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Abstract: This study develops vehicle and time-specific crash rate prediction
models for rural highway curves using high-resolution geometric and speed
data. A 30km segment of State Highway-1 in Karnataka, India, encompassing
32 horizontal curves, served as the study site. Detailed data collection included
10 years of crash records, traffic volume count, LiDAR-based geometric
features, and spot speeds recorded from laser speed cameras. Distinct models
were built for motorized two-wheelers (MTW), passenger cars (CAR), heavy
commercial vehicles (HCV), and for both daytime and nighttime conditions.
The study offers a novel contribution by incorporating nighttime crash rate
modelling rarely addressed due to challenges in data availability, and by
developing disaggregated models for multiple vehicle classes. A backward
stepwise regression (BSR) approach with square root transformation was
employed, ensuring model transparency and interpretability. Sight-distance
deficiency consistently emerged as the most influential predictor of crash rate,
highlighting the critical role of visibility on curved segments. Validation through
Leave One Out Cross Validation (LOOCV) confirmed acceptable predictive
performance (R? = 0.43-0.80), with residuals exhibiting normal distribution. The
findings underscore the importance of curve geometry and visibility in crash
risk and provide actionable insights for design audits and safety interventions
on rural highways.

Keywords: crash prediction models, daytime-nighttime crashes, vehicle
specific analysis, backward stepwise regression, LIDAR-based geometry, sight
distance deficiency.

1. Introduction
The United

However, this goal

Nations’
Development Goal (SDG) 3.6 calls for reducing
global road traffic deaths by 50% by 2030.
remains far from reach.
Currently, road crashes cause approximately 1.3
million deaths globally each year, with

accounting for nearly 11% of these fatalities. Road
traffic injuries have emerged as the 12th leading
cause of death globally, and about 92% of these
deaths occur in low- and middle-income countries.
Rapid urbanization and infrastructure expansion,
alongside a near doubling of the global vehicular
population in the last decade, have outpaced
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safety measures [1]. In India alone, nearly 4 lakh
accidents were recorded in 2021, resulting in
approximately 1.5 lakh deaths and 3.85 lakh
injuries. Of all crashes, nearly 80% occur on
straight and curved sections, with about 12%
reported specifically on horizontal curves [2]. Given
these alarming trends, road user safety must be
recognized as a national and global priority.
Crashes are now among the leading causes of
hospitalization, disability, and mortality, with
profound socio-economic consequences. Crash
prediction models are widely recognized as
systematic tools to identify hazardous roadway
conditions and estimate the impact of safety
interventions [3]. These models are also useful in
estimating crash frequency at locations with limited
or no crash data [4]. Therefore, it is essential to
establish mathematical relationships between
crash occurrences and contributing variables.
Operational attributes and geometric features such
as curvature, speed, and sight distance have
shown strong correlation with crash rates,
especially when true Ilatent variables are
considered [5]. Conventional crash models
generally employ single-regression frameworks,
using geometry and speed-based predictors.
However, the rare and random nature of crashes
introduces challenges in predicting trends over
short timeframes [6], [7]. Additionally, the limited
availability and spatial resolution of crash data
often reduce model accuracy and transferability [8].
Studies employing generalized linear modelling
such as negative binomial and logistic regression
have demonstrated improved accuracy when
multiple variables particularly speed-related
measures are included [9], [10]. A consistent
finding across studies is the positive correlation
between speed reduction and crash likelihood,
particularly on horizontal curves [11], [12]. Road
cross-section features, traffic volume, and design
parameters collectively influence safety and are
easily quantifiable [13]. Notably, crash risk has
been found to be significantly higher at night due to
visibility constraints and driver limitations [14], [15].
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Despite the availability of traffic volume, geometry,
and speed data, crash events remain sparse and
unpredictable. Models using alignment indices,
operating speed, and volume have been
developed with varying success [16], [17], [18].
However, temporal variations especially day
versus night comparisons remain underexplored,
despite growing evidence of their importance. Most
past studies conducted data collection only during
the daytime and under fair weather conditions [19],
[20], [21], [22], [23].

These limitations underscore the need for a
more detailed understanding of how time of day
and vehicle class interact with geometric and
operational conditions to affect crash risk. This
study aims to address these gaps by developing
vehicle- and time-specific crash prediction models
using precise, high-resolution data collected
across multiple horizontal curves in a rural highway
setting with following specific tasks:

To develop and validate time-specific and
vehicle-specific crash rate prediction models for
selected rural highway curves using high resolution
geometric and speed data.

To identify and quantify the influence of
geometric parameters and vehicle operating speed
characteristics on crash occurrence.

To compare the performance of multiple
modelling techniques and evaluate the trade-off
between predictive accuracy and interpretability.
2. Methodology

The section deals with the detailed
methodology adopted in the current study. Fig. 1
gives the work flowchart adopted.

2.1. Study area and site selection

The study was conducted along a 30-
kilometer stretch of State Highway 1 (SH-1) in
Karnataka, India, extending between Padubidri
and Karkala. Following a detailed reconnaissance
survey, a suitable corridor was identified based on
consistent pavement conditions, standardized road
markings, and the presence of horizontal curves
exhibiting diverse radii. The selected segment lies
in largely flat terrain, with an average roadway
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gradient of 5%, with 32 horizontal curves. To
ensure accurate measurement of free-flow speeds,
sections influenced by intersections or speed-
calming devices such as humps were deliberately
excluded. This approach provided a uniform and
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controlled environment conducive to reliable data
collection for geometric and safety-related
analysis. The 30 km stretch refers to single travel
direction each way which adds up and make the
dataset to 60 in total.
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Fig. 1. Research outline for the present study

2.2. Data collection and preliminary analysis

The study utilized a comprehensive dataset
comprising road crash records, traffic volume
counts, spot speed measurements, and geometric
road characteristics. Ten years of crash data
between 2014 and 2024 were sourced from police
records and classified by vehicle type, focusing on
three categories: motorized two-wheelers (MTW),
passenger cars (CAR), and heavy commercial
vehicles (HCV). Crash incidents were
georeferenced to specific horizontal curves based
on the First Information Reports (FIRs) provided by
the local authorities. Each crash was further
categorized by time of occurrence as daytime or
nighttime. Although the original dataset included
gender-based driver involvement, records
indicated that female drivers contributed to less
than 1% of crash cases. As a result, gender data
were excluded from further analysis. Crash
frequencies were normalized by converting them
into crash rates, expressed as the number of
crashes per 100,000 kilometers traveled.

Traffic volume data were collected over a

continuous 7-day period from 6:00 AM to 10:00 PM
daily. Due to significantly lower vehicle flow beyond
10:00 PM and logistical limitations, data collection
was restricted to this timeframe. The observed
counts were used to compute Average Daily Traffic
(ADT), which was subsequently converted into
Annual Average Daily Traffic (AADT) using Indian
Roads Congress (IRC) recommended factors [24],
[25]. Spot speed data were recorded using high-
precision laser speed cameras with an accuracy of
31 km/h and a 30° angular tolerance. Speed
measurements were taken at three critical points
along each horizontal curve: the point of curvature
(PC), the mid-point (MC), and the point of tangency
(PT). To ensure measurement reliability, equipment
was aligned tangentially to the travel path and kept
within the allowable angular limit. Data were
collected during both daytime and nighttime under
free flow conditions, maintaining a minimum 5
second headway between vehicles to eliminate the
influence of vehicle interaction on speed selection
[26]. Fig. 2 depicts the spot speed data collection
and output during daytime and nighttime.

17



JSTT 2026, 6 (1), 15-28

A

o :;_7""4,_1k: 2 SN
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A detailed topographic survey using Light
Detection and Ranging (LiDAR) technology was
conducted to extract geometric attributes of the
roadway. Known for its high spatial accuracy up to
3 mm, LiDAR proved highly effective in capturing
fine geometric details [27]. The initial point cloud
dataset included over 2.6 billion data points, which
was refined to approximately 1 billion points for
analysis. Using ‘CloudCompare
version.2.14.alpha’, key geometric features were
extracted, including superelevation (e), average
gradient (G), shoulder width (ShW), and lane width
(LnW). ‘CloudCompare’ is an open source 3D point
cloud processing software used in highway
engineering studies for extracting geometric
features, slope analysis, and surface modelling. Its
capability to handle huge LiDAR datasets and
perform distance computation and cross section
profiling has made it a popular tool in transportation
research [28], [29]. The software enables precise
extraction of roadway alignment and curvature

parameters critical for safety and design
consistency analyses. Since lane width was found
to be consistent across all curves, it was excluded
from further statistical modelling. A centerline
polyline was created along the roadway and
imported into Autodesk Civil 3D (2025) to derive
curve-specific parameters such as horizontal curve
radius (R), curve length (CL), deflection angle
(DA), approach tangent length (Atl), and departure
tangent length (Dtl). To compute available sight
distance, the trimmed LIiDAR point cloud was
converted into a surface model in Civil 3D.
Calculations were carried out in accordance with
IRC guidelines, by providing driver eye height of
1.2 m and object height of 0.15 m [30]. The process
is depicted in Fig. 3.

For speed analysis, a minimum of 50 spot
speed observations were collected per vehicle
category at each of the three curve points. The
Kolmogorov - Smirnov (K-S) test was used to
assess the normality of raw speed datasets.

18



JSTT 2026, 6 (1), 15-28

Outliers identified through this process were
excluded, reducing the minimum sample size at
each point to no less than 30 observations [17],
[23]. The 85" percentile operating speed (Vss),
representing the speed below which 85% of

R.S. Sanganaikar et al

vehicles travel under free flow conditions, was
determined using cumulative frequency distribution
plots [31]. All Vg5 datasets exhibited near-normal
distributions. Summary statistics for the variables
used in the study are presented in Table 1.

Fig. 3. (a) Study stretch showing all curve locations (b) Google earth image from of one of the curves
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(Curve 7). (c) LIDAR data output for curve 7. (d) 3D zoomed in version of curve 7. (e) Stopping sight
distance (SSD) analysis output

Table 1. Descriptive statistics of geometric and speed data used in crash prediction model

Variable, unit Mean Std Dev Min Max
R, m 197.58 80.94 42.33 336.85
DA, degree 33.1 16.37 11 75
CL,m 102.14 46.54 43.08 264.06
Curt, degree/m 0.35 0.21 0.17 1.13
e Def, % 1.14 2.09 -2 57
Atl, m 43.42 22.98 10.84 101.98
Dtl, m 46.65 27.83 10.84 122.36
G % 0.9 2.82 -4.83 6.28
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Table 1. (continued)

Variable, unit Mean Std Dev Min Max
S Def,m 48.93 25.89 0 96
ShW, m 1.57 0.2 1.1 2
IL, m 392.3 75.38 290 631
AVMD, km/h 0.53 5.7 -24 9
AVCD, km/h 2.63 3.12 -3 12
AVHD, km/h 217 2.04 -2 9
AMCHD, km/h 13.63 8.02 -8 27
AVMN, km/h 1.87 2.06 -1 7
AVCN, km/h 3.03 3.6 -2 17
AVHN, km/h 5.3 4 -4 13
AMCHN, km/h 10.87 5.68 0 21

AVMD- Change in MTW speed during daytime, AVCD- Change in CAR speed during daytime, AVHD-
Change in HCV speed during daytime, AMCHD- Change in speed at mid point of curve between CAR and
HCV during daytime, AVMN- Change in MTW speed during nigthttime, AVCN- Change in CAR speed
during nigthttime, AVHN- Change in HCV speed during nigthttime, AMCHN- Change in speed at mid point

of curve between CAR and HCV during nigthttime.

3. Model results and discussions

This study focused on developing vehicle-
specific and time-specific crash rate prediction
models to better understand road user safety on
rural highway curves. Separate models were
formulated for motorized two-wheelers (2W),
passenger cars (CAR), and heavy commercial
vehicles (HCV), along with distinct models for
daytime and nighttime crash occurrences, and a
comprehensive model for overall crash rate.
Among these, the nighttime crash model stands
out as a key contribution, given the limited existing
literature and the inherent challenges in acquiring
reliable nighttime traffic data. Multiple approaches
were explored to assess the model performance
including Random Forest and Lasso regression,
both demonstrated high predictive capability.
Recent studies have similarly employed advanced
data-driven methods such as Artificial Neural
Networks (ANN) for pavement and safety
modelling, demonstrating their capability to capture
complex nonlinear relationships  between
geometric and performance parameters [32]. But,
since the sample size was small, these methods
raised potential concerns of overfitting.
Consequently, a square-root transformed

backward stepwise regression (BSR) model was
adopted as the primary modelling technique. This
method was selected for its transparency, ease of
interpretation, and suitability for evidence-based
design reviews and policy formulation related to
rural road safety. To ensure the statistical
robustness of the models, Variance Inflation Factor
(VIF) values were used to detect multicollinearity
among predictors. A VIF threshold of 5 was used
[33]; any variable exceeding this limit was excluded
during the initial modelling phase. The models
were then re-estimated using predictors that
exhibited no significant multicollinearity.

The finalized crash rate model results are
presented in Table 2. Given the modest dataset
size (n=30), the models were validated using
Leave-One-Out Cross-Validation (LOOCV). Model
performance was evaluated using standard error
metrics including Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE). Validation results
are provided in Table 3, while comparative outputs
from different modelling techniques are
summarized in Table 4. All model development and
validation procedures were conducted using the
open-source platform RStudio (Version
2025.05.01).
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Table 2. Crash prediction model summary based on stepwise backward elimination with transformed

dependent variables

Response variable Parameter Estimate t-Stat p-value VIF R? AlC
Curt -0.329 -2.39 0.02 1.85 0.685 -40.88
Atl -0.003 -2.62 0.01 1.19
JCr—j Dtl -0.002 -2.09 0.04 1.19
S_Def 0.007 6.79 <0.001 1.46
DA -0.005 -3.24 0.004 244 0.797 -59.93
CL +0.002 3.63 0.002  3.13
e_Def -0.022 -2.64 0.015 1.40
m Atl -0.003 -4.01 0.001 1.57
- Dtl -0.003 -4.28 <0.001 1.75
S_Def +0.005 6.79 <0.001 1.67
AMCHD +0.0051 2.65 0.0145 1.10
\/Cf—_N DA -0.0042 -3.3487 0.0027 240 0.71 -68.49
CL +0.0012 2.5038 0.0195 2.85
Atl -0.0014 -2.0768 0.0487 1.45
Dtl -0.0013 -2.2457 0.0342 1.43
S_Def +0.0047 7.3766 <0.0001 1.59
Cr M CL +0.0035 2.66 0.014 528 0.744 -25.69
Curt -0.8707  -3.78 0.001 3.27
S_Def +0.0074 5.56 0.000 1.70
Sh_WwW +0.3974 215 0.043 1.92
Log(IL) —-3.9909 443 <0.001 7.20
AVMD -0.0220 -2.30 0.031 1.50
\/T_C e_Def -0.0374 -2.310 0.030 1.27 043 -18.91
Atl -0.0067 —2.942 0.007  3.03
Dtl —0.0048 -2.543 0.018 3.02
Log(S_Def) +0.1791 +2.737 0.011 1.07
Log(IL) +2.2848 +2.681 0.013 5.03
\/T_H Curt -0.6040 -3.711 0.001 1.33 055 -22.64
S_Def +0.0074 +5.661 0.000 1.33

Cr_T- Total Crash rate (number of crashes per 1 lakh kms), Cr_D - Daytime crash rate, Cr_N - Nighttime
crash rate, Cr_M- crash rate for MTW, Cr_C- Crash rate for CAR, Cr_H- Crash rate for HCV, DA- Deflection
Angle, CL- Curve Length, Curt- Curvature, e _Def- Superelevation deficiency, Atl- Approach Tangent
Length, Dtl- Departure Tangent Length, S_Def- Sight distance deficiency, Sh_W- Shoulder width, IL-
Influence length, A_VMD- Change in operating speed from entry point to mid-point of curve MTW during
day, AMCHD- Change on operating speed at mid point between CAR and HCV during daytime, VIF-

Variance inflation factor

With an in sample R? value of 0.685, the
crash rate prediction model for total crashes, ‘Curt’,
‘At’, ‘Dt and ‘S_Def emerged as significant
variable predictors. Among these ‘S_Def’ emerged

as dominant factor indicating higher crash rates for
higher deficiency of stopping sight distance on
curevs. The geometric variables ‘Curt’, ‘Atl’ and ‘Dtl’
showed inverse relation with crash occurrence
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indicating flatter curves and approach geometry
plays important role in crash mitigation. These
results are in consistent with recent works on road
user safety [34], [35], [36]. The daytime crash rate
prediction model explains 79.7% variability in the
response variable. CL, S Def and AMCHD had
positive impact and DA, e Def, Atl, Dtl showed
inverse relation on daytime crash rate. This
indicates the provision of flatter curves, limiting the
operating speed of cars and HCVs and provision of
adequate sight distance and superelevation on the
horizontal curves reduced occurrence of road
crashes during daytime. In contrast to daytime
crash rate model, the nighttime model with 71% of
variation explaining power, did not show
dependency on the length of curve, speed
differential and superelevation. However, the
turning angle, transition lengths and sight distance
had significant effect on crash occurrence.
Deficiency in stopping sight distance on curves
emerged as strong predictor of crash rate during
nighttime. The model also implied that the flatter
and longer transitions before and after the curve
reduced crash rate risk. Crash rate model for MTW
indicate that the smoother speed transition, wider
shoulders, longer influence lengths lower that
crash occurrence and Sharper curves, deficiency
in sight distance worsens the chances of crash
occurrence. Even with lower predictive power of
43% variance explanation, the crash rate model for
CARs has shown dependency on expected
geometric and sight distance related variables.
Higher influence lengths and transition lengths
tend to reduce crash occurrence and greater
deficiency in stopping sight distance tend to

increase the crash occurrence. Surprisingly,
superelevation has contrasting response of
increased crash occurrence with reduced

deficiency. With an R? value of 0.551, crash rate
model for HCV emerged out as a good predicting
model. It involved just two variables giving an
advantage to the policymakers in understanding
their effect on possible crash occurrences and
decide on implementing necessary changes.

R.S. Sanganaikar et al

Although some models, especially for passenger
cars resulted moderate R? values, such levels are
typical for crash-based analyses where
randomness introduce high variability. In road user
safety modelling, R? values between 0.4 and 0.8
are considered acceptable, since crashes are
influenced by several unobserved behavioural and
environmental factors that are difficult to quantify
directly. Thus, the model performance achieved
here is consistent with the inherent unpredictability
of crash phenomena [37].

To evaluate the predictive performance of the
developed models, validation was carried out using
LOOCV in terms of MAE and RMSE. This
approach ensures an unbiased assessment of
model generalizability by systematically leaving out
one observation at a time for testing. RMSE
penalizes larger errors more heavily than smaller
ones, thereby providing a sensitive measure of
prediction accuracy, particularly in the presence of
outliers. It is particularly useful for identifying
whether the model produces a few large deviations
from actual values. On the other hand, MAE offers
a more balanced evaluation by measuring the
average magnitude of the errors in prediction,
regardless of their direction. It is less sensitive to
outliers than RMSE and represents the typical size
of the prediction errors. General equations of
RMSE and MAE are given in Eq. (1) and (2).

M
1
MAE=MZ|Ai-Pri| 1)
i=

M
1
= _2 _Pr 2
RMSE i (A-Pr)? (2)

Where,
M= Number of observations
Ai= Actual values
Pri= Predicted values

The LOOCV was carried out using the
function ‘caret::trainControl(method = "LOOCV"
caret::trainControl (method = "LOOCV") in
RStudio. The results for all the six BSR models
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demonstrate acceptable results with lower RMSE
and MAE values. Also, the Kolmogorove- Smirnov
normality test results for residual distributions
validate the BSR model approach. In addition,
actual vs predicted values were also plotted as
shown in Fig. 4 to supplement the validation.
Among all the predicted models, the crash rate
prediction model showed poor results for CAR.
However, with almost same validation R? value for
validation of the model, overfitting is not expected.
Also, a separate Quantile-Quantile (Q-Q) plot was
plotted to check the normality of residuals. The Q-
Q plot depicted normal distribution of residuals as
shown in Fig. 5.

The results of BSR were also compared with
advanced machine Ilearning techniques to

R.S. Sanganaikar et al

understand improvisations, if any (Table 4). Results
of BSR were compared with Lasso regression and
Random Forest regression techniques. Except for
total crash rate, Lasso and Random Forest
regression techniques showed better predictability
than BSR technique. Although Lasso and Random
Forest techniques showed marginal improvements
in some models, the final selection of backward
elimination was guided by considering the limited
dataset and a balance of predictive adequacy,
statistical robustness, model transparency and
normalisation of skewed dataset [38]. This
guarantees the results are not only technically valid
but also practically interpretable and
implementable in roadway safety assessments and
design practices.

Table 3. Model validation results based on LOOCYV test

Response variable = RMSE MAE Residual normality Check (p-value)
Cr T 0.121604 0.101 0.994
JCr D 0.091 0.078 0.927
JCrN 0.076  0.058 0.355
JCr_M 0.156  0.128 0.936
Cr C 0.178  0.145 0.729
Cr_H 0.164  0.127 0.670
Table 4. Model comparison results

Model Model type R? RMSE MAE

Total crash rate model BSR 0.686 0.055 0.041

LR 0.118 0.155 0.114

RF -0.124 0.175 0.142

Daytime crash rate model BSR 0.797 0.068 0.058

LR 0.931 0.040 0.034

RF 0.971 0.026 0.020

Nighttime crash rate model BSR 0.710 0.076 0.058

LR 0.778 0.065 0.050

RF 0.814 0.059 0.048

Crash rate model for MTW BSR 0.744 0.125 0.100

LR 0.747 0.124 0.102

RF 0.920 0.070 0.060

Crash rate model for CAR BSR 043 0.145 0.118

LR 049 0.137 0.113

RF 0.92 0.053 0.044

Crash rate model for HCV BSR 0.55 0.150 0.115

LR 0.57 0.147 0.119

RF 0.91 0.067 0.053

BSR- Backward stepwise regression; LR- Lasso regression; RF- Random Forest
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There is high chance of LASSO selecting
variables randomly from correlated group without
considering its importance in real-time condition
[39]. Also, random forest method emphasizes
accuracy optimisation rather than considering
actual on-field relation between significant and
dependant variables [40]. Due to these limitations,
and specific advantage of BSR, it was adopted in
the current study. The study’s findings support the
use of backward stepwise regression as a robust
and interpretable approach in small-sample safety
modelling.

4. Conclusions

This study developed and validated crash
rate prediction models tailored to vehicle type
(MTW, CAR, HCV) and time of day (daytime,
nighttime) using a 30-kilometer stretch of rural
highway in  Karnataka, India.  Through
comprehensive data collection by leveraging high-
resolution LIDAR for geometric profiling and laser
speed cameras for operating speed data, key
geometric and operational parameters influencing
crash risk were identified. The main conclusions
drawn from current study are:

Vehicle-specific and time-specific crash rate
models achieved reasonable predictive strength,
with R? values ranging from 0.43 to 0.80,
demonstrating the feasibility of disaggregated
crash modelling on rural horizontal curves.

Sight Distance Deficiency (S_Def) was found
to be the most consistent and influential predictor

across all models, reinforcing the role of visibility in
crash mitigation. Other significant factors included
curvature (Curt), tangent lengths (Atl and Dtl), and
operating speed differentials between vehicle
classes and along curve segments. Notably, the
influence of these factors varied by vehicle type.
Curvature and sight-distance deficiency were
dominant for two-wheelers and heavy vehicles,
while transition lengths had greater effect on
passenger-car crashes indicating the need for
vehicle-specific design considerations.

While Random Forest and Lasso offered
superior predictive accuracy, BSR mothod was
selected for its interpretability, transparency, and
alignment with evidence-based road safety design
practices. Square-root transformation of the
dependent variable improved linearity and residual
behaviour. The models demonstrated strong
internal validity, with R? values ranging from 0.43
(for cars) to 0.80 (daytime crashes), and
Kolmogorov-Smirnov tests confirming residual
normality (p>0.05) in all cases.

The developed models provide a practical
tool for infrastructure designers, policymakers, and
safety auditors to assess curve-related crash risk
and prioritize geometric improvements.

Future scope

While the crash rate model for CAR exhibits
statistical significance and acceptable predictive
ability, the relatively low R? value highlights the
need to incorporate additional influencing factors to
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improve its predictive strength.

Given the constraints of a limited dataset in
the current study, model predictability could be
significantly enhanced with a larger and more
comprehensive data pool. Despite the challenges,
future research should aim to collect extensive
datasets to enable more refined and accurate
crash prediction on rural highways.
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