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Abstract: Cement concrete is the most commonly used material today for 

constructing residential or commercial buildings, industrial parks, or particular 

components such as tunnel slabs where there is a high risk of fire. This 

structure requires concrete to be subjected to high temperatures generated by 

fires. However, concrete under the influence of high temperature has very 

complex behavior states with deformations, physical and chemical changes as 

the temperature rises dramatically. In this study, an artificial neural network-

based Bayesian regularization (ANN) model is proposed to predict the 

compressive strength of concrete. The database in this study includes 208 

experimental results synthesized from laboratory experiments with 9 input 

variables related to temperature change and design material composition. The 

performance of the ANN model was evaluated using K-fold cross-validation 

and statistical criteria, including mean absolute error (MAE), root mean square 

error (RMSE), and coefficient of determination (R2). The results show that the 

proposed ANN model is a reasonable, highly accurate, and useful prediction 

tool for saving time and minimizing costly experiments. 

Keywords: Machine learning, ANN, compressive strength, Bayesian 

regularization, K-fold cross-validation. 

 

 

1. Introduction 

Due to its non - flammable properties and low 

thermal gradient, concrete is known to perform well 

at high temperatures, ensuring that thermal 

transients propagate slowly inside structural 

elements. Nonetheless, high-temperature 

microstructural transformations in concrete involve 

complicated physicochemical processes in the 

component. On concrete, high temperatures cause 

two primary concerns. One is the damage of 

concrete's mechanical properties, which includes 

physicochemical variations in the binder and 

aggregate, thermal differences between the 

aggregate and the cement matrix as a temperature 

level and rate, applied force, and outer coating, 

which reduces evaporation from the concrete's 

surface. At higher temperatures, an exact number 

of physicochemical changes appear in the 

material: physically-compounded H2O is delivered 

over 100°C; dioxolane hydrate dissociates over 

300°C; calcium hydroxide hydrolyzed over 500°C; 

and several aggregates begin transferring or 

disintegrate at various temperatures (delivery of 

adsorbed H2O, quartz SiO2-conversion, limestone 

https://jstt.vn/index.php/en
https://doi.org/10.58845/jstt.utt.2022.en.2.1.9-20
https://doi.org/10.58845/jstt.utt.2022.en.2.1.9-20
mailto:sonth@utt.edu.vn
mailto:sonth@utt.edu.vn


JSTT 2022, 2 (1), 9-20                                                                                    Hadzima-Nyarko & Trinh 

 

 
10 

decomposing). Simultaneously, the second issue is 

concrete spalling. Ordinary concrete spalls due to 

fast temperature rises (about 20oC/min) [1]. In the 

transition zone between these two stages, the 

contrasting strains of the aggregate (expansion) 

and the cement matrix (drying shrinkage) initiate a 

distributed series of micro-cracks [2]. In addition, 

Spalling is caused by thermal strain and vapor 

pressure build-up in some situations, exposing 

deeper layers of concrete to burning and speeding 

up the heat transfer rate [3]. 

According to prior published studies [4, 5], 

the factors associated with the type of concrete 

have a significant correlation, and the type of 

material components impact the concrete 

compressive strength at high thermal conditions. 

Husem [6] researched how flexural and 

compressive resistance varied as high-

performance concrete (HPC) and conventional 

Portland concrete (PC) were subjected to the heat 

of 200, 400, 600, 800, and 1000°C and 

subsequently cooled in water or air. The results 

show that (a) the compressive resistance of PC 

and HPC subjected to high thermal reading reduce 

as the temperature rises. The quick expansions 

that occur in the process of the deformation of 

mineral additive used in the HPC at high 

temperatures may cause the concrete to drop its 

strength. The results of the experiments showed 

that regular and high-performance concretes made 

with limestone aggregate lost a substantial amount 

of strength deprivation when chilled in freshwater 

since being subjected to extreme heat. Chan et al. 

[7] investigated the compressive and thermal 

behaviors of HPC at heating from 800 to 1100oC, 

and through the cooling process. It is discovered 

that followed by a gradual (26-34%) and quick (22-

28%) cooling procedure, the strength attributes 

dropped dramatically. Tanyildizi et al [8] evaluated 

the influence of high temperatures on 

featherweight concrete's tensile and compressive 

resistance using fly-ash. Temperatures of 200, 400, 

and 800oC were carried out in his study. Concrete's 

compressive and splitting tensile strength were 

reduced by 63.8% and 76.45%, respectively, at 

800oC. Chan et al. [9] studied traditional and high-

strength concrete put in high thermal conditions. 

The concrete compressive resistance at 28-day 

ages was measured after various temperature 

treatment durations (400,600, 800, 1000, and 

1200oC). According to Tang et al., the concrete 

compressive strength using rubber-modified-

recycled based aggregate was evaluated as rising 

heat [10]. 

It is evident that the compressive strength of 

concrete is affected by temperature variations, 

input material type, and mix proportions [1, 2, 11]. 

Typically, the statistical regression method 

estimates the concrete compressive strength at 

high thermal conditions based on laboratory test 

data. Although regression analysis appears to be 

easy and straightforward, the difficulty in the 

analysis increases as the number of independent 

variables grows [12]. More advanced techniques, 

such as Machine learning (ML), are used in 

complicated scenarios to improve model prediction 

accuracy. When considering the temperature 

changes, ML algorithms perform better and have a 

lower variance [11]. Some studies on predicting 

compressive strength of concrete based on ML 

models [13–22]. It can be seen that ANN is a 

commonly used model in research on strength 

prediction of concrete because its effectiveness in 

nonlinear modeling has been well demonstrated, 

and its mathematical background is clear [23]. 

Hocine et al [24] predicted the compressive 

strength of concrete using limestone powder by 

applying the ANN model based on 7 input variables 

related to the proportions and age. The results 

show that the correlation coefficient (R2) of all 

training, testing, and validation phases is very high 

(over 97%). In addition, Behfernia et al [25]. used 

ANN and adaptive neural-based fuzzy inference 

(ANFIS) to predict the compressive strength of 

conventional concrete (without using admixtures or 

additives such as fly ash, silica fume, blast furnace 

slag, etc.) based on 160 samples and 7 input 

parameters related to proportions. The results 

show that although both ANFIS and ANN show 

strong predictive power, ANN has better 
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performance. Several studies [13–16] show that 

ANN is a very effective model for predicting the 

compressive strength of self-compacting concrete. 

Like other ML methods, ANN can suffer from an 

overfitting problem (especially with too small data 

but too high model complexity) [26]. The 

regularization in the ANN allows reducing error for 

obtaining the highest coefficient of correlation and 

lowest total square errors [27]. A tuning 

regularization technique in ANN that has been 

used very effectively is Bayesian regularization 

which has been used to successfully study various 

problems such as stock price prediction, data 

mining, etc [28–32]. Pre-distribution of model 

parameters and management of large weights are 

some of the Bayesian regularization strategies 

used for ANNs to obtain smoother mapping [33]. 

Currently, there is no evaluation of the ANN-

based Bayesian regularization model's 

effectiveness in predicting the strength of concrete 

as subjected to high temperatures. So, the 

development of this ML model to predict 

compressive strength and performance 

comparison was evaluated as part of this study's 

novelty. Temperature and material composition, 

including water, cement, coarse aggregate, fine 

aggregate, nano-silica, fly ash, super-plasticizer, 

and silica fume, were the 9 input parameters 

considered and used to evaluate the efficacy of the 

developed ANN technique in predicting concrete 

compressive strength. 

2. Database construction 

This paper develops an ANN model based on 

Bayesian regularization based on 208 

experimental data to forecast concrete's 

compressive strength. The factors affecting the 

compressive strength of concrete such as the 

content of ingredient material in the designed 

concrete mixture, including water, cement, 

aggregate (coarse sand/fine), mineral additives 

(silica-fume, nano-silica, fly ash), chemical 

additives (super-plasticizers), and subjected 

temperature have all been demonstrated in 

previous studies [34–39]. The statistical 

information of the input and output parameters is 

shown in Table 1. The input variables are denoted 

by I1 to I9, and the output parameter is denoted by 

O. 

Table 1. Statistical analysis of the input parameters in this study 

Calculate for 1m3 concrete 

Parameters Abbreviation Unit* Min Max Mean StD 

Inputs       

Cement I1 kg 250 786 437.69 95.49 

Water I2 kg 123 385 182.75 59.95 

Fine Aggregate I3 kg 0 1345 610.13 317.39 

Coarse Aggregate I4 kg 0 1681 1052.13 309.41 

Fly Ash I5 kg 0 150 12.65 33.07 

Super Plasticizer I6 kg 0 25.9 8.58 7.60 

Silica Fume I7 kg 0 150 29.32 37.09 

Nano Silica I8 kg 0 22.5 1.74 5.25 

Temperature I9 (oC) 20 1000 354.52 287.65 

Output       

Compressive strength O (MPa) 3 133.6 49.31 25.17 
 

Fig 1 shows correlation matrix analysis, 

which visualizes the relationship between variables 

and analyzes each variable's effect on the 

problem's output variable. Different colors describe 

the correlation values.  The blue square represents 

the negative correlation, and the red color 

represents the positive correlation. The pairs of 

attributes with a high degree of correlation can be 

removed to reduce the influence of unnecessary 

variables on the predictive model. The correlations 

between the inputs and output are not strictly 

linear, with a maximum correlation value of about 
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0.5. So, all inputs are considered as independent 

variables, while output as a dependent variable is 

predicted based on these independent ones. 

The dataset is divided into two groups for 

training and testing phases with a ratio of 70:30 to 

build the model. Finally, statistical parameters and 

K-fold cross-validation validate the generated 

model. 

 

Fig 1. The distribution chart and correlation 

between inputs and output in this work 

3. Model Details 

3.1. ANN 

Artificial Neural Networks (ANN) have been 

introduced since the 1940s [23]. ANN is a strong 

machine learning-based data analysis technique 

that is based on actual biological neural networks 

and is used to analyze large amounts of data. This 

ML technique aims to imitate the knowledge 

acquisition and inference processes in the human 

brain to improve performance [40]. The use of 

artificial neural networks (ANNs) to handle 

nonlinear regression analysis issues has become 

more and more popular. 

The ANN is set up to work based on 

biological neurons. A set of neurons is arranged so 

that all neurons receive an input signal and output 

signal simultaneously, and such a set is called a 

network layer [41]. The most straightforward neural 

network consists of a layer specializing in receiving 

input signals and input variables (input layer), and 

the output layer releasing the output signals. 

Hidden layers are those that exist between the 

input and output layers. These hidden layers 

contain hidden neurons, i.e., the intermediate 

results of the neural network's output value 

computation process. A neural network can have 

many hidden layers. If there are too many hidden 

layers, the model will fit the data well, which also 

means that the model will be more accurate in 

estimating the weights but will be less accurate in 

predicting out-of-sample measurements [42]. In 

addition, the larger the number of hidden layers, 

the greater the number of weights in the model 

thereby making the model estimation time longer 

[43]. The structure of an ANN model in this study is 

shown on Fig. 2. 

 
Fig 2. The structure of ANN in this study 

The use of Bayesian regularization in artificial 

neural network training/learning is much more 

potent than the standard back-propagation 

algorithm since it decreases or removes the 

requirement of extensive cross-validation [44]. In 

the same way, the regression method makes a non 

- linear model into a "well-posture" statistic issue, 

Bayesian regularization does the same for a 

nonlinear regression [33]. As a result, the models 

are reliable, and the assessment procedure is the 

advantage of Bayesian regularized-based artificial 

neural networks. 
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In statistics, the Bayesian approach differs 

from the probability perspective in hypothesis 

validating. It is founded on a couple of basic 

concepts: (1) probability is a metric of confidence 

of the events occurring, (2) past assumptions affect 

subsequent assumptions. The Bayes theorem 

states that [45]: 

H

P(D \ H)P(H) P(D,H)
P(H \ D)

P(D) P(D,H')dH'
= =


 

(1) 

H

P(D) P(D,H')dH'=   (2) 

The equation also holds in the probability 

approach, in which H and D are regarded groups 

of outcome measures. H is a hypothesis regarding 

if it has some previous assumption, and D is 

information that will modify one's assumption about 

H, according to the Bayesian approach. The 

probability is defined as P(D|H). It represents the 

model's unpredictability (aleatoric–uncertainty), 

i.e., the controversial question or uncertainty by 

process noise in the model. The prior is P(H) and 

Eq (2) is subsequent. The posterior is defined as 

P(H|D). 

To put it another way, the Bayesian theory 

provides a good framework for quantifying 

uncertainties in ML techniques. Also, it gives an 

accurate basis for interpreting several of the 

regularization methods and training tactics utilized 

in traditional ML [46]. 

3.2. K-Fold cross-validation 

When it comes to estimating the performance 

of machine learning models, cross-validation is the 

statistical approach utilized. It is often used to 

compare and select the most appropriate model for 

a given situation. Compared to previous 

approaches, this strategy is simple to grasp and 

use, providing more reliable estimations [47]. The 

most critical parameter to consider when using this 

strategy is K, which specifies the number of groups 

into which the data will be divided. It is referred to 

as K-fold cross-validation as a result of this. When 

a value of K is chosen, that value is used directly in 

the name of the evaluation method. This technique 

usually includes the following steps [48]: 

- Shuffle the dataset at random 

- Divide dataset into K groups. For each 

group: (i) Use the current group to evaluate model 

effectiveness; (ii) The remaining groups are used 

to train the model; (iii) Train the model; (iv) Evaluate 

and then reject the model 

- Synthesize the effectiveness of the model 

based on the evaluation data 

The total results are usually the average of 

the evaluations. In addition, the addition of 

variance and standard deviation information to the 

total results is also used in practice [49]. On the 

other hand, if K is chosen too large, the training set 

will be much larger than the testing set, and the 

evaluation results will not reflect the true nature of 

the machine learning method, especially with large 

data sets. That is also the reason why the 10-fold 

cross-validation is chosen by many researchers 

[11,48]. Therefore, in this study, K=10 was selected 

(10-fold cross-validation). 

3.3. Performance assessment 

The proposed ANN model's performance is 

evaluated using several indicators, comprising 

mean absolute error (MAE), root mean square 

error (RMSE), mean squared error (MSE), mean 

absolute percentage error (MAPE), and coefficient 

of determination (R2).  

The following equations reflect these values 

[43]: 

( )

( )

2n

i 1 i i2

2n

i 1 i

P E
R 1

P

=

=

  −
 = −
  

 (3) 

( )
n

2

i i
i 1

1
RMSE P E

n =
=  −  (4) 

n

i i
i 1

1
MAE P E

n =
=  −  (5) 

n
i i

t 1 i

E P100%
MAPE

n E=

−
=   (6) 

Where E is the actual experimental value, P 

denotes the expected value based on the model's 

estimate, and n denotes the total sample sizes in 

the dataset. 

R2 is an important criterion in regression 

analysis. It is understood as the square of the 
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correlation coefficient between the predicted 

outcome and the target, varying from 0 to 1. A high 

R2 value indicates a good correlation between the 

predicted and the actual values. RMSE is an error 

measurement of the mean squared difference 

between the predicted and actual outputs of an 

ANN network model, while MAE measures the 

mean absolute error between them. Moreover, 

MAPE reflects how much the predicted value 

differs from the mean value. In contrast to R2, lower 

RMSE, MAE, MAPE values indicate better 

performance of the AI algorithm. All the criteria are 

necessary to evaluate the network model [50]. 

4. Results and Discussion 

In the case of ANN training, the effectiveness 

of the model is determined by the topology of the 

neural network, which includes the number of 

hidden layers and the number of neurons in each 

of the hidden layers. Many factors that influence 

the ANN's performance, including the network's 

number of input and output parameters, the 

number of data points in the dataset, the training 

algorithm, the complexity of the error function, the 

network architecture, and the noise in the target 

data. A hidden layer in an ANN architecture, on the 

other hand, has been proven in several 

experiments to be sufficient for reaching the 

model's best performance [12, 40]. To this end, 

three layers in the proposed ANN structure were 

used to predict the compressive strength of 

concrete at high temperatures in this investigation. 

The input layer consisted of 9 neurons 

corresponding to 9 input parameters, the output 

layer consisted of 1 neuron representing the 

compressive strength value, and there was a single 

hidden layer between the two layers. It was 

necessary to experiment with different numbers of 

neurons in the hidden layer to establish the 

appropriate number of neurons in the hidden layer. 

Following multiple trial and error experiments, it 

was discovered that 10 neurons in the hidden layer 

produced the best predictionresults in this study. 

These findings are derived from the training and 

validation results obtained after 10-fold cross-

validation. Figure 3 shows the results of 10-fold 

cross-validation for a variety of assessment 

metrics. After 10 iterations, the R2 measures from 

the training set are higher than those from the 

testing set, and the values of error (RMSE, MAE, 

and MAPE) from the training set are lower than 

those from the testing set, which clearly indicates 

the model's accuracy in predicting the compressive 

strength of concrete. 

The regression model showing the 

correlation results between the predicted value 

from the ANN model and the actual value for the 

training and testing datasets is shown in Fig. 4. 

These are the typical prediction results from Fig. 3 

(results of the Cross-Validation 2), in which the 

horizontal axis represents the results of the 

collected experiment, and the vertical axis 

represents the results predicted by the developed 

ANN model. Itis observed that the values obtained 

from the constructed ANN model for the training 

data set (Fig. 4a) and the testing dataset (Fig. 4b) 

are very close to the experimental results. In 

addition, the performance metrics are 

RMSE=2.757, MAE=2.004, R2=0.988, and 

MAPE=5.387, whereas RMSE=6.159, 

MAE=4.438, R2=0.942, and MAPE=14.164 for the 

test phase. These results show that the ANN model 

can generalize input and output parameters and 

provide good predictions. Also seen is that the 

linear regression lines are quite close to the 

diagonals, confirming the strong correlation 

between the anticipated and real compressive 

strengths. In this study, it is discovered that the 

produced ANN model can accurately predict the 

compressive strength of concrete when exposed to 

high temperatures. 

Fig 5a shows the ANN model's distribution 

plot and cumulative distribution line of error for the 

training phase, while Fig. 5b shows those for the 

testing phase. It can be seen that the errors in both 

phases are concentrated around the 0 MPa 

position with a high density. In addition, based on 

the cumulative distribution, about 95% of the errors 

are concentrated in the very close range of 0 MPa, 

which confirms the modeling ability simulates the 

compressive strength of concrete accurately. Only 
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a few cases with high errors (10 MPa, 20 MPa) 

were detected in the training and testing part, 

respectively. However, it does notaffect the 

generalizability of the above machine learning 

model. 

In this next section, the strength prediction 

result obtained from a multi-variable regression 

formulation is conducted (Eq. 7). 

O = 19.047 +0.095(I1) - 0.050(I2) + 0.003(I3) + 

0.007(I4) + 0.339(I5) + 0.506(I6) + 0.015(I7) + 

0.518(I8) - 0.061(I9) 

(7) 

For the sake of comparison, the same 

training dataset was used to train the regression 

model, whereas the same testing data set was 

used to evaluate the performance of the proposed 

formulation. Fig. 6a shows the results of statistical 

indices, the ideal regression line, and the model's 

fit line for the training set. The values of statistical 

indices for the training part, including high R2 value 

(0.974), and low error (RMSE=4.085, MAE=2.733, 

and MAPE=8.016) indicated the high accuracy of 

the proposed formulation. The fit line nearly 

coincides with the ideal regressionline, which 

confirms the close correlation between predicted 

and actual compressive strength. Nevertheless, 

Fig. 6b shows the formulation results on the testing 

dataset. It can be seen that there is a very 

significant difference between the ideal regression 

line and the fit line in the linear regression, showing 

the model's insufficient accuracy. In addition, R2 = 

0.718, RMSE=13.334, MAE=10.838, and 

MAPE=34.315 are much lower than the predicted 

results from the model on the training data set. 

Finally, the results of this study are compared 

with those of Ahmad's study using Decision Tree 

(DT), Artificial neural network (ANN), Bagging, and 

Gradient Boosting (GB) models proposed in [11]. 

As shown in Table 2, it can be seen that the 

proposed ANN-based Bayesian regularization 

model in this paper has better 

predictiveperformance (the highest R2, and the 

lowest errors RMSE and MAE) than the other 

models. This result is also similar to some previous 

publications. Artificial neural network-based 

Bayesian regularization performed better than 

Partial Least Squares Discriminant Analysis 

(PLSDA) in chemical and drug metabolism 

prediction [51]. As compared with some algorithms 

to improve ANN efficiency, Bayesian regularization 

shows superiority over Levenberg–Marquardt 

algorithm [26, 52] and gradient descent with 

momentum and adaptive learning rate 

backpropagation – GDX [53], Scaled Conjugate 

Gradient (SCG) [54]. Besides, Gouravarajua [27] 

concludes that the artificial neural network-based 

Bayesian regularization combined with the K-fold 

cross-section technique which can greatly reduce 

computation time with high accuracy can be used 

to successfully study gecko adhesion problems. 

Thus, it is shown that utilizing the ANN-based 

Bayesian regularization model to estimate the 

compressive strength of concrete at high 

temperatures is achievable, hence saving time and 

money on trials. 
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Fig 3. Results of training and validation of ANN model after 10-fold cross-validation based on different 

performance evaluation criteria: (a) R2; (b) RMSE; (c) MAE, (d) MAPE 

  

Fig 4. Comparison of the performance of ANN model with the actual values for the (a) training dataset 

and (b) testing dataset 

  

Fig 5. Error and regression charts between experimental values and simulation values calculated by 

ANN considered in this study for: (a) the training part; and (b) testing part 
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Fig 6. Regression graphs showing a comparison between the experimental values and the predicted 

results obtained by formulation Eq. (7) 

Table 2. Comparison of the prediction results 

 ML model R2 RMSE MAE 

This study 

ANN -Bayesian regularization 

(Training) 
0.988 2.757 2.004 

ANN-Bayesian regularization 

(Testing) 
0.942 6.159 4.438 

Ahmad's study [11] 

 

DT 0.8378 10.79 7.54 

Bagging 0.9047 7.81 5.65 

GB 0.8854 9.24 6.93 

ANN 0.8202 11.03 9.15 
 

5. Conclusion 

Based on Bayesian regularization, an 

optimum neural network is presented to forecast 

the compressive strength of 28-day concrete at 

high temperatures.  A total of 208 experimental 

results were collected from experimental results 

used to construct the ANN-based Bayesian 

regularization model. Water, cement, coarse 

aggregate, fine aggregate, nano-silica, fly ash, 

super-plasticizer, silica fume, and temperature 

were all included in the input space of the collected 

database.  Four statistical criteria were used to 

evaluate the performance of the model. The 

prediction accuracy is R2=0.942, RMSE=6.159, 

MAE=4.438, and MAPE=14.164. The suggested 

ANN model's performance in this research was 

compared to that of the previous study and found 

to be superior. Concrete's compressive strength 

under various temperature settings may be 

accurately predicted using the ANN model, saving 

time and money otherwise spent on costly 

experiments. ML hybrid models might need to be 

developed based on this preliminary study to 

improve the accuracy of estimating concrete's 

compressive strength at high temperatures. 
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