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Abstract: Self-compacting concrete (SCC) is a construction material with 

many advantages, including high performance and the capacity to self-

compact without mechanical vibration. As a result, SCC is widely used in 

construction, especially at locations where concrete structures are difficult to 

construct. Filling ability is one of the three basic requirements that must be met 

when designing the SCC mix. The slump flow (SF) is used to determine the 

SCC mixture's filling capacity. As a result, it is critical to estimate this number 

fast and precisely. The purpose of this study is to propose the use of a random 

forest (RF) model to predict the SF of SCC and to assess the effect of input 

parameters on output parameters. The study constructed the RF model using 

a dataset of 507 experimental results collected, which is the biggest data 

collection compared to previous studies on this subject. Additionally, a 10-fold 

cross-validation approach is used to improve the model's prediction 

performance. As a result, the performance assessment criteria for the testing 

dataset have values of RMSE = 59.5664 mm, MAE = 32.4483 mm, and R = 

0.8614, respectively. This result shows that the RF model is an effective tool in 

predicting the SF of SCC. 

Keywords: Self-compacting concrete, Machine learning, Random forest, 

Slump flow, Filling ability. 

 

 

1. Introduction 

Currently, in the construction industry, it is 

usual to come across heavy reinforced concrete 

structures, as well as structures with complex 

construction locations, such as overhead bridge 

girders, cement concrete road pavements, and 

high-rise skyscrapers. One of the most significant 

when constructing these structures is the 

compaction of concrete. Inadequate compaction 

may result in substandard construction and low 

construction performance. Mechanical vibrating or 

hand compaction techniques are ineffective in 

these instances. Mechanical vibrating or hand 

compaction techniques are ineffective in these 

situations. Then self-compacting concrete (SCC) is 

the best solution. It is a material that compacts 

under its own weight, self-flows, and fills all 

positions, even those with complicated topography, 

forms, and reinforcing dense. Without any 

mechanical activity, SCC forms a homogenous, 

non-stratified, non-flowing material [1]. There are 

three essential conditions that the SCC mixture 

must fulfill in order to be designed at the uncured 

stage, namely the Filling ability, Passing ability, and 

segregation resistance. In which the slump flow 

(SF) is used to determine the SCC mixture's filling 
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ability [2]. Therefore, it is necessary to determine 

the SF of SCC when designing a mixture of SCC. 

Typically, the SF of SCC is determined 

experimentally. If the acquired result is 

unsatisfactory, the tests must be redone from the 

mixed design phase, which is time-consuming. 

Another roadblock is that determining the optimal 

SCC blend is very time-consuming. To circumvent 

these constraints, an advanced technique for 

anticipating the SF of SCC is necessary. 

In recent decades, artificial intelligence (AI) 

simulations or machine learning (ML) models have 

developed and are applied in many fields [3]–[5]. 

Many scientists have used AI models to predict the 

mechanical properties of SCC. For example, Saha 

et al. [6] used the support vector regression 

approach (SVR) to predict SCC properties. This 

study used 115 data samples with six input 

parameters, namely binder content, fly ash, water-

powder ratio, fine aggregate, coarse aggregate, 

and superplasticizer. The results show that the 

SVR model is better than the ANN model in 

predicting the properties of SCC. In some other 

studies, Sathyan et al. [7] employed the Random 

Kitchen Sink Algorithm, whereas Sonebi et al. [8] 

used a support vector machine (SVM) technique to 

forecast SF. These studies analyzed relatively 

small datasets, including just 40 and 20 

experimental outcomes, respectively. Additionally, 

Kaloop et al. [9] conducted a study in which they 

employed an emotional neural network to predict 

the SF of SCC based on just 90 experimental data 

collected. On the other hand, among machine 

learning models, random forest (RF) is a powerful 

machine learning method that has been effectively 

employed in a variety of domains, including civil 

engineering [10], earth science [11], and building 

materials [12], [13]. However, there have been no 

studies using this model to predict the SF of SCC. 

The random forest model will be used in this 

research to estimate the SF of SCC using a pretty 

large data set of 507 experimental outcomes. 

Three measures are used to assess the model's 

prediction ability: the correlation coefficient (R), 

root mean square error (RMSE) and mean 

absolute error (MAE). In addition, the cross-

validation approach is used to counteract the over-

fitting phenomena and improve the model's 

forecast accuracy. Finally, the RF model assesses 

the significance of input factors that influence the 

SF of SCC. 

2. Database  

This section describes the database that was 

utilized in this research. SF prediction RF model 

was developed using a dataset of 507 

experimental findings from seven studies 

published in the relevant literature [14]–[20]. There 

are twelve input parameters marked by the 

numbers (1) to (12): Cement content (kg/m3), fly 

ash content (kg/m3), water content (kg/m3), sand or 

coarse aggregate content (kg/m3), superplasticizer 

content (kg/m3), limestone powder content (kg/m3), 

fine blast furnace slag content (kg/m3), silica fume 

content (kg/m3), metakaolin content (kg/m3), rice 

husk ash content (kg/m3), viscosity reducing 

additive (kg/m3). The cement content of the 

acquired data set varies from 83 to 670 kg/m3, 

whereas the fly ash concentration ranges from 0 to 

525 kg/m3, showing that certain SCC samples do 

not include fly ash. The water content ranges 

between 126 ÷ 331.5 kg/m3, whereas the fine and 

coarse aggregate contents vary between 240 ÷ 

1180 kg/m3 and 500 ÷ 1531 kg/m3, respectively. 

The concentration of the superplasticizer is in the 

range of (0÷22.5) kg/m3. The limestone powder, 

fine blast furnace slag, silica powder, metakaolin, 

and rice husk ash powder contents varied between 

(0÷376) kg/m3, (0÷440) kg/m3, (0÷82.5) kg/m3, 

(0÷82.5) kg/m3, (0÷200) kg/m3. The viscosity-

reducing additive content varies in a rather narrow 

range, with the smallest value being 0 kg/m3, the 

highest value being 4.46 kg/m3. The output 

parameter (SF) has a very broad data spectrum, 

ranging from (0÷920) mm. It should be noted that 

the lowest value (min) of SF is 0 mm since the 

research employed just one sample with SF = 0 

mm out of 507 experimental findings. Additionally, 

to reduce mistakes associated with RF model 
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simulation, this data set is standardized to the 

range of values [0-1]. This is a frequently used 

technique in artificial intelligence challenges to 

restrict the mistakes created by numerical 

simulations, such as huge differences in fine or 

coarse aggregate content (hundreds) and 

viscosity-reducing additive content (less than 1). 

Table 1 contains information on the symbols, units, 

and statistical analysis of both input and output 

parameters. 

Table 1. Statistical analysis of database 

No Parameters Symbol Unit Min Mean Max Std 

1 Cement (1) (kg/m3) 83 357.81 670 109.78 

2 Fly ash (2) (kg/m3) 0 88.39 525 98.61 

3 Water (3) (kg/m3) 126 184.68 331.50 27.23 

4 
Sand or fine 

aggregate 
(4) (kg/m3) 240 816.34 1180 128.05 

5 Coarse aggregate (5) (kg/m3) 500 804.07 1531 130.33 

6 
Superplasticizes 

additive 
(6) (kg/m3) 0 6.12 22.50 4.51 

7 Limestone powder (7) (kg/m3) 0 30.97 376 70.11 

8 Blast furnace slag (8) (kg/m3) 0 20.75 440 58.97 

9 Silica fume (9) (kg/m3) 0 6.93 82.50 17.80 

10 Metakaolin (10) (kg/m3) 0 1.79 82.50 9.81 

11 Rice husk ash (11) (kg/m3) 0 1.38 200 12.69 

12 
Viscosity reducing 

additive 
(12) (kg/m3) 0 0.11 4.46 0.43 

 Slump flow (0) mm 0 667.05 920 112.99 

Std=Standard deviation 

 
Fig 1. Correlation analysis and distribution between input and output parameters 
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Fig 1 shows the distribution graph of 12 input 

parameters, one output parameter, and the 

correlation between those parameters. For each 

pair of parameters, the Pearson correlation 

coefficient (rs) was computed and shown. 

Correlation may be classified into the following 

levels based on the value of the correlation index 

(rs): rs values between 0 and 0.19 indicate very 

weak correlation, rs values between 0.2 and 0.39 

indicate weak correlation, rs values between 0.4 

and 0.59 indicate moderate correlation, rs values 

between 0.6 and 0.79 indicate a strong correlation 

and rs values between 0.8 and 1 indicate extremely 

strong correlation. As seen in Fig 1, the correlation 

between the input variables and the SF is quite 

poor; the majority of the rs values are less than 0.4 

(indicating a weak correlation). 

Only one measurement, rs = 0.6, 

demonstrates a weak association between the fly 

ash content (2) and the cement content (1). The 

research reveals that 12 of the data set's input 

parameters may be deemed independent 

variables. As a result, all twelve input parameters 

will be addressed in this research in order to 

improve the accuracy and generality of the output 

parameter prediction model (SF).  

3. Machine learning 

3.1. Random forest (RF) 

Breiman introduced and developed RF as a 

supervised machine learning method [21]. The 

benefit of RF is that it may be used to solve issues 

involving classification and regression. RF model 

uses trees as a foundation. Whereas a random 

forest is a collection of decision trees, each of 

which is chosen randomly. RF operates by 

evaluating a large number of random decision 

trees and selecting the best-evaluated result from 

the pool of returning outcomes. The learning 

processes involve the construction of a collection 

of decision trees, each one driven by a Bootstrap 

subset. Each tree in the forest is trained using a 

randomly distributed subset of data, using the 

bagging and random feature principles. For 

regression problems, the final result is presented 

as the mean of each decision tree; for classification 

problems, the final result is decided by the majority 

result. The number of trees in the forest should be 

sufficient to guarantee that each characteristic is 

utilized many times. Typically, 500 trees are used 

to solve classification issues, while 1000 trees are 

used to solve regression problems. In this work, RF 

is used to predict SCC using 500 trees with an ideal 

leaf count of 20. 

3.2. Cross validation (CV) 

In machine learning, overfitting is the 

phenomenon where the found model over-fits the 

training data. This overfitting may result in incorrect 

predictions, noise, and a model with poor predictive 

performance on validation data. Cross-validation is 

often used to circumvent this. To train the network 

using cross-validation, the whole database is 

randomly partitioned into three sections: training 

data set, validation data set, and testing data set. If 

the dataset is separated into just two parts, training 

and testing, the testing data set will be kept 

separate for the model verification stage. During 

the model training process, this data set is not 

known. The training data collection will include 

information about the model's training and 

validation processes. This will be accomplished by 

randomly dividing the training data set into K equal 

halves. The model will be trained K times, with 

each training session selecting one portion as 

validation data and the remaining (K-1) as training 

data. The final assessment result will be the 

average of the evaluation results obtained for each 

of the K training sessions. Generally, K should not 

be selected too big since a high K results in a 

significantly larger training data set than the control 

data set. At that point, the assessment findings will 

no longer accurately represent the underlying 

nature of the machine learning technology, 

particularly when dealing with big data sets. Cross-

validation with K = 10 was used in this 

investigation, which is compatible with the work of 

other scientists worldwide [22]. Fig 2 illustrates the 

cross-validation approach using ten CVs and three 

datasets for training, validation, and verification.
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Fig 2. Illustrate the cross-validation technique used in the paper 

3.3. Evaluation of the RF model's predictive 

ability 

This research employs three criteria to 

assess the SF prediction outcomes of SCC 

produced from the RF model: correlation 

coefficient (R), root mean square error (RMSE) and 

mean absolute error (MAE). The R-index indicates 

the correlation between the value predicted by the 

RF model and the observed value. A greater 

absolute value of R implies a stronger correlation 

between the anticipated and actual values, 

implying improved model performance (R values 

range from -1 to 1). The RMSE index is another 

way to calculate the error since it is based on the 

mean squared difference between the expected 

and actual output values, while the MAE index 

shows the average error of the actual value and the 

anticipated value. The low RMSE and MAE values 

indicate that the error between the actual and 

predicted values is minor, indicating that the RF 

model's prediction ability is excellent. The following 

formula is used to calculate these three indices. 
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m

o,i t,i

i 1

1
MAE s s

m =

= −  (3) 

Where so and 0s  are the actual compressive 

strength and average actual compressive strength 

(as established by experiment), st and ts  are the 

predicted compressive strength and average 

predicted compressive strength (as determined by 

the model's prediction), and m is the number of 

samples in the database. 

4. Results and discussion 

This section details the process of 

developing an RF model for predicting the SF of 

SCC. The process of developing an RF model is 

divided into two phases: training (using a training 

dataset that contains 70% of the total data) and 

testing (using the remaining 30 percent of data). 

The first step (training phase) consists of the 

model's training, in combination with ten cross-

validations (10-CV). To do this, the training dataset 

is partitioned into ten sections. Each simulation will 

consist of nine parts used to train the model, and 

one part used to verify it. The predicted 

performance assessment criteria for the model (R, 

RMSE, MAE) will be computed using the average 

value of the ten preceding runs. Overall, the 10-fold 

CV score of the models after 10 runs are reliable 

(R > 0.8), showing that the selected hyper-

parameters are appropriate to conduct further 
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investigation. When the RF model has attained the 

best-predicted performance on the training data 

set, the next step (test phase) is performed. The 

test data set is used to evaluate the model's 

predicting abilities for unknown data. In this work, 

the results of assessing the predictive performance 

of the RF model using the RMSE, MAE, and R 

criteria for both the training and testing data sets 

are displayed in Fig 3a, 3b, and 3c. 

 

 

 
Fig 3. Training and testing results of the RF model 

after ten cross-validations (10 CVs) based on the 

following evaluation criteria: (a) RMSE, (b) MAE, 

and (c) R 

According to the figure, with ten simulations, 

all three performance assessment criteria have a 

highly steady fluctuation amplitude: the RMSE 

fluctuates around 30 mm, the best run has an 

RMSE of 28.2, and the worst run has an RMSE of 

30.3. Similarly, MAE fluctuates around 15.0 mm, 

with the best simulation occurring at the sixth 

random splitting of the training and testing dataset, 

denoted as CV6 (MAE=14.5), and the worst 

occurring at CV10 (MAE=17.1). Additionally, the 

evaluation criteria R has a pretty high and 

consistent value; after ten simulations, the R-value 

is almost the same and equivalent to 0.98. This 

signifies that the trained RF model has a high 

prediction power when used with the training data 

set and may be chosen for the testing dataset. 

Following that, it can be shown that when the 

test data changes, the predictive capability of the 

RF model changes as well. However, the predictive 

performance of the RF model is pretty strong, as 

shown by R = 0.875 for the best runs (CV1, CV3). 

However, there are discrepancies in the testing 

data based on the model performance assessment 

criteria. Specifically, RMSE and MAE indicate that 

CV10 is the optimal run, but R indicates that CV1 

and CV3 are the optimal runs. However, the 

difference is negligible. As a result, the suggested 

RF model may be utilized to accurately forecast the 

SF of SCC. 

The best result (10th simulation - CV10) is 

shown in the next section. This result was chosen 

since the RMSE and MAE are the lowest, and the 

R is comparatively high among the ten simulations 

reported before. Fig 4 illustrates the correlation 

between the real SF value achieved during the 

experiment (dotted line) and the simulated value 

produced using the RF model (dashed line) during 

training and testing. Observations indicate that 355 

samples in the training data set exhibit 

experimental outcomes that are reasonably 

compatible with the model's predicted values. 

Except for a few samples with variations, the 

experimental findings for the test data set are 

similarly reasonably close to the anticipated values 
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(Sample No. 96 and Sample No. 104). However, 

the number of samples exhibiting this variation is 

negligible in comparison to the test's total of 152 

samples. As a result, the RF model may be used to 

forecast the SF of SCC. 

The regression model graph in Fig 5 shows 

the correlation between the expected value 

predicted by the RF model and the actual value 

received from the experiment for the training and 

test data sets. Each figure shows the regression 

line as a solid blue line and the 95 percent 

confidence line as a dashed line. The closer the 

data is to the regression line, the more accurate the 

model's ability to forecast. It is seen that the 

predicted model's values for the training data set 

(Fig 5a) and the test data set (Fig 5b) are very 

similar to the experimental findings. This 

demonstrates the RF model's exceptional 

predictive capability. 

Additionally, the performance of the RF 

model is assessed using the statistical criteria's 

value. The values for these criteria for the training 

and testing data sets are shown in Table 2. This is 

the best-predicted result (CV10). For the training 

set, R equals 0.9803, and for the test set, R equals 

0.8614. The root mean square error (RMSE) 

values for the training and test data sets are 

30.2382mm and 59.5664mm, respectively. The 

training set's MAE value is 17.2325 mm, whereas 

the test set's MAE value is 32.4483 mm. The 

reason for the significantly high RMSE and MAE 

results is because, out of 507 study data utilized, 

there is one with SF = 0 mm. As a consequence, 

with a data spectrum of the SF parameter ranging 

from 0 to 920 mm, the prediction results of this RF 

model are perfectly acceptable. These figures 

demonstrate that it is feasible to utilize an RF 

model to forecast SF using SCC, so saving 

materials engineers time and money by eliminating 

the requirement for experimentation. 

On the other hand, when a multivariable 

regression model (EQ4) is applied to the issue of 

forecasting SCC’s SF, the following calculation 

formula is discovered: 

Y = 0.5727X1 - 0.0699X2 + 1.1989X3 + 

0.5243X4 + 0.8301X5 + 1.3313X6 + 1.5833X7 - 

0.1183X8 + 34.9257X9 + 0.7858X10 + 1.2823X11 + 

0.275X12 (4) 

The assessment requirements for this 

technique are much lower than the prediction 

results from the RF model, notably for the testing 

set of the RF model, which has R = 0.8614, RMSE 

= 59.5664, MAE = 32.4483, compared to model 

EQ4, which has R = 0.5406, RMSE = 90.0212, 

MAE = 58.5860. Table 2 contains comprehensive 

results for R, RMSE, and MAE for both RF and 

EQ4 models on training and testing data sets.  

Additionally, a regression figure illustrates the 

association between the predicted value according 

to the EQ4 model and the actual value for the 

training and test data sets (Fig 6). The correlation 

between the predicted value predicted by the EQ4 

model and the actual value for the training data set 

is shown in Fig 6a; the correlation for the test data 

set is shown in Fig 6b. Each image depicts the 

regression line as a solid blue line and the 95% 

confidence line as a dashed line. The model's 

prediction capacity increases in accuracy as the 

data gets closer to the regression line. However, as 

seen in Fig 6, these data are significantly different 

from the regression line, particularly for the test set 

(Fig 6b), where the 95 percent confidence line 

deviates significantly from the regression line. This 

demonstrates that the EQ4 model's predicting 

ability is much less accurate than that of the RF 

model. 

The results proposed herein are compared 

with several existing models available in the 

literature. The RF model achieved higher accuracy 

than the ANN (R2=0.615) in Saha et al. [6], but 

lower than SVR (R2=0.931). However, only 115 

samples were considered in that work, compared 

with 507 samples in the present database. 

Additionaly, a wide range of material constituents 

are considered in this database, including 

limestone powder, blast furnace slag, silica fume, 

metakaolin, or rice husk ash. 



JSTT 2022, 2 (1), 31-41                                                                                    Kumar & Mai 

 

 
38 

 

 

Fig 4. Compare the predicted SF values from the RF model to the experimental values for the training 

(Fig a) and testing data sets (Fig b) 

  

Fig 5. Regression plot between experimental values and values simulated by RF model for (a) training 

set; and (b) testing set 
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Fig 6. Regression plot between experimental values and values simulated by EQ4 model for (a) training 

set and (b) testing set 

Table 2. Summary of the criteria used to evaluate the prediction performance of the RF model for the 

best simulation and multivariate regression model 

 RMSE (mm) MAE (mm) R 

RF training set 30.2382 17.2325 0.9803 

RF testing set 59.5664 32.4483 0.8614 

EQ4 training set 93.5840 62.8994 0.5816 

EQ4 testing set 90.0212 58.5860 0.5406 
 

Finally, feature important using permutation 

important is conducted, thanks to the built-in 

function of the RF model. Fig 7 summarizes the 

findings from an analysis of the effect of 12 input 

parameters on output parameter (SF). The results 

indicate that the parameter with the greatest effect 

on SF is the content of superplasticizers additive. 

This parameter has a greater effect than the other 

eleven factors. Following that, in decreasing order 

of influence, the following factors have an effect on 

SF: fine aggregate content (4), coarse aggregate 

content (5), water (3), cement (1), fly ash (2), 

limestone powder (7), viscosity reducing additive 

(12), rice husk ash powder (11), blast furnace slag 

(8), silica powder (9), metakaolin (10). Thus, using 

RF to analyze the parameters controlling the SF of 

SCC, materials engineers may pre-orient and 

quantify the compositional components used in the 

SCC mixture. This enables them to create SCC 

that has SF fulfill the standards or are suitable for 

the intended usage. 

 
Fig 7. The impact of the input parameters on the 

SF of the SCC 

5. Conclusion 

The purpose of this research was to use a RF 

model to forecast the SF of SCC while also 
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evaluating the effect of input elements on the SF. 

The model was created using 507 experimental 

data points, including 12 input parameters and one 

output parameter. To increase the reliability of the 

simulation findings and to choose a model with 

more general predictive potential, this research 

performs 10-fold cross-validation on the training 

data set, coupling with random sampling 

technique. The study's findings indicate that the RF 

tool is capable of accurately predicting the SF of 

SCC, as shown by the RMSE = 59.5664 mm, MAE 

= 32.4483 mm, and R = 0.8614 for with the test 

data set. Finally, the RF model assesses the effect 

of input parameters on the SF of SCC. The findings 

indicated that the superplasticizer content had the 

most impact on SF, whereas the metakaolin 

content had the least. This forecasting tool will 

assist materials engineers in minimizing tests and 

optimizing the component material composition in 

the design of the SCC mix, hence saving money 

and time. 
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