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Abstract: This study proposes the application of Ensemble Decision Tree 

Boosted (EDT Boosted) model for forecasting the surface chloride 

concentration of marine concrete Cs. A database of 386 experimental results 

was collected from 17 different sources covering twelve variables was used to 

build and verify the predictive power of the EDT model. The input factors 

considered the changes in eleven variables, including the contents of cement, 

fly ash, blast furnace slag, silica fume, superplasticizer, water, fine aggregate, 

coarse aggregate, annual mean temperature, chloride concentration in 

seawater, and exposure time. The results indicate that EDT Boosted is a good 

predictor of Cs as verified via good performance evaluation criteria, i.e., R2, 

RMSE, MAE, MAPE values were 0.84, 0.16, 0.17, and 17%, respectively. 

Partial dependence plot (PDP) was then developed to correlate the eleven 

input variables with the Cs. PDP implied that the strongest factor affecting Cs 

was the amount of fine aggregate content, chloride concentration, exposure 

time, amount of cement, and water, which is useful for material engineers in 

the design of the grade. 

Keywords: Machine learning, Ensemble Descion Tree Boosted (EDT 

Boosted), surface chloride concentration. 

 

 

1. Introduction 

Reinforcement corrosion is the most 

widespread problem affecting concrete structures' 

durability, safety, and sustainability exposed to 

marine environments [1,2]. In marine 

environments, chlorides can penetrate through 

concrete cover to break down the protective layer 

of the reinforcement and cause corrosion [3]. Thus, 

properly assessing the surface chloride penetration 

is crucial for controlling the durability of a marine 

concrete structure. 

Theoretically, the chloride ingress into 

concrete can be assessed by Fick’s second law of 

diffusion [4]. An analytical expression based on 

Fick's second law to calculate the chloride 

concentration in concrete is given in Eq. (1), as 

proposed by Oslakovic et al. [5]. 

C(x,t)=C0+(Cs-C0) [1-erf (
x

2√D×t
)] (1) 

where C(x, t) denotes chloride concentration 

in the depth x from the exposed surface after 

exposure time t, C0 and Cs are the initial and the 

apparent surface chloride concentrations, 

respectively in concrete, D is the apparent chloride 
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diffusion coefficient, and erf is the complementary 

error function. Basically, C0 is a constant, thus C (x, 

t) depends on the changes in Cs and D. Although 

the effects of chloride diffusion coefficient D have 

been well elucidated in the literature, the debate on 

how the apparent surface chloride concentration Cs 

may alter the chloride concentration has been an 

ongoing debate with inconsistent conclusions [6,7]. 

Indeed, Cs plays a vital role in reflecting the 

influence of the surrounding environment and 

provides the boundary condition for evaluating the 

durability and service life of a marine concrete 

structure [8]. Numerous researchers have 

investigated and proposed numerical models to 

calculate the 𝐶𝑠 value [9–11]. For instance, Yang et 

al. [11] proposed a computational model for surface 

chloride concentration of concrete in marine 

atmosphere zone. Meira et al. [12] evaluated the 

durability of concrete structures in marine 

atmosphere zones utilizing chloride deposition rate 

on the wet candle as an environmental indicator. 

Nevertheless, these models revealed many 

shortcomings in predicting Cs due to a lack of 

considering impact factors, i.e., natural condition, 

concrete properties, and exposure time. In another 

approach, time-variant mathematic models were 

also proposed to calculate 𝐶𝑠 utilizing logarithmic, 

power and exponential functions [13,14]. However, 

these models cannot reasonably explain the rapid 

changes in Cs in the early stage and tendency to 

be steady at the later stage. Besides, the roles of 

material composition and natural conditions were 

neglected in the models. Based on materials and 

environmental conditions, some other models were 

proposed but they ignored the vital effect of 

exposure time [11,15]. Consequently, traditional 

models cannot or partly consider all the influential 

factors on 𝐶𝑠 due to the limitations of the number of 

experimental databases. Therefore, the 

development of a new method for predicting 𝐶𝑠 that 

is more comprehensive and accurate is now an 

inevitable need. 

Over the last two decades, machine learning 

(ML) methods have been broadly applied in civil 

engineering [16,17]. Artificial neural network 

(ANN), random forest (RF), support vector 

machine (SVM), Ensemble Bagged Trees (EDT 

Bagged), and Ensemble Boosted Trees (EDT 

Boosted) are some of them. Several ML models 

have been proposed to predict corrosion of 

reinforcement bars in concrete [18]. For instance, 

Ahmad et al. [19] presented the application of novel 

ML models for predicting the surface chloride 

concentration in concrete containing waste 

material. The three models, namely, ANN, DT, and 

gene expression programming (GEP), were 

utilized for the investigations. The database 

consisted of 12 input parameters, including 

concrete mix proportions, natural conditions, and 

exposure time. The obtained results indicated that 

the models were valid for predicting the surface 

chloride concentration, deprived of the difficulties 

of laboratory results. Recently, Cai et al. [18] also 

proposed a novel approach for predicting surface 

chloride concentration of marine concrete using 

ensemble machine learning. The five ML models 

such as linear regression (LR), Gaussian process 

regression (GPR), SVM, multilayer perceptron 

artificial neural network (MLP-ANN), and Ramdon 

forest (RF) model were established based on 642 

experimental databases. As expected, this model 

can easily take into account the influence of twelve 

factors and has superior prediction performance. 

Take part in that flow, the objective of this 

study is to investigate the application of ensemble 

decision tree algorithm for predicting surface 

chloride concentration of marine concrete. To 

realize this goal, a database of 386 experimental 

results was used to build a combined ML model 

based on a decision tree algorithm using a 

boosting technique called Ensemble Decision Tree 

(EDT). The cross-validation technique also limits 

the overfitting phenomenon in the model training 

process. The predictive performance of the model 

is evaluated through four criteria: the coefficient of 

determination (R2), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and mean 

absolute percentage error (MAPE). The sensitivity 

analysis using a partial dependency plot (PDP) 
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was then performed to evaluate the effect of each 

input variable on the surface chloride concentration 

of marine concrete. 

2. Database construction 

As mentioned above, in this study, the 

collected data consists of 386 experimental data 

collected from 17 experimental research inspired 

by Cai et al. [18]. The detailed description of the 

data is described in Table 1. The database consists 

of eleven parameters of concrete mixture design, 

exposure time, and environmental conditions 

provided as inputs for the EDT model, whereas Cs 

acts as the output. The concrete mixture design 

parameters included in the study are eight 

variables representing the contents (units of kg/m3) 

of cement (C), fly ash (FA), blast furnace slag 

(GGBS), silica fume (SF), superplasticizer (SP), 

water (W), fine aggregate (F. Agg), and coarse 

aggregate (C. Agg). The changes in environmental 

conditions are represented via annual mean 

temperature (T, °C), and chloride concentration in 

seawater (Cl‒, g/L). Exposure time (E.T, year) is 

also considered as one input. 

Fig. 1 shows the distribution chart and 

correlation among input and output parameters 

employed in this study. Here, most of the input 

variables in the database covered a wide range of 

values. In detail, C content varies from 100 to 500 

(kg/m3), but the values are mainly in the 200 - 400 

(kg/m3) range. The FA, GGBS, SF, SP, W, F. Agg, 

C. Agg contents are in the range of 0÷250, 50÷300, 

0÷50, 0÷8, 50÷350, 0÷120, 0÷180 (kg/m3), 

respectively. The changes in M. Tem and Cl‒ vary 

from 5 to 35°C, and 5 to 30 g/L, respectively. 

Exposure time changes from 0.5 to 50 years, but 

most of them range from 0.5 to 15 years. In 

addition, the Pearson correlation coefficient (rs) 

was calculated and noted in each pair of 

correlations. Rs was employed to evaluate the 

correlation between used parameters, particularly 

between output Cs and other parameters. The 

results indicated no strong correlation among input 

and output parameters as observed via low rs, i.e., 

rs <0.49. This observation implied that the 

employed variables taken in this study were all 

independent and can be used to build the 

correlation with Cs. Finally, to minimize the errors 

generated during simulation by EDT, this dataset is 

normalized to the range of values 0-1 to limit errors 

generated by numerical simulations. 

Table 1. Database collated in this study 

No. Reference No. of samples Proportions (%) 

1 Costa and Appleton [20] 8 2.1 

2 Chalee et al. [10] 108 28.0 

3 Naukuttan et al. [21] 38 9.8 

4 Pack et al. [22] 44 11.4 

5 Valipour  et al. [23] 5 1.3 

6 Ghods et al. [24] 6 1.6 

7 Markeset  et al. [25] 84 21.8 

8 Farahani et al.  [26] 8 2.1 

9 Safehian and Ramezaniapour [27] 9 2.3 

10 Xue et al. [28] 5 1.3 

11 Mohammed and Hamada [29] 5 1.3 

12 Safehian and Ramezaniapour  [30] 4 1.0 

13 Zhang and Wei [31] 9 2.3 

14 Moradllo et al. [32] 34 8.8 

15 Zhang et al. [33] 5 1.3 

16 Gao et al. [34] 9 2.3 

17 Wang et al. [35] 5 1.3 

Total 386 100 
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Fig. 1. The distribution chart and correlation between input and output parameters 

3. Machine learning methods  

3.1. Decision trees 

A decision tree algorithm is a nonparametric 

categorized data configuration applying the divide-

and-conquer approach. It solves a complicated 

regression crisis by diving them into smaller issues 

and recursively utilizes the same procedure to the 

sub-problems. Sub-problems can be linked to yield 

a result of the complicated problem. Advantages of 

this approach include dividing the instance-space 

into subspaces wherein each subspace is tailored 

with various models and addresses many datasets 

(cases and variables). A typical decision tree 

includes three types of nodes, namely, decision, 

chance, and end nodes. Decision nodes work as 

exam functions with discrete products labeling the 

branches. Upon input values, exams are utilized, 

and the corresponding branches are selected [36]. 

3.2. Ensemble methods 

In general, ensemble methods combine 

several models, wherein each solves the same 

original task, to improve the generality capacity. 

Among significant ensemble types methods, 

Ensemble Bagged Trees and Ensemble Boosted 

Trees are two commonly used. Ensemble Bagged 

Trees takes numerous bootstrap random tests from 

the database to create a new training database. 

The procedure is repeated up to a significant 

subset of the training database is created, and 

similar results can be withdrawn larger than once 

[37]. In the Ensemble Boosted Trees method, the 

dataset is trained in sequence with development 

from the original to the next model. It uses a data 

point weight in the training dataset to create 

various models. The final goal of this method is the 

weighted mean of the output from the database 

[37]. In this study, a combination between the 

decision tree algorithm and Ensemble Boosted 

Tree, namely, Ensemble Decision Tree Boosted 

(EDT Boosted), was proposed to predict surface 

chloride concentration of marine concrete. 

3.3. K-Fold cross-validation 
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In machine learning, cross-validation is a 

common technique used in training and editing 

models to overcome overfitting [38]. The database 

was divided into two parts: training and test 

datasets. The training dataset will be randomly 

divided into K equal parts, and each training time 

will choose 1 part as the validation data and (K-1) 

the rest as the training data. The model training will 

be done in K iterations. The final model evaluation 

result will be the average of the evaluation results 

of K training times. The choice of K must be 

appropriate because if K is too large, the training 

data set will be much larger than the control data 

set, and the evaluation results will not reflect the 

true nature of the machine learning method, 

especially with large data sets. In this study, K=10 

was selected to consider a previous work's 

suggestion [39], and briefly explained in Fig. 2.   

 
Fig. 2. Cross-validation technique with 10-fold used in this study 

3.4. Partial dependence plot 

Partial dependence plot (PDP) is a 

visualization technique that describes the 

relationships between one or more input variables 

and the predicted values. PDP allows quantifying 

how a change in an input variable affects the target 

variable. The integral of each PDP curve is 

calculated and serves as an important index to 

quantify the influence of each input variable [40]. 

PDP can show the relationship for the linear 

regression model, and the partial dependence 

function for regression is calculated by the 

following formula: 

fxA
(xA)=ExM

[f(xA,xM)]= ∫ f(xA,xM) dP(xM) (2) 

where xA consists of features for which the 

partial dependence function will be plotted, xM other 

features used in the machine learning model q. A 

are the features that the user wants to consider and 

predict (only one or two features inset A). The 

features in set A are those that influence the 

prediction results, which we want to know. The 

feature vectors xA and xM makes the total feature 

space x. PDP does by marginalizing the machine 

learning model output over the distribution of the 

features in set M; thus, the function presents the 

relationship between the features in set A. By 

removing the other features, we have a function 

that only depends on features in A and still interacts 

with other features. 

PDP is a global method because it considers 

all instances and shows a global relationship of a 

feature with the predicted outcome. PDP also 

presents the probability for a specific layer in the 

different values for features in set A. Thus, PDP 

can solve the problems of multiple layers by 

drawing a line or plot for each layer. 

3.5. Performance assessment 

In this study, the coefficient of determination 

(R2), Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and mean absolute 

percentage error (MAPE) were calculated as 

statistical measurements to evaluate the accuracy 

of the EDT model. R2 is the coefficient of 

determination, which shows the data's 

appropriateness for the method, and it ranges from 

0 to 1. R2 values around 0 indicate poor model 

performance, while R2 values near 1 indicate 
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strong model accuracy. RMSE is a fundamental 

criterion for evaluating predictive modeling 

performance. The RMSE is a standard way to 

express the error's mean size. RMSE is very 

sensitive to big error levels. As a result, the model 

error is more stable when the RMSE is near the 

MAE. RMSE, like MAE, does not show the 

difference between the model's output value and 

the actual value and is in the range of (0; +). 

MAPE is the measure that fulfills the standards of 

trustworthiness, ease of explanation, and 

presentation. The following equations reflect these 

values: 

R
2
=1- [

Σi=1
n (Pi-Ei)

2

Σi=1
n (Pi)

2
] (3) 

RMSE=√
1

n
Σi=1

n (Pi-Ei)
2 (4) 

MAE=
1

n
Σi=1

n |Pi-Ei| (5) 

MAPE=
1

n
∑ |

Pi-Ei

Pi

|

n

i=1

×100% (6) 

where E is the actual experimental value, P 

is the predicted value, calculated according to the 

model's prediction, n is the number of samples in 

the database. 

4. Results and discussion 

In this section, the EDT Boosted model 

building process is performed. In detail, this 

process consists of two phases: the training phase, 

which is the process of training the model 

accompanied by cross-validation (CV) with ten 

folds EDT Boosed model with default parameters. 

At a later stage, when the EDT achieves optimal 

predictive performance on the training dataset, it is 

used to evaluate the testing dataset. The training 

dataset (accounting for 70% of the database) was 

divided into ten parts to conduct a 10-fold CV. To 

fully evaluate the models’ robustness, such a 

process was repeated ten times in simulating 

different training and testing data sets. Finally, the 

testing dataset (the remaining 30% of data) is used 

to test the model's predictive ability for unknown 

data. The EDT Boosted prediction performance 

evaluation results for both data sets are shown in 

Fig. 4. It is noted that the R2 CV scores of the 

proposed model were, in all cases, higher than 

0.68. 

In general, the obtained results indicated that 

the changes in training parts lead to the 

corresponding variation of the prediction power of 

the EDT Boosted model. The performance 

evaluation criteria all change within certain 

intervals, but the amplitude of fluctuations is 

assessed to be relatively stable. In detail, the 

obtained R2 values fluctuate around 0.84 and are 

almost stable throughout different 10-fold CV runs 

(see Fig. 3a). The RMSE values vary around 0.15, 

with the highest and lowest RMSE values being 

0.17 and 0.14 at CV5 and CV9, respectively (Fig. 

3b), in which CV5 denotes the fifth simulation of 

random shuffling of training and testing parts. A 

similar result was also observed in terms of MAE 

and MAPE, where values range around 0.11 and 

16%, respectively (Fig. 3c, d). The results 

suggested that, in the training parts, the trained 

EDT Boosted model has good predictive capacity, 

which can be selected for evaluation on the testing 

dataset. 

The testing dataset consists of 116 

experimental data that were independent during 

training and validation stages by 10-fold CV. The 

results indicated that the proposed EDT Boosted 

model has good predictive power as verified via 

evaluation criteria. Moreover, there was no 

overfitting phenomenon due to the capacity of the 

above training set being better than the control 

dataset. The results of EDT Boosted model when 

forecasting new data were quite good as indicated 

via R2, RMSE, MAE, MAPE values were around 

0.83, 0.16, 0.17, and 17%, respectively. It can be 

seen that the difference between training and 

testing parts was insignificant, which suggested the 

usability of the proposed EDT Boosted model. In 

particular, based on R2, RMSE, MAE, MAPE 

results, CV6 was the best run. Thus, its result was 

selected to discuss in the following parts. 

Fig. 4 compares the target and output of 
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concrete's surface chloride concentration (Cs) 

utilizing the EDT Boosted model for both training 

and resting parts. The obtained results indicated 

that the predicted values were close to the 

experimental ones for both parts.  

The target and output data relationships were 

given in the form of regression plots in Fig. 5. The 

obtained results indicated that the linear fit lines 

were close to the ideal regression line for both 

training and testing tests. Based on the analysis 

results, it can be confirmed that the EDT Boosted 

models successfully predicted the CS of marine 

concrete. 

As early mentioned, surface chloride 

concentration (Cs) of concrete is affected by 

concrete properties, environmental factors, and 

exposition period. Thus, this part aims to examine 

the effect of changing the value of an independent 

variable on a specific dependent variable under a 

specified set of assumptions.  

Based on the optimal EDT Boosted (i.e., at 

CV9) model in the previous section, PDP analysis 

is employed to interpret the prediction results in 

function of the input variables. Here, the effect of 

each input variable on Cs is computed by varying 

the value in the corresponding range, while 

keeping constant all the values of the remaining 

parameters. The influences of C, FA, GGBS, SF, 

SP, W, F. Agg, C. Agg, E. T, M. Tem, and Cl‒ on Cs 

are presented in Fig. 6. The PDP of Cs gradually 

increased with increasing C, W, and Cl‒ (see Figs. 

6a, f, and k) due to increased porosity and chloride 

ion concentration [41]. In contrast, The PDP of Cs 

gradually decreased with increasing GGBS. The 

influences of FA, SF, SP, F. Agg, and M. Tem on 

PDP of Cs were insignificantly (Figs. 6b,d, e, g, and 

j), in agreement with previous works [42].  In 

particular, the influence of C. Agg on PDP of Cs was 

significant, similar to the literature finding [43]. The 

results also implied that the most decisive factor 

affecting the PDP of Cs was F. Agg; the following 

orders were Cl‒, E. T, C, and W. 

  

  
Fig. 3. Results of training and testing of 10-fold cross-validated EDT model based on different 

performance evaluation criteria: (a) R2, (b) RMSE, (c) MAE, and (d) MAPE 
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Fig. 4. Comparison between experimental and predicted surface chloride concentration (Cs) of concrete 

utilizing EDT Boosted model for both training and resting parts 

  
Fig. 5. Correlation analysis between target and output values of Cs for (a) training dataset, (b) testing 

dataset 
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Fig. 6. Feature importance of variables used in this study 

5. Conclusions 

In this study, to predict surface chloride 

concentration (Cs) of marine concrete, a combined 

ML model based on a decision tree algorithm using 

a boosting technique called Ensemble Decision 

Tree (EDT) was developed. The EDT Boosted 

model takes advantage of the decision tree method 

and overcomes the disadvantages of single tree 

models to improve performance and predictability. 

A database of 386 experimental results was 

collected from 17 different sources covering twelve 

variables. After evaluating the correlation, these 

twelve variables can all be considered independent 

of each other and are selected as input parameters 

when building the EDT Boosted model. During the 

training phase of the EBT model, the 10-fold cross-

validation technique was applied to limit the 

overfitting phenomenon. The predictive 

performance of the proposed model is evaluated 

through 4 statistical criteria: R2, RMSE, MAE, and 

MAPE. The results indicated that EDT Boosted is a 

good model surface chloride concentration (Cs) of 

marine concrete as proved via high and stable 

predictive performance. Moreover, by the partial 

dependence graph (PDP) technique, the research 

has analyzed the influence of twelve input 
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parameters on surface chloride concentration (Cs) 

of marine concrete. The results also implied that 

the most vital factor affecting the PDP of Cs was 

the fine aggregate content, followed by Cl‒, E. T, 

C, and W. The research results help the engineer 

in the mix design to rely on the above qualitative 

and quantitative analysis to determine the content 

of the components in the concrete mix to enhance 

the chloride resistance of the marine concrete.  
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