The principle of a bike-sharing system is 

straightforward. People pay a fee to rent a bike for 

a short time period. This system is convenient 

because users can comfortably use it to move 

around without owning a bicycle, providing health 

benefits while paying only a small amount of 

money. In addition, the use of bike-sharing 

services also brings significant benefits such as 

greenhouse emissions reduction, zero fuel 

consumption, congestion reduction, physical 

exercise (public health), and an increase 

awareness about the environment [4]. 

Early bike-sharing systems were invented 

around 1960. By 2022, they had primarily 

developed into three models [5]: (a) free bike 

system, (b) deposit bike rental system with private 

parking, and (c) bike-sharing system using location 

technology. The third one often goes along with 

larger deposits and requests to provide user 

information in order to overcome the 
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disadvantages of the previous two forms. 

Currently, bike-sharing systems are being used 

and developed worldwide, especially in Europe, 

America, and Asia. In Vietnam, for the past few 

years, the public sharing model has been piloted in 

several urban areas, tourist resorts, and major 

universities in the form of a bike-sharing system, 

and it has received many positive reviews from 

users. One of the most critical aspects that may 

assist investors in developing a successful 

implementation model that benefits the community 

is the hourly number of rental bikes required to 

operate the system. An additional issue for 

managers is accurately forecasting demand for 

bikes at any time and from any location to help with 

traffic planning in urban areas. 

Today, thanks to advance in information 

technology and improvements in computer 

infrastructure, data-driven decision-making 

practices with the assistance of technology has 

become common. The use of data to estimate bike-

sharing (or rental) demand has been adopted in a 

number of studies. For example, a bike-sharing 

dataset from India was used to predict the number 

of bikes rented per hour using decision tree (DT), 

Random Forest (RF), and Gradient Boosting (GB) 

[6]. Another study presented a prediction model to 

forecast user demands and efficient operations for 

rental bikes using tree-based machine learning 

models. This nonparametric approach uses a DT 

model to solve regression problems using the 

following continuous and categorical variables: 

holiday status, function day, week status, and the 

day of the week [7]. The prediction was carried out 

using Linear Regression (LR), k-nearest neighbor 

(KNN), GB, and RF. Four performance metrics—

namely RMSE, coefficient of variance (CV), and 

mean and median absolute error—are used to 

determine model performance. Compared with 

other models, RF performed best [8].       

Because bike sharing is a continuous 

operation, the primary goal of this study is to utilize 

RF to forecast the required hourly number of rental 

bikes (count of hourly rental bikes – cnt/h). This 

study employs RF thanks to its efficiency and 

robustness in solving regression and classification 

problems [9,10]. A comprehensive model 

evaluation was conducted using k-fold cross-

validation, and three statistical measures were 

used to assess model performance: (a) RMSE, (b) 

MAE, and (c) Pearson correlation coefficient (R). 

Compared with previous studies, this work 

leverages predictive modelling to evaluate the 

bike-sharing demand in Seoul by using nine 

continuous input variables. 

2. Database description 

This study leverages a dataset collected and 

used in previously published works for bike 

demand prediction using eight weather parameters 

and hour information [11,12]. The dataset—

available in the UCI Machine learning Repository 

[13]—includes 8,760 samples. The dataset is 

divided into two: 6,132 (70%) data points are used 

for training, and the remaining 2,628 (30%) data 

points are used for testing. The RF model is built 

using the following nine continuous variables: hour, 

temperature, humidity, wind speed, visibility, 

dewpoint, solar radiation, snowfall, and rainfall, 

indicated in Fig. 1 as X1 to X9, respectively. These 

inputs influence bike-sharing demand, the output 

(denoted as Y) of this study.  

Fig. 1 shows the distribution histogram and 

correlations among the input and output 

parameters used in the study. 

In general, most input variables in the 

database cover a wide range of values. The 

Pearson correlation coefficient (R) was calculated 

and highlighted with respect to each pair of 

variables [14]. Except for X2 and X6, which are 

directly correlated, the results revealed no strong 

correlation between the input and output 

parameters as seen with relatively low R values 

(i.e., R <0.54). The figure also suggests that all 

other variables are independent and capture 

different properties of Y. 

As a last note, in order to minimize the errors 

generated during the simulation process, the 

dataset is scaled within the range of values [0,1] to 

limit errors generated by numerical simulations. 
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Fig. 1. The distribution chart and correlations between input and output parameters 

3. Model description 

3.1. Random Forest 

RF is a supervised learning algorithm used to 

solve classification and regression problems. It 

was introduced and developed by Leo Breiman in 

2001 [15]. RF is one of the algorithms built on the 

decision tree modeling technique. Each tree acts 

as a vote as the basis of the algorithm's decision-

making. According to the resampling principle 

(Bootstrap method), each decision tree is 

generated based on a random training sample set 

generated from the original one with the same 

magnitude according to the resampling principle. 

Furthermore, each decision tree is based on the 

newly created sample set with the principle of using 

only a limited number of input variables at each 

split node. The final result is the average result 

obtained from all decision trees. Combining the 

results of many independent decision trees with 

low bias and high variance helps RF achieve 

relatively low bias and low variance. 

Prediction trees receive specific numerical 

values in the regression problem instead of a class 

in classification problems [15]. In the design of 

regression trees, each tree is allowed to grow to 

the maximum depth of the training data without 

performing any reduction (branching). This is also 

a significant advantage of this algorithm because 

tree reduction is a significant factor affecting the 

model's performance [16]. Breiman [15] also 

argues that as the number of trees increases, the 

general error converges even when the tree is not 

reduced, and the treatment of model overfitting is 

done based on the law of large numbers. The 

number of variables (p) used at each node to 

create a decision tree and the number of decision 

trees (Q) used are two pre-selected parameters. 

The number of trees in the forests should be large 

enough to ensure that all attributes are used 

several times. Generally, the number of trees used 

for classification or regression problems varies 

from a few to 1000 trees, depending on the 

complexity of the relationship between the input 

and output variables. The optimal value is 

determined on a case-by-case basis. 

In recent years, RF has been popularly used 
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thanks to its advantages over other algorithms; 

namely, its ability to evaluate the internal error, to 

evaluate the importance of the input variable, and 

to handle variables with low correlation. As a result, 

RF has been widely applied in a variety of areas, 

including water demand [17], banking to forecast 

client reaction [18], stock market price direction 

[19], e-commerce [20], and science technology 

[21,22]. 

RF includes the following main steps: (i) set 

of trained regression trees using the training set; (ii) 

calculate the mean of the yield of individual 

regressors; (iii) cross-validate prediction data using 

a validator. 

3.2. k-fold cross-validation 

k-fold cross-validation (CV) is a basic form of 

cross-validation (Fig. 2). It is widely used to 

quantify the prediction performance of machine 

learning models, especially for the selection of 

hyper-parameters. The data is first partitioned into 

k equally sized segments or folds. Subsequently, k 

iterations of training and validation are performed 

such that, within each iteration, a different fold of 

the data is held out for validation, whereas the 

remaining k-1 folds are used for training. In 

classification problems, data are commonly 

stratified prior to being split into k folds. For 

regression problems, 5-fold or 10-fold cross-

validation choices are often selected [23,24]. 

 
Fig. 2 . Cross-validation technique with 10-fold used in this study 

In this work, the original data are split into two 

sets: training and testing. The training set is 

randomly divided into k parts; then, the model is 

trained k times, each time with 1 part as validation 

data and k-1 parts as training data. Meanwhile, the 

testing set is set aside because to be used to 

evaluate the model after the training phase to see 

how the model handles new data. It is kept 

separate and reserved only for the final evaluation 

step to check the performance of the model when 

encountering completely unseen data. 

After the model is evaluated and if the results 

(e.g., the average performance) are acceptable, 

one of the following two ways is carried out to 

create the final model for further use and 

investigation. 

The first one: the best model is taken in the 

training process. The advantage of this approach 

is that there is no need to retrain the model, but it 

might not be able to cover all the range of input 

data (the training data is fixed), so the model might 

not work well with new data. 

The second one: train the model one more 

time using the full training data (not separated into 

folds), then it is used to predict the test set to 

measure the model's generalization ability. 

3.3. Performance assessment 

The performance of the prediction models is 

evaluated using three statistical indices, namely 

RMSE, MAE, and R. The R value ranges from -1 to 

1, and a higher R value (i.e., an absolute value 

closer to 1) suggests a higher performance. For 

RMSE and MAE, a lower value (i.e., lower error) 

suggests a higher performance. Mathematically, 

RMSE, MAE, and R are defined as 

2
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where N is the number of input data, y  is the 

mean value of the outputs, and y0 and yp express 

the actual and modeled/predicted values, 

respectively. 

4. Results and discussion 

4.1. RF prediction results 

This section introduces the training and 

evaluation of an RF model using k-fold cross-

validation (CV), which includes two steps. For the 

first step, the RF model is trained using the training 

dataset (70% of the samples; 6,132 data points) 

with a 10-fold CV. This means that the training 

dataset was divided into ten parts, and the 

simulation was repeated ten times, as previously 

mentioned. Notably, this first step is used for hyper-

parameter tuning. Namely, a range of hyper-

parameter values are tried, and the ones that 

achieve the highest prediction accuracy are kept 

(highest R and lowest RMSE, MAE values). The 

final hyper-parameter values are as follows: 

number of trees: 200; max depth: unlimited; 

minimum samples split: 2; minimum samples leaf: 

1.  

For the second step, the model is retrained 

on the full training dataset and tested on the testing 

dataset. It is worth noting that the testing dataset 

(which contains the remaining 30% of data; 2,628 

data points) is only used to evaluate the model's 

predictive ability. It is not used for model training 

and hyper-parameter section. Using the hyper-

parameters from step 1, the second step is 

repeated ten times by randomly shuffling the 

training and testing sets from the full dataset to 

ensure that the performance accuracies are stable. 

The main goal here is to ensure the generalizability 

of the prediction results. 

The evaluation results for the ten runs in step 

2 are shown in Figure 3. It can be seen that the 

proposed RF model performs reasonably well for 

all ten runs. Further, the performances of the 

models do not fluctuate significantly, which mean 

they all capture the same relationships from the 

dataset. 

On the training sets, R values oscillate 

around 0.97, and RSME and MAE values oscillate 

around 155 cnt/h and 95 cnt/h, respectively. These 

results demonstrate that the trained RF model 

performs well and can be selected for further 

exploration on unseen data. Similarly, the model 

performance on the testing sets are also stable. 

Compared to the performance on the training sets, 

R values decrease by about 10%, and RMSE and 

MAE values increase roughly by a factor of 2, 

which is reasonable. The average prediction 

results of the RF model remain high (i.e., R ≈ 0.88, 

RMSE ≈ 310 cnt/h, MAE ≈ 185 cnt/h). 

We note that randomly shuffling the training 

data can have a certain influence on the prediction 

performance of the RF model. For example, the 

sixth run achieved the best performance with 

respect to the R values, whereas the fifth run had 

the best performance in terms of RSME, and the 

third run in terms of MAE. Yet, the difference 

between the various simulations is negligible, and 

the RF model performs well in the overall analysis. 

As a result, the selected RF model may be used to 

predict the bike-sharing demand with such a high 

level of accuracy. 

In this section, the typical predictive results 

for the problem are presented. The regression 

analysis for the training dataset (Fig. 4a), the 

testing dataset (Fig. 4b), and all data (Fig. 4c) are 

shown. In each figure, the diagonal (black dashed 

line) represents an ideal correlation for the problem 

(R=1). In addition, the RF model's regression line 

is also shown by the violet line (which deviates from 

the ideal regression line as is usually the case). For 

each case, the predictors are calculated and 

expressed in each figure. Precisely, R = 0.97, 

RMSE = 158 cnt/h, and MAE = 94 cnt/h for the 

training data, R = 0.89, RMSE = 298 cnt/h, and 
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MAE = 186 cnt/h for the testing data, and R = 0.90, 

RMSE = 210 cnt/h, and MAE = 121 cnt/h for the 

entire data. These results show a high prediction 

performance of the proposed RF model. 

Finally, Figs. 5a and b describe the RF 

model's distribution and cumulative distribution of 

error for the training and testing parts, respectively. 

As can be seen, 90% of the error is in the range of 

-300 to 300 cnt/h, and 65% is within the ± 70 cnt/h 

for the training part. Regarding the testing set, 90% 

of the error is in the range of -500 to 500 cnt/h, and 

65% is within the ±100 cnt/h. This is also confirmed 

by the higher accuracy of the training set than the 

testing one. 

  

 

Fig. 3. Training and testing results of RF model over 10: (a) R, (b) RMSE, (c) MAE 
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Fig. 4. Regression analysis of the RF model between target and output values with respect to three 

datasets: (a) training data; (b) testing data; and (c) all data 

  

Fig. 5. Error analysis of the RF model: (a) Training set; and (b) Testing set 

4.2. Comparison of RF and LR 

In this section, the performance of the RF 

model in predicting bike-sharing demand is 

compared with a multivariable Linear Regression 

(LR) model. LR models are widely used thanks to 

their simple implementation process. As is the case 

here, they are often used as a benchmark to 

highlight the performance of the proposed machine 

learning models. In order to compare the 

performance of the two models, the training and 

testing phases of LR model are conducted on the 

same datasets as used during the development of 

RF model. The final form of LR model is given in 

Eq. 4. 

Y = 27.31X1 + 26.58X2 - 8.81X3 + 6.92X4 + 

0.02X5 + 5.41X6 - 79.34X7 - 58.81X8 + 

21.08X9 + 548.85                                                        

(4)  

Fig. 6. Regression analysis of the LR model 
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Fig. 6 illustrates the results in a regression 

plot of the LR model between the actual and 

predicted values. The figure shows that the LR 

model does not perform as well as the RF model. 

In fact, the LR model only achieves an R value of 

0.47, which is about 50% lower than the RF model. 

Moreover, LR's RMSE and MAE values are about 

twice as large as those derived from the RF model. 

Overall, the RF model is superior for predicting 

bike-sharing demand from the statistical analysis 

and prediction errors calculated. 

5. Conclusion 

This study proposes an RF model to predict 

bike-sharing demand with the use of nine 

continuous input variables. For this purpose, a 

dataset for the city of Seoul collected from the UCI 

Machine Learning Repository was utilized for 

model training and testing purposes. Nine input 

parameters are used: rental hour, temperature, 

humidity, wind speed, visibility, dewpoint, solar 

radiation, snowfall, and rainfall. Three criteria—

RMSE, MAE, and R—were used to evaluate the 

performance of the proposed RF model, coupled 

with k-fold cross-validation for hyper-parameter 

tuning. The results show that the proposed model 

achieves high accuracy in predicting bike-sharing 

demand, with performance evaluation measures of 

RMSE = 210 cnt/h, MAE = 121 cnt/h, and R = 0.90. 

The RF model also outperformed a conventional 

LR model and is therefore preferable to use to 

predict bike-sharing demands here. 
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