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 Abstract: Cement concrete is the most commonly used material today for 

constructing residential or commercial buildings, industrial parks, or 

particular components such as tunnel slabs where there is a high risk of 

fire. This structure requires concrete to be subjected to high temperatures 

generated by fires. However, concrete under the influence of high 

temperature has very complex behavior states with deformations, physical 

and chemical changes as the temperature rises dramatically. In this study, 

an artificial neural network-based Bayesian regularization (ANN) model is 

proposed to predict the compressive strength of concrete. The database in 

this study includes 208 experimental results synthesized from laboratory 

experiments with 9 input variables related to temperature change and 

design material composition. The performance of the ANN model was 

evaluated using K-fold cross-validation and statistical criteria, including 

mean absolute error (MAE), root mean square error (RMSE), and 

coefficient of determination (R2). The results show that the proposed ANN 

model is a reasonable, highly accurate, and useful prediction tool for saving 

time and minimizing costly experiments. 

Keywords: Machine learning, ANN, compressive strength, Bayesian 

regularization, K-fold cross-validation 

 

 

1. Introduction 

Due to its non - flammable properties and 

low thermal gradient, concrete is known to 

perform well at high temperatures, ensuring that 

thermal transients propagate slowly inside 

structural elements. Nonetheless, high-

temperature microstructural transformations in 

concrete involve complicated physicochemical 

processes in the component. On concrete, high 

temperatures cause two primary concerns. One 

is the damage of concrete's mechanical 

properties, which includes physicochemical 

variations in the binder and aggregate, thermal 

differences between the aggregate and the 

cement matrix as a temperature level and rate, 

applied force, and outer coating, which reduces 

evaporation from the concrete's surface. At 

higher temperatures, an exact number of 

physicochemical changes appear in the material: 

physically-compounded H2O is delivered over 
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100°C; dioxolane hydrate dissociates over 

300°C; calcium hydroxide hydrolyzed over 

500°C; and several aggregates begin transferring 

or disintegrate at various temperatures (delivery 

of adsorbed H2O, quartz SiO2-conversion, 

limestone decomposing). Simultaneously, the 

second issue is concrete spalling. Ordinary 

concrete spalls due to fast temperature rises 

(about 20oC/min) [1]. In the transition zone 

between these two stages, the contrasting strains 

of the aggregate (expansion) and the cement 

matrix (drying shrinkage) initiate a distributed 

series of micro-cracks [2]. In addition, Spalling is 

caused by thermal strain and vapor pressure 

build-up in some situations, exposing deeper 

layers of concrete to burning and speeding up the 

heat transfer rate [3]. 

According to prior published studies [4, 5], 

the factors associated with the type of concrete 

have a significant correlation, and the type of 

material components impact the concrete 

compressive strength at high thermal conditions. 

Husem [6] researched how flexural and 

compressive resistance varied as high-

performance concrete (HPC) and conventional 

Portland concrete (PC) were subjected to the 

heat of 200, 400, 600, 800, and 1000°C and 

subsequently cooled in water or air. The results 

show that (a) the compressive resistance of PC 

and HPC subjected to high thermal reading 

reduce as the temperature rises. The quick 

expansions that occur in the process of the 

deformation of mineral additive used in the HPC 

at high temperatures may cause the concrete to 

drop its strength. The results of the experiments 

showed that regular and high-performance 

concretes made with limestone aggregate lost a 

substantial amount of strength deprivation when 

chilled in freshwater since being subjected to 

extreme heat. Chan et al. [7] investigated the 

compressive and thermal behaviors of HPC at 

heating from 800 to 1100oC, and through the 

cooling process. It is discovered that followed by 

a gradual (26-34%) and quick (22-28%) cooling 

procedure, the strength attributes dropped 

dramatically. Tanyildizi et al [8] evaluated the 

influence of high temperatures on featherweight 

concrete's tensile and compressive resistance 

using fly-ash. Temperatures of 200, 400, and 

800oC were carried out in his study. Concrete's 

compressive and splitting tensile strength were 

reduced by 63.8% and 76.45%, respectively, at 

800oC. Chan et al. [9] studied traditional and 

high-strength concrete put in high thermal 

conditions. The concrete compressive resistance 

at 28-day ages was measured after various 

temperature treatment durations (400,600, 800, 

1000, and 1200oC). According to Tang et al., the 

concrete compressive strength using rubber-

modified-recycled based aggregate was 

evaluated as rising heat [10]. 

It is evident that the compressive strength 

of concrete is affected by temperature variations, 

input material type, and mix proportions [1, 2, 11]. 

Typically, the statistical regression method 

estimates the concrete compressive strength at 

high thermal conditions based on laboratory test 

data. Although regression analysis appears to be 

easy and straightforward, the difficulty in the 

analysis increases as the number of independent 

variables grows [12]. More advanced techniques, 

such as Machine learning (ML), are used in 

complicated scenarios to improve model 

prediction accuracy. When considering the 

temperature changes, ML algorithms perform 

better and have a lower variance [11]. Some 

studies on predicting compressive strength of 

concrete based on ML models [13–22]. It can be 

seen that ANN is a commonly used model in 

research on strength prediction of concrete 

because its effectiveness in nonlinear modeling 

has been well demonstrated, and its 

mathematical background is clear [23]. Hocine et 

al [24] predicted the compressive strength of 

concrete using limestone powder by applying the 

ANN model based on 7 input variables related to 

the proportions and age. The results show that 

the correlation coefficient (R2) of all training, 

testing, and validation phases is very high (over 

97%). In addition, Behfernia et al [25]. used ANN 

and adaptive neural-based fuzzy inference 

(ANFIS) to predict the compressive strength of 



JSTT 2022, 2 (1), 9-21          Marijana and Trinh 

 

 
    11 

conventional concrete (without using admixtures 

or additives such as fly ash, silica fume, blast 

furnace slag, etc.) based on 160 samples and 7 

input parameters related to proportions. The 

results show that although both ANFIS and ANN 

show strong predictive power, ANN has better 

performance. Several studies [13–16] show that 

ANN is a very effective model for predicting the 

compressive strength of self-compacting 

concrete. Like other ML methods, ANN can suffer 

from an overfitting problem (especially with too 

small data but too high model complexity) [26]. 

The regularization in the ANN allows reducing 

error for obtaining the highest coefficient of 

correlation and lowest total square errors [27]. A 

tuning regularization technique in ANN that has 

been used very effectively is Bayesian 

regularization which has been used to 

successfully study various problems such as 

stock price prediction, data mining, etc [28–32]. 

Pre-distribution of model parameters and 

management of large weights are some of the 

Bayesian regularization strategies used for ANNs 

to obtain smoother mapping [33]. 

Currently, there is no evaluation of the 

ANN-based Bayesian regularization model's 

effectiveness in predicting the strength of 

concrete as subjected to high temperatures. So, 

the development of this ML model to predict 

compressive strength and performance 

comparison was evaluated as part of this study's 

novelty. Temperature and material composition, 

including water, cement, coarse aggregate, fine 

aggregate, nano-silica, fly ash, super-plasticizer, 

and silica fume, were the 9 input parameters 

considered and used to evaluate the efficacy of 

the developed ANN technique in predicting 

concrete compressive strength. 

2. Database construction 

This paper develops an ANN model based 

on Bayesian regularization based on 208 

experimental data to forecast concrete's 

compressive strength. The factors affecting the 

compressive strength of concrete such as the 

content of ingredient material in the designed 

concrete mixture, including water, cement, 

aggregate (coarse sand/fine), mineral additives 

(silica-fume, nano-silica, fly ash), chemical 

additives (super-plasticizers), and subjected 

temperature have all been demonstrated in 

previous studies [34–39]. The statistical 

information of the input and output parameters is 

shown in Table 1. The input variables are 

denoted by I1 to I9, and the output parameter is 

denoted by O. 

Fig 1 shows correlation matrix analysis, 

which visualizes the relationship between 

variables and analyzes each variable's effect on 

the problem's output variable. Different colors 

describe the correlation values.  The blue square 

represents the negative correlation, and the red 

color represents the positive correlation. The 

pairs of attributes with a high degree of 

correlation can be removed to reduce the 

influence of unnecessary variables on the 

predictive model. The correlations between the 

inputs and output are not strictly linear, with a 

maximum correlation value of about 0.5. So, all 

inputs are considered as independent variables, 

while output as a dependent variable is predicted 

based on these independent ones. 

 

Fig 1. The distribution chart and correlation 

between inputs and output in this work 

The dataset is divided into two groups for 

training and testing phases with a ratio of 70:30 

to build the model. Finally, statistical parameters 
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and K-fold cross-validation validate the generated 

model. 

 

Table 1. Statistical analysis of the input parameters in this study 

Calculate for 1m3 concrete 

Parameters Abbreviation Unit* Min Max Mean StD 

Inputs 
      

Cement I1 kg 250 786 437.69 95.49 

Water I2 kg 123 385 182.75 59.95 

Fine Aggregate I3 kg 0 1345 610.13 317.39 

Coarse Aggregate I4 kg 0 1681 1052.13 309.41 

Fly Ash I5 kg 0 150 12.65 33.07 

Super Plasticizer I6 kg 0 25.9 8.58 7.60 

Silica Fume I7 kg 0 150 29.32 37.09 

Nano Silica I8 kg 0 22.5 1.74 5.25 

Temperature I9 (oC) 20 1000 354.52 287.65 

Output       

Compressive strength O (MPa) 3 133.6 49.31 25.17 

 

Fig 2. The structure of ANN in this study 

3. Model Details 

3.1. ANN 

Artificial Neural Networks (ANN) have been 

introduced since the 1940s [23]. ANN is a strong 

machine learning-based data analysis technique 

that is based on actual biological neural networks 

and is used to analyze large amounts of data. 

This ML technique aims to imitate the knowledge 

acquisition and inference processes in the human 

brain to improve performance [40]. The use of 

artificial neural networks (ANNs) to handle 

nonlinear regression analysis issues has become 

more and more popular. 

The ANN is set up to work based on 

biological neurons. A set of neurons is arranged 

so that all neurons receive an input signal and 

output signal simultaneously, and such a set is 

called a network layer [41]. The most 

straightforward neural network consists of a layer 

specializing in receiving input signals and input 

variables (input layer), and the output layer 

releasing the output signals. Hidden layers are 

those that exist between the input and output 

layers. These hidden layers contain hidden 

neurons, i.e., the intermediate results of the 

neural network's output value computation 

process. A neural network can have many hidden 



JSTT 2022, 2 (1), 9-21          Marijana and Trinh 

 

 
    13 

layers. If there are too many hidden layers, the 

model will fit the data well, which also means that 

the model will be more accurate in estimating the 

weights but will be less accurate in predicting out-

of-sample measurements [42]. In addition, the 

larger the number of hidden layers, the greater 

the number of weights in the model thereby 

making the model estimation time longer [43]. 

The structure of an ANN model in this study is 

shown on Fig. 2. 

The use of Bayesian regularization in 

artificial neural network training/learning is much 

more potent than the standard back-propagation 

algorithm since it decreases or removes the 

requirement of extensive cross-validation [44]. In 

the same way, the regression method makes a 

non - linear model into a "well-posture" statistic 

issue, Bayesian regularization does the same for 

a nonlinear regression [33]. As a result, the 

models are reliable, and the assessment 

procedure is the advantage of Bayesian 

regularized-based artificial neural networks. 

In statistics, the Bayesian approach differs 

from the probability perspective in hypothesis 

validating. It is founded on a couple of basic 

concepts: (1) probability is a metric of confidence 

of the events occurring, (2) past assumptions 

affect subsequent assumptions. The Bayes 

theorem states that [45]: 

H

P(D \ H)P(H) P(D,H)
P(H \ D)

P(D) P(D,H')dH'
 


 

(1) 

H

P(D) P(D,H')dH'   (2) 

The equation also holds in the probability 

approach, in which H and D are regarded groups 

of outcome measures. H is a hypothesis 

regarding if it has some previous assumption, 

and D is information that will modify one's 

assumption about H, according to the Bayesian 

approach. The probability is defined as P(D|H). It 

represents the model's unpredictability (aleatoric–

uncertainty), i.e., the controversial question or 

uncertainty by process noise in the model. The 

prior is P(H) and Eq (2) is subsequent. The 

posterior is defined as P(H|D). 

To put it another way, the Bayesian theory 

provides a good framework for quantifying 

uncertainties in ML techniques. Also, it gives an 

accurate basis for interpreting several of the 

regularization methods and training tactics 

utilized in traditional ML [46]. 

3.2. K-Fold cross-validation 

When it comes to estimating the 

performance of machine learning models, cross-

validation is the statistical approach utilized. It is 

often used to compare and select the most 

appropriate model for a given situation. 

Compared to previous approaches, this strategy 

is simple to grasp and use, providing more 

reliable estimations [47]. The most critical 

parameter to consider when using this strategy is 

K, which specifies the number of groups into 

which the data will be divided. It is referred to as 

K-fold cross-validation as a result of this. When a 

value of K is chosen, that value is used directly in 

the name of the evaluation method. This 

technique usually includes the following steps 

[48]: 

- Shuffle the dataset at random 

- Divide dataset into K groups. For each 

group: (i) Use the current group to evaluate 

model effectiveness; (ii) The remaining groups 

are used to train the model; (iii) Train the model; 

(iv) Evaluate and then reject the model 

- Synthesize the effectiveness of the model 

based on the evaluation data 

The total results are usually the average of 

the evaluations. In addition, the addition of 

variance and standard deviation information to 

the total results is also used in practice [49]. On 

the other hand, if K is chosen too large, the 

training set will be much larger than the testing 

set, and the evaluation results will not reflect the 

true nature of the machine learning method, 

especially with large data sets. That is also the 

reason why the 10-fold cross-validation is chosen 
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by many researchers [11, 48]. Therefore, in this 

study, K=10 was selected (10-fold cross-

validation). 

3.3. Performance assessment 

The proposed ANN model's performance is 

evaluated using several indicators, comprising 

mean absolute error (MAE), root mean square 

error (RMSE), mean squared error (MSE), mean 

absolute percentage error (MAPE), and 

coefficient of determination (R2).  

The following equations reflect these values 

[43]: 

 

 

2n

i 1 i i2

2n

i 1 i

P E
R 1

P





  
  
  

 (3) 

 
n

2

i i
i 1

1
RMSE P E

n 
    (4) 

n

i i
i 1

1
MAE P E

n 
    (5) 

n
i i

t 1 i

E P100%
MAPE

n E


   (6) 

Where E is the actual experimental value, P 

denotes the expected value based on the model's 

estimate, and n denotes the total sample sizes in 

the dataset. 

R2 is an important criterion in regression 

analysis. It is understood as the square of the 

correlation coefficient between the predicted 

outcome and the target, varying from 0 to 1. A 

high R2 value indicates a good correlation 

between the predicted and the actual values. 

RMSE is an error measurement of the mean 

squared difference between the predicted and 

actual outputs of an ANN network model, while 

MAE measures the mean absolute error between 

them. Moreover, MAPE reflects how much the 

predicted value differs from the mean value. In 

contrast to R2, lower RMSE, MAE, MAPE values 

indicate better performance of the AI algorithm. 

All the criteria are necessary to evaluate the 

network model [50]. 

4. Results and Discussion 

In the case of ANN training, the 

effectiveness of the model is determined by the 

topology of the neural network, which includes 

the number of hidden layers and the number of 

neurons in each of the hidden layers. Many 

factors that influence the ANN's performance, 

including the network's number of input and 

output parameters, the number of data points in 

the dataset, the training algorithm, the complexity 

of the error function, the network architecture, 

and the noise in the target data. A hidden layer in 

an ANN architecture, on the other hand, has 

been proven in several experiments to be 

sufficient for reaching the model's best 

performance [12, 40]. To this end, three layers in 

the proposed ANN structure were used to predict 

the compressive strength of concrete at high 

temperatures in this investigation. The input layer 

consisted of 9 neurons corresponding to 9 input 

parameters, the output layer consisted of 1 

neuron representing the compressive strength 

value, and there was a single hidden layer 

between the two layers. It was necessary to 

experiment with different numbers of neurons in 

the hidden layer to establish the appropriate 

number of neurons in the hidden layer. Following 

multiple trial and error experiments, it was 

discovered that 10 neurons in the hidden layer 

produced the best predictionresults in this study. 

These findings are derived from the training and 

validation results obtained after 10-fold cross-

validation. Figure 3 shows the results of 10-fold 

cross-validation for a variety of assessment 

metrics. After 10 iterations, the R2 measures 

from the training set are higher than those from 

the testing set, and the values of error (RMSE, 

MAE, and MAPE) from the training set are lower 

than those from the testing set, which clearly 

indicates the model's accuracy in predicting the 

compressive strength of concrete. 

The regression model showing the 

correlation results between the predicted value 

from the ANN model and the actual value for the 

training and testing datasets is shown in Fig. 4. 

These are the typical prediction results from Fig. 

3 (results of the Cross-Validation 2), in which the 
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horizontal axis represents the results of the 

collected experiment, and the vertical axis 

represents the results predicted by the developed 

ANN model. Itis observed that the values 

obtained from the constructed ANN model for the 

training data set (Fig. 4a) and the testing dataset 

(Fig. 4b) are very close to the experimental 

results. In addition, the performance metrics are 

RMSE=2.757, MAE=2.004, R2=0.988, and 

MAPE=5.387,whereas RMSE=6.159, 

MAE=4.438, R2=0.942, and MAPE=14.164 for 

the test phase. These results show that the ANN 

model can generalize input and output 

parameters and provide good predictions. Also 

seen is that the linear regression lines are quite 

close to the diagonals, confirming the strong 

correlation between the anticipated and real 

compressive strengths. In this study, it is 

discovered that the produced ANN model can 

accurately predict the compressive strength of 

concrete when exposed to high temperatures. 

Fig 5a shows the ANN model's distribution 

plot and cumulative distribution line of error for 

the training phase, while Fig. 5b shows those for 

the testing phase. It can be seen that the errors in 

both phases are concentrated around the 0 MPa 

position with a high density. In addition, based on 

the cumulative distribution, about 95% of the 

errors are concentrated in the very close range of 

0 MPa, which confirms the modeling ability 

simulates the compressive strength of concrete 

accurately. Only a few cases with high errors (10 

MPa, 20 MPa) were detected in the training and 

testing part, respectively. However, it does 

notaffect the generalizability of the above 

machine learning model. 

In this next section, the strength prediction 

result obtained from a multi-variable regression 

formulation is conducted (Eq. 7). 

O = 19.047 +0.095(I1) - 0.050(I2) + 

0.003(I3) + 0.007(I4) + 0.339(I5) + 0.506(I6) 

+ 0.015(I7) + 0.518(I8) - 0.061(I9) 

(7) 

For the sake of comparison, the same 

training dataset was used to train the regression 

model, whereas the same testing data set was 

used to evaluate the performance of the 

proposed formulation. Fig. 6a shows the results 

of statistical indices, the ideal regression line, and 

the model's fit line for the training set. The values 

of statistical indices for the training part, including 

high R2 value (0.974), and low error 

(RMSE=4.085, MAE=2.733, and MAPE=8.016) 

indicated the high accuracy of the proposed 

formulation. The fit line nearly coincides with the 

ideal regressionline, which confirms the close 

correlation between predicted and actual 

compressive strength. Nevertheless, Fig. 6b 

shows the formulation results on the testing 

dataset. It can be seen that there is a very 

significant difference between the ideal 

regression line and the fit line in the linear 

regression, showing the model's insufficient 

accuracy. In addition, R2 = 0.718, RMSE=13.334, 

MAE=10.838, and MAPE=34.315 are much lower 

than the predicted results from the model on the 

training data set. 

Finally, the results of this study are 

compared with those of Ahmad's study using 

Decision Tree (DT), Artificial neural network 

(ANN), Bagging, and Gradient Boosting (GB) 

models proposed in [11]. As shown in Table 2, it 

can be seen that the proposed ANN-based 

Bayesian regularization model in this paper has 

better predictiveperformance (the highest R2, and 

the lowest errors RMSE and MAE) than the other 

models. This result is also similar to some 

previous publications. Artificial neural network-

based Bayesian regularization performed better 

than Partial Least Squares Discriminant Analysis 

(PLSDA) in chemical and drug metabolism 

prediction [51]. As compared with some 

algorithms to improve ANN efficiency, Bayesian 

regularization shows superiority over Levenberg–

Marquardt algorithm [26, 52] and gradient 

descent with momentum and adaptive learning 

rate backpropagation – GDX [53], Scaled 

Conjugate Gradient (SCG) [54]. Besides, 

Gouravarajua [27] concludes that the artificial 

neural network-based Bayesian regularization 

combined with the K-fold cross-section technique 
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which can greatly reduce computation time with 

high accuracy can be used to successfully study 

gecko adhesion problems. Thus, it is shown that 

utilizing the ANN-based Bayesian regularization 

model to estimate the compressive strength of 

concrete at high temperatures is achievable, 

hence saving time and money on trials. 

  

  

Fig 3. Results of training and validation of ANN model after 10-fold cross-validation based on different 

performance evaluation criteria: (a) R2; (b) RMSE; (c) MAE, (d) MAPE 

  

Fig 4. Comparison of the performance of ANN model with the actual values for the (a) training dataset 

and (b) testing dataset 
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Fig 5. Error and regression charts between experimental values and simulation values calculated by 

ANN considered in this study for: (a) the training part; and (b) testing part 

  
Fig 6. Regression graphs showing a comparison between the experimental values and the predicted 

results obtained by formulation Eq. (7) 

Table 2. Comparison of the prediction results 

 ML model R2 RMSE MAE 

This study 

ANN -Bayesian regularization 

(Training) 
0.988 2.757 2.004 

ANN-Bayesian regularization 

(Testing) 
0.942 6.159 4.438 

Ahmad's study 

[11] 

 

DT 0.8378 10.79 7.54 

Bagging 0.9047 7.81 5.65 

GB 0.8854 9.24 6.93 

ANN 0.8202 11.03 9.15 
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5. Conclusion 

Based on Bayesian regularization, an 

optimum neural network is presented to forecast 

the compressive strength of 28-day concrete at 

high temperatures.  A total of 208 experimental 

results were collected from experimental results 

used to construct the ANN-based Bayesian 

regularization model. Water, cement, coarse 

aggregate, fine aggregate, nano-silica, fly ash, 

super-plasticizer, silica fume, and temperature 

were all included in the input space of the 

collected database.  Four statistical criteria were 

used to evaluate the performance of the model. 

The prediction accuracy is R2=0.942, 

RMSE=6.159, MAE=4.438, and MAPE=14.164. 

The suggested ANN model's performance in this 

research was compared to that of the previous 

study and found to be superior. Concrete's 

compressive strength under various temperature 

settings may be accurately predicted using the 

ANN model, saving time and money otherwise 

spent on costly experiments. ML hybrid models 

might need to be developed based on this 

preliminary study to improve the accuracy of 

estimating concrete's compressive strength at 

high temperatures. 
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