Application of an artificial neural network and QCM sensor coated with γ-Fe₂O₃ nanoparticles for estimation of SO₂ gas sensing characteristics

Nguyen Thanh Vinh¹,², Tran Quoc Tuan¹, Nguyen Van Cuong¹, Cao Xuan Truong², Nguyen Van Quy²*
¹University of Transport Technology, No.54 Trieu Khuc, Thanh Xuan District, Ha Noi 100000, Viet Nam
²International Training Institute for Materials Science, Ha Noi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung District, Ha Noi 100000, Viet Nam

Abstract: γ-Fe₂O₃ nanoparticles (NPs) were synthesized by co-precipitation method and a following annealing treatment at 200 °C in ambient air for 6 hours. A mass-type sensor was prepared by coating γ-Fe₂O₃ NPs on the active electrode of quartz crystal microbalance (QCM). The obtained results of the γ-Fe₂O₃ NPs based QCM sensor indicate the high response and good repeatability toward SO₂ gas in the range of 2.5 – 20 ppm at room temperature. Moreover, the frequency shift (ΔF) and change in mass of SO₂ adsorption per unit area (Δm) of the γ-Fe₂O₃ NPs coated QCM sensor have a relationship with the mass density of γ-Fe₂O₃ NPs and SO₂ concentrations. The artificial neural network (ANN) model using Levenberg-Marquardt optimization was used to handle the ΔF and Δm of the γ-Fe₂O₃ NPs coated QCM sensor. The results of the model validation proved to be a reliable way between the experiment and prediction values.

Keywords: QCM, SO₂, γ-Fe₂O₃, gas sensor, ANN

1. Introduction

Nowadays, the development of modern society has created many sources of pollution emission. One of the major global concerns is air pollution which puts pressure on governments or countries as well as, negative effects on health and quality of human daily life [1], [2], [3]. Among them, sulfur dioxide (SO₂) is always in the top toxic gases causing respiratory diseases, bronchoconstriction and dyspnea [2], [4], [5]. Therefore, air quality guidelines are developed and continuously updated by the World Health Organization (WHO). The current standard of air quality is 20 μg/m³ (8 ppb) and 500 μg/m³ (190 ppb) when people expose to SO₂ for 24 hours and 10 minutes, respectively [6]. The immediate danger to life and health (IDLH) values and the short-term exposure limit (TLV-STEL) of SO₂ according to ACGIH are 100 and 5 ppm, respectively [7]. However, according to P.D. Hien’s report on the air pollution level of the urban districts of Ha Noi, Viet Nam in 2020, the SO₂ concentrations reached the highest point of 35 μg/m³ in Hoan Kiem, while Thanh Xuan was 22.5 (μg/m³) [8]. These pollution levels were higher than those recommended by WHO. Accordingly, SO₂ sensors must be seriously
considered and developed. These works could contribute to environmental pollution monitoring and ensuring social guarantee.

Currently, there are many types of SO₂ sensors that have been successfully developed with different operation principles [9], [10], [11], [12]. Among them, the mass-type sensor using quartz crystal microbalance (QCM) is highly appreciated for its low power consumption, good response (nanogram level) and stable operation at room temperature [13], [14]. QCM sensors coated with iron oxide show excellent detection performance to SO₂ gas [15]–[17], and γ-Fe₂O₃ is an outstanding sensing material [18], [19]. So far, numerous researches have been published for the purpose of protease, alcohol and gas classification using QCM sensors, which were supported by machine learning [20]–[23], [24]. The positive results show the considerable application potential of this field. However, machine learning is less common in SO₂ detection studies of QCM sensors in general and QCM coated with γ-Fe₂O₃ in particular. Therefore, in this work, the SO₂ sensor was made from γ-Fe₂O₃ nanoparticles (NPs) coated on the gold electrode of QCM. The basic characteristics of sensor were investigated, and these experimental data were used for a machine learning. The built algorithm was used to predict the output signals of QCM sensor (frequency shift/ΔF, and the mass change of adsorption SO₂ per unit area of sensing material/Δm), these predictions agree with the experimental results after the training process.

2. Experiment

2.1. γ-Fe₂O₃ NPs synthesis

The chemicals used in this experiment were ferric chloride hexahydrate (FeCl₃·6H₂O , > 98%), ferrous chloride tetrahydrate (FeCl₂·4H₂O , > 98%) and sodium hydroxide (NaOH , >98%). These chemicals were purchased from Xilong Scientific Co., Ltd. (Guang-dong, China).

In this work, γ-Fe₂O₃ NPs were synthesized through co-precipitation, followed by annealing treatment. The detail of synthesis process was described in our previous publication [19]. In brief, the precursors of FeCl₃·6H₂O (0.05 mol) and FeCl₂·4H₂O (0.025 mol) were dissolved in deionized water (DI). 2M NaOH was then added to this mixed solution at 80 °C. The precipitate was dried and calcined at 200 °C in ambient air for 6 hours to obtain γ-Fe₂O₃ NPs. The as-prepared γ-Fe₂O₃ NPs was dissolved and deposited on the electrode of QCM by using spray-coating method [17]. γ-Fe₂O₃ NPs were crushed and dispersed in DI with a concentration of 1 mg ml⁻¹. In order to fabricate a QCM sensor, 3 ml of dispersed solution was used for each experiment at the flow rate of 0.2 ml min⁻¹. SO₂ sensing characteristics of QCM sensor were performed with the change in γ-Fe₂O₃ NPs layer. The number of sensing material layers, γ-Fe₂O₃ NPs mass density deposited on the electrode (mγ-Fe₂O₃) and the resonance frequency of QCM (F-resonance) corresponding to each layer are shown in Table 1.

Table 1. The parameters of QCM sensor was fabricated

<table>
<thead>
<tr>
<th>No.</th>
<th>Layer</th>
<th>F-resonance (Hz)</th>
<th>mγ-Fe₂O₃ (µg.cm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncoated</td>
<td></td>
<td>5001725.8</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1st</td>
<td>4995656.1</td>
<td>107.24</td>
</tr>
<tr>
<td>2</td>
<td>2nd</td>
<td>4989780.1</td>
<td>211.05</td>
</tr>
<tr>
<td>3</td>
<td>3rd</td>
<td>4983067.6</td>
<td>329.65</td>
</tr>
<tr>
<td>4</td>
<td>4th</td>
<td>4978063.8</td>
<td>418.06</td>
</tr>
<tr>
<td>5</td>
<td>5th</td>
<td>4973373.8</td>
<td>500.92</td>
</tr>
<tr>
<td>6</td>
<td>6th</td>
<td>4967813.1</td>
<td>599.16</td>
</tr>
<tr>
<td>7</td>
<td>7th</td>
<td>4962879.0</td>
<td>686.34</td>
</tr>
</tbody>
</table>

The gas sensor properties were investigated with SO₂ gas through a home-made measurement system and QCM200 digital controller linked to PC by using SRSQCM200 software program [25], [26]. XRD pattern of γ-Fe₂O₃ was recorded in the range of 2θ: 20 – 70° using Cu Kα radiation with λ of 0.1542 nm. The morphology of iron oxide was observed by S-4800 Scanning Electron Microscopy device (Hitachi).
2.2. Machine learning for estimation of QCM frequency shift and the mass change of adsorption SO$_2$ per unit area

2.2.1. Artificial Neural Network

Artificial Neural Network (ANN) is an useful algorithm for solving prediction and classification problems [27], [28]. In this work, the experimental data were used for the development of an ANN model. The Levenberg-Marquardt algorithm was considered the most suitable for ANN with a training dataset [28], [29]. Therefore, ANN based on the Levenberg-Marquardt algorithm was used in this study to optimize the searching process for neurons weights and biases.

2.2.2. Cross-fold validation

Cross-validation (CV) is a popular technique to evaluate a model more fully and accurately for the moderate-sized training in the field of machine learning. In k-Fold cross-validation (k-Fold CV), the training dataset is randomly split into subsets of approximately equal size (k is an integer). The machine is trained k times in which one random subset is selected as the validation data, the other subsets (k-1) are selected as the training data for each time. The cross-validation estimate of accuracy results from the average evaluation of all runs [30]. In this work, k = 10 was chosen to split the training dataset due to minor errors and low variances through experimentation [31]. On the other hand, the test dataset checks the model’s response in the final step when dealing with unseen data.

2.2.3. Model evaluation

In this paper, the coefficient of determination ($R^2$) and the root of the mean square error (RMSE) are used to evaluate the accuracy of the machine learning model in predicting $\Delta m$ and $\Delta F$. Precisely, $R^2$ shows the square correlation between the predicted value and the actual value, RMSE index calculates the average of the square of the difference between the predicted value and the actual value. These values are determined by equations (1) [32] and (2) [33]:

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (e_i - m_i)^2}$$  \hspace{1cm} (1)

$$R^2 = \frac{\sum_{i=1}^{m} (e_i - \bar{e})(m_i - \bar{m})}{\sqrt{\sum_{i=1}^{m} (e_i - \bar{e})^2 \sum_{i=1}^{m} (m_i - \bar{m})^2}}$$  \hspace{1cm} (2)

Where $e_i$ is the estimated value and $m_i$ is the measured value; $\bar{e}$ and $\bar{m}$ are the average of estimated value and measured value, respectively.

3. Results and discussion

3.1. The crystalline structure and morphological of as-prepared sample

Fig. 1 shows the morphological and structural characteristics of $\gamma$-Fe$_2$O$_3$ material via XRD and SEM results. The XRD pattern of the as-prepared sample is indicated in Fig. 1a. The strong diffraction peaks at about 30.3°, 35.4°, 43.2°, 53.4°, 57.1°, and 62.6° are well-matched with the (220), (311), (400), (422), (511) and (440) lattice planes, respectively. In comparison with the standard cards (JCPDS No. 19 – 0629 and No. 39.1346), it is clearly seen that the as-prepared iron oxide material is either Fe$_3$O$_4$ or $\gamma$-Fe$_2$O$_3$. However, Fe$_3$O$_4$ material was transferred to $\gamma$-Fe$_2$O$_3$ at 200 °C due to magnetite oxidation and their similar to crystal structures [18], [34], [35], [36]. Thus, the crystallite of the synthesized iron oxide in this work indicates a crystal structure of $\gamma$-Fe$_2$O$_3$. Fig. 1b shows SEM image of the as-prepared $\gamma$-Fe$_2$O$_3$. The morphology of $\gamma$-Fe$_2$O$_3$ exhibits a spherical appearance. Although the nanoparticles were slightly agglomerated, the particles individually expose with diameter of 50 nm. In consequence, $\gamma$-Fe$_2$O$_3$ NPs were successfully synthesized by co-precipitation and following calcining in air. Moreover, the mini image of QCM sensor coated with $\gamma$-Fe$_2$O$_3$ NPs is shown in the insert of the Fig. 1b. As observed in the mini image, the $\gamma$-Fe$_2$O$_3$ NPs fully covered the electrode.
3.2. Experiment results

The response – recovery curves of QCM sensor with the 1st layer of sensing material towards SO₂ concentration range of 2.5 – 20 ppm are described in Fig. 2. The SO₂ molecules are adsorbed on sensing materials of γ-Fe₂O₃ NPs via hydrogen bonding and like-hydrogen bonds [18], [19]. Fig. 2a shows the change in mass of SO₂ adsorption per unit area for each on/off cycle of the target gas. It is clear that the Δm increases with increasing SO₂ concentration. Namely, the adsorptions of SO₂ are 0.004, 0.010, 0.028, 0.047, and 0.065 μg·cm⁻² at 2.5, 5, 10, 15, and 20 ppm of SO₂ concentrations, respectively. The relationship between Δm and the ΔF of QCM can be determined by Sauerbrey’s equation [37]

$$\Delta F = - C_f \Delta m$$

(3)

Where ΔF is in Hertz (Hz), Δm is in μg·cm⁻² and C_f is the sensitivity factor in Hz·μg⁻¹·cm² (C_f = 56.6 Hz·μg⁻¹·cm² for a 5 MHz AT-cut QCM).

Fig. 2. The response – recovery curves of QCM sensor coated with γ-Fe₂O₃: (a) Δm, (b) ΔF
Based on equation (3), the resonance frequency of QCM will reduce when SO\textsubscript{2} mass adsorbed on the electrode increases. Similarly, the change in frequency versus time of the sensor towards different SO\textsubscript{2} concentrations is shown in Fig. 2b. The maximum frequency shifts of the QCM sensor towards 2.5, 5, 10, 15 and 20 were about 0.23, 0.69, 1.68, 2.77, and 3.74 Hz, respectively. Thus, the QCM sensor coated with \( \gamma \)-Fe\textsubscript{2}O\textsubscript{3} NPs indicated the excellent response to low SO\textsubscript{2} concentrations at room temperature. Fig. 3 shows the repeatability of the sensor for four cycles at 10 and 15 ppm in real-time. The characteristics of frequency shift – time curve are similar for all cycles at the same concentration. The results indicate that the \( \gamma \)-Fe\textsubscript{2}O\textsubscript{3} NPs sensor has good repeatability for SO\textsubscript{2} gas. Fig. 4 describes the response signals of sensor at different SO\textsubscript{2} concentrations. The responses not only depend on SO\textsubscript{2} concentration but also the mass density of \( \gamma \)-Fe\textsubscript{2}O\textsubscript{3} NPs layer deposited on the electrode of QCM. It is obvious that the increase in \( \Delta F \) is visibly proportional to the target gas concentration and mass density of the sensing material.

3.3. Simulation results

This paper develops an ANN model (with the 3-4-1 architecture) based on experimental data of SO\textsubscript{2} gas sensing properties. The sensing material layer, m_\( \gamma \)-Fe\textsubscript{2}O\textsubscript{3} and SO\textsubscript{2} concentration are input variables, whereas \( \Delta m \) and \( \Delta F \) are output variables. Fig. 5 shows the distribution and the correlation of the parameters in this study. In addition, Fig. 5 also indicates the correlation of input variables, input and output variables, and output variables. Based on the value of the Pearson correlation coefficient (R), it can be seen that the layer and m_\( \gamma \)-Fe\textsubscript{2}O\textsubscript{3} have a considerable correlation (R = 1), so they are dependent variables; concentration and m_\( \gamma \)-Fe\textsubscript{2}O\textsubscript{3}, layer are independent variables, these correlations are weak (R = 0.01 and 0.02, respectively). Moreover, the correlation between input variables (layer, m_\( \gamma \)-Fe\textsubscript{2}O\textsubscript{3}) and output variables (\( \Delta m \), \( \Delta F \)) are moderate (R = 0.52) while SO\textsubscript{2} concentration has a significant correlation with both \( \Delta m \) and \( \Delta F \). Especially, the output variables' (\( \Delta m \& \Delta F \)) correlation is considerable (R = 1). Based on the analysis of simulation results, Con. of SO\textsubscript{2} and m_\( \gamma \)-Fe\textsubscript{2}O\textsubscript{3} of the data set could increase the accuracy and generality of the prediction model.
The building process of the ANN model is carried out in two stages for 110 experiment samples: (i) the training phase, 10-Fold CV was used during the training phase of the ANN model with 70% dataset; (ii) the testing phase, when ANN model tool achieves the optimal prediction performance, 30% other of the dataset was used to evaluate the predictive performance of ANN on unseen data. The results of the ANN model prediction performance evaluation for output variables are shown in Fig. 6. Ten different simulations were carried out, denoted from CV-1 to CV-10. It is clear that ANN model using Levenberg-Marquardt optimization has very good predictive capability. Namely, CV-2 of $\Delta F$ and CV-4 of $\Delta m$ could be considered the typical model prediction. The $R^2$ is the highest while RMSE is the lowest for the test dataset. Thus, the typical prediction results of the ANN model are presented via regression graphs as shown in Fig. 7. The regression model shows the correlation between predicted $\Delta F$, $\Delta m$ according to the ANN model and actual values from the experiments for the training dataset (Fig. 7a, c) and the testing dataset (Fig. 7b, d), respectively. The suggested values from the AI model for the training, testing dataset and the values obtained from the experiment are very closely distributed on the diagonal. The performance of this ANN model is evaluated by the statistical index, such as: RMSE and $R^2$. Additionally, the best $\Delta F$, $\Delta m$ prediction results of RMSE and $R^2$ are 0.4229, 0.007836 and 0.9964, 0.9963 for the training dataset, and these are 0.5492, 0.008226 and 0.9933, 0.9942 for the testing dataset, respectively. The high values of $R^2$ and low RMSE of the proposed ANN model indicated the ability to predict accurately and the excellent generalization performance in predicting the outputs.

![Fig. 5. Histogram and correlation analysis between input and output parameters considered in this study](image-url)
Fig. 6. The results of training and validation of (a, b) $\Delta F$ and (c, d) $\Delta m$

Fig. 7. The estimated values versus true values for (a) training and (b) testing data of $\Delta F$; (c) training and (d) testing data of $\Delta m$
4. Conclusion

A QCM sensor based on $\gamma$-Fe$_2$O$_3$ NPs as a sensing material was fabricated. The sensor exposed high response, good repeatability towards low concentration of SO$_2$ at room temperature. The SO$_2$ gas response of the QCM sensor increases with increasing target gas concentration and mass density of $\gamma$-Fe$_2$O$_3$. Furthermore, the ANN model using the Levenberg-Marquardt optimization proves the capable and accurate estimation of output (the frequency shift and the change in mass of adsorption SO$_2$ per unit area) versus input variables ($m_{\gamma}$-Fe$_2$O$_3$ and SO$_2$ concentration) of QCM sensor. These results bring forward a potential application of machine learning in the field of QCM sensor in the near future.

Acknowledgments

This research is funded by University of Transport Technology (UTT) under grant number 2021-09-DTTDBUTT

References


