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Abstract: This study develops vehicle and time-specific crash rate prediction 

models for rural highway curves using high-resolution geometric and speed 

data. A 30km segment of State Highway-1 in Karnataka, India, encompassing 

32 horizontal curves, served as the study site. Detailed data collection included 

10 years of crash records, traffic volume count, LiDAR-based geometric 

features, and spot speeds recorded from laser speed cameras. Distinct models 

were built for motorized two-wheelers (MTW), passenger cars (CAR), heavy 

commercial vehicles (HCV), and for both daytime and nighttime conditions. 

The study offers a novel contribution by incorporating nighttime crash rate 

modelling rarely addressed due to challenges in data availability, and by 

developing disaggregated models for multiple vehicle classes. A backward 

stepwise regression (BSR) approach with square root transformation was 

employed, ensuring model transparency and interpretability. Sight-distance 

deficiency consistently emerged as the most influential predictor of crash rate, 

highlighting the critical role of visibility on curved segments. Validation through 

Leave One Out Cross Validation (LOOCV) confirmed acceptable predictive 

performance (R² = 0.43-0.80), with residuals exhibiting normal distribution. The 

findings underscore the importance of curve geometry and visibility in crash 

risk and provide actionable insights for design audits and safety interventions 

on rural highways. 

Keywords: crash prediction models, daytime-nighttime crashes, vehicle 

specific analysis, backward stepwise regression, LiDAR-based geometry, sight 

distance deficiency. 
 

 

1. Introduction  

The United Nations’ Sustainable 

Development Goal (SDG) 3.6 calls for reducing 

global road traffic deaths by 50% by 2030. 

However, this goal remains far from reach. 

Currently, road crashes cause approximately 1.3 

million deaths globally each year, with India 

accounting for nearly 11% of these fatalities. Road 

traffic injuries have emerged as the 12th leading 

cause of death globally, and about 92% of these 

deaths occur in low- and middle-income countries. 

Rapid urbanization and infrastructure expansion, 

alongside a near doubling of the global vehicular 

population in the last decade, have outpaced 
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safety measures [1]. In India alone, nearly 4 lakh 

accidents were recorded in 2021, resulting in 

approximately 1.5 lakh deaths and 3.85 lakh 

injuries. Of all crashes, nearly 80% occur on 

straight and curved sections, with about 12% 

reported specifically on horizontal curves [2]. Given 

these alarming trends, road user safety must be 

recognized as a national and global priority. 

Crashes are now among the leading causes of 

hospitalization, disability, and mortality, with 

profound socio-economic consequences. Crash 

prediction models are widely recognized as 

systematic tools to identify hazardous roadway 

conditions and estimate the impact of safety 

interventions [3]. These models are also useful in 

estimating crash frequency at locations with limited 

or no crash data [4]. Therefore, it is essential to 

establish mathematical relationships between 

crash occurrences and contributing variables. 

Operational attributes and geometric features such 

as curvature, speed, and sight distance have 

shown strong correlation with crash rates, 

especially when true latent variables are 

considered [5]. Conventional crash models 

generally employ single-regression frameworks, 

using geometry and speed-based predictors. 

However, the rare and random nature of crashes 

introduces challenges in predicting trends over 

short timeframes [6], [7]. Additionally, the limited 

availability and spatial resolution of crash data 

often reduce model accuracy and transferability [8]. 

Studies employing generalized linear modelling 

such as negative binomial and logistic regression 

have demonstrated improved accuracy when 

multiple variables particularly speed-related 

measures are included [9], [10]. A consistent 

finding across studies is the positive correlation 

between speed reduction and crash likelihood, 

particularly on horizontal curves [11], [12]. Road 

cross-section features, traffic volume, and design 

parameters collectively influence safety and are 

easily quantifiable [13]. Notably, crash risk has 

been found to be significantly higher at night due to 

visibility constraints and driver limitations [14], [15]. 

Despite the availability of traffic volume, geometry, 

and speed data, crash events remain sparse and 

unpredictable. Models using alignment indices, 

operating speed, and volume have been 

developed with varying success [16], [17], [18]. 

However, temporal variations especially day 

versus night comparisons remain underexplored, 

despite growing evidence of their importance. Most 

past studies conducted data collection only during 

the daytime and under fair weather conditions [19], 

[20], [21], [22], [23].  

These limitations underscore the need for a 

more detailed understanding of how time of day 

and vehicle class interact with geometric and 

operational conditions to affect crash risk. This 

study aims to address these gaps by developing 

vehicle- and time-specific crash prediction models 

using precise, high-resolution data collected 

across multiple horizontal curves in a rural highway 

setting with following specific tasks: 

To develop and validate time-specific and 

vehicle-specific crash rate prediction models for 

selected rural highway curves using high resolution 

geometric and speed data. 

To identify and quantify the influence of 

geometric parameters and vehicle operating speed 

characteristics on crash occurrence. 

To compare the performance of multiple 

modelling techniques and evaluate the trade-off 

between predictive accuracy and interpretability. 

2. Methodology 

         The section deals with the detailed 

methodology adopted in the current study. Fig. 1 

gives the work flowchart adopted. 

2.1. Study area and site selection 

The study was conducted along a 30-

kilometer stretch of State Highway 1 (SH-1) in 

Karnataka, India, extending between Padubidri 

and Karkala. Following a detailed reconnaissance 

survey, a suitable corridor was identified based on 

consistent pavement conditions, standardized road 

markings, and the presence of horizontal curves 

exhibiting diverse radii. The selected segment lies 

in largely flat terrain, with an average roadway 
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gradient of 5%, with 32 horizontal curves. To 

ensure accurate measurement of free-flow speeds, 

sections influenced by intersections or speed-

calming devices such as humps were deliberately 

excluded. This approach provided a uniform and 

controlled environment conducive to reliable data 

collection for geometric and safety-related 

analysis. The 30 km stretch refers to single travel 

direction each way which adds up and make the 

dataset to 60 in total. 

 

Fig. 1. Research outline for the present study 

2.2. Data collection and preliminary analysis 

The study utilized a comprehensive dataset 

comprising road crash records, traffic volume 

counts, spot speed measurements, and geometric 

road characteristics. Ten years of crash data 

between 2014 and 2024 were sourced from police 

records and classified by vehicle type, focusing on 

three categories: motorized two-wheelers (MTW), 

passenger cars (CAR), and heavy commercial 

vehicles (HCV). Crash incidents were 

georeferenced to specific horizontal curves based 

on the First Information Reports (FIRs) provided by 

the local authorities. Each crash was further 

categorized by time of occurrence as daytime or 

nighttime. Although the original dataset included 

gender-based driver involvement, records 

indicated that female drivers contributed to less 

than 1% of crash cases. As a result, gender data 

were excluded from further analysis. Crash 

frequencies were normalized by converting them 

into crash rates, expressed as the number of 

crashes per 100,000 kilometers traveled. 

Traffic volume data were collected over a 

continuous 7-day period from 6:00 AM to 10:00 PM 

daily. Due to significantly lower vehicle flow beyond 

10:00 PM and logistical limitations, data collection 

was restricted to this timeframe. The observed 

counts were used to compute Average Daily Traffic 

(ADT), which was subsequently converted into 

Annual Average Daily Traffic (AADT) using Indian 

Roads Congress (IRC) recommended factors [24], 

[25]. Spot speed data were recorded using high-

precision laser speed cameras with an accuracy of 

±1 km/h and a 30° angular tolerance. Speed 

measurements were taken at three critical points 

along each horizontal curve: the point of curvature 

(PC), the mid-point (MC), and the point of tangency 

(PT). To ensure measurement reliability, equipment 

was aligned tangentially to the travel path and kept 

within the allowable angular limit. Data were 

collected during both daytime and nighttime under 

free flow conditions, maintaining a minimum 5 

second headway between vehicles to eliminate the 

influence of vehicle interaction on speed selection 

[26]. Fig. 2 depicts the spot speed data collection 

and output during daytime and nighttime. 
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Fig. 2. A: Laser speed camera used for spot speed data collection. B: Data collection during night under 

progress C: Sample output of daytime speed data on curve D: Sample output of nighttime speed data on 

curve 

A detailed topographic survey using Light 

Detection and Ranging (LiDAR) technology was 

conducted to extract geometric attributes of the 

roadway. Known for its high spatial accuracy up to 

3 mm, LiDAR proved highly effective in capturing 

fine geometric details [27]. The initial point cloud 

dataset included over 2.6 billion data points, which 

was refined to approximately 1 billion points for 

analysis. Using ‘CloudCompare 

version.2.14.alpha’, key geometric features were 

extracted, including superelevation (e), average 

gradient (G), shoulder width (ShW), and lane width 

(LnW). ‘CloudCompare’ is an open source 3D point 

cloud processing software used in highway 

engineering studies for extracting geometric 

features, slope analysis, and surface modelling. Its 

capability to handle huge LiDAR datasets and 

perform distance computation and cross section 

profiling has made it a popular tool in transportation 

research [28], [29]. The software enables precise 

extraction of roadway alignment and curvature 

parameters critical for safety and design 

consistency analyses. Since lane width was found 

to be consistent across all curves, it was excluded 

from further statistical modelling. A centerline 

polyline was created along the roadway and 

imported into Autodesk Civil 3D (2025) to derive 

curve-specific parameters such as horizontal curve 

radius (R), curve length (CL), deflection angle 

(DA), approach tangent length (Atl), and departure 

tangent length (Dtl). To compute available sight 

distance, the trimmed LiDAR point cloud was 

converted into a surface model in Civil 3D. 

Calculations were carried out in accordance with 

IRC guidelines, by providing driver eye height of 

1.2 m and object height of 0.15 m [30]. The process 

is depicted in Fig. 3.  

For speed analysis, a minimum of 50 spot 

speed observations were collected per vehicle 

category at each of the three curve points. The 

Kolmogorov - Smirnov (K-S) test was used to 

assess the normality of raw speed datasets. 
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Outliers identified through this process were 

excluded, reducing the minimum sample size at 

each point to no less than 30 observations [17], 

[23]. The 85th percentile operating speed (V85), 

representing the speed below which 85% of 

vehicles travel under free flow conditions, was 

determined using cumulative frequency distribution 

plots [31]. All V85 datasets exhibited near-normal 

distributions. Summary statistics for the variables 

used in the study are presented in Table 1.  
 

 

Fig. 3. (a) Study stretch showing all curve locations (b) Google earth image from of one of the curves 

(Curve 7). (c) LiDAR data output for curve 7. (d) 3D zoomed in version of curve 7. (e) Stopping sight 

distance (SSD) analysis output 

Table 1. Descriptive statistics of geometric and speed data used in crash prediction model 

Variable, unit Mean Std Dev Min Max 

R, m 197.58 80.94 42.33 336.85 

DA, degree 33.1 16.37 11 75 

CL, m 102.14 46.54 43.08 264.06 

Curt, degree/m 0.35 0.21 0.17 1.13 

e_Def , % 1.14 2.09 -2 5.7 

Atl, m 43.42 22.98 10.84 101.98 

Dtl, m 46.65 27.83 10.84 122.36 

G, % 0.9 2.82 -4.83 6.28 
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Table 1. (continued) 

Variable, unit Mean Std Dev Min Max 

S_Def, m 48.93 25.89 0 96 

ShW, m 1.57 0.2 1.1 2 

IL, m 392.3 75.38 290 631 

∆VMD, km/h 0.53 5.7 -24 9 

∆VCD, km/h 2.63 3.12 -3 12 

∆VHD, km/h 2.17 2.04 -2 9 

∆MCHD, km/h 13.63 8.02 -8 27 

∆VMN, km/h 1.87 2.06 -1 7 

∆VCN, km/h 3.03 3.6 -2 17 

∆VHN, km/h 5.3 4 -4 13 

∆MCHN,km/h 10.87 5.68 0 21 

∆VMD- Change in MTW speed during daytime, ∆VCD- Change in CAR speed during daytime, ∆VHD- 

Change in HCV speed during daytime, ∆MCHD- Change in speed at mid point of curve between CAR and 

HCV during daytime, ∆VMN- Change in MTW speed during nigthttime, ∆VCN- Change in CAR speed 

during nigthttime, ∆VHN- Change in HCV speed during nigthttime, ∆MCHN- Change in speed at mid point 

of curve between CAR and HCV during nigthttime. 

3. Model results and discussions 

This study focused on developing vehicle-

specific and time-specific crash rate prediction 

models to better understand road user safety on 

rural highway curves. Separate models were 

formulated for motorized two-wheelers (2W), 

passenger cars (CAR), and heavy commercial 

vehicles (HCV), along with distinct models for 

daytime and nighttime crash occurrences, and a 

comprehensive model for overall crash rate. 

Among these, the nighttime crash model stands 

out as a key contribution, given the limited existing 

literature and the inherent challenges in acquiring 

reliable nighttime traffic data. Multiple approaches 

were explored to assess the model performance 

including Random Forest and Lasso regression, 

both demonstrated high predictive capability. 

Recent studies have similarly employed advanced 

data-driven methods such as Artificial Neural 

Networks (ANN) for pavement and safety 

modelling, demonstrating their capability to capture 

complex nonlinear relationships between 

geometric and performance parameters [32]. But, 

since the sample size was small, these methods 

raised potential concerns of overfitting. 

Consequently, a square-root transformed 

backward stepwise regression (BSR) model was 

adopted as the primary modelling technique. This 

method was selected for its transparency, ease of 

interpretation, and suitability for evidence-based 

design reviews and policy formulation related to 

rural road safety. To ensure the statistical 

robustness of the models, Variance Inflation Factor 

(VIF) values were used to detect multicollinearity 

among predictors. A VIF threshold of 5 was used 

[33]; any variable exceeding this limit was excluded 

during the initial modelling phase. The models 

were then re-estimated using predictors that 

exhibited no significant multicollinearity. 

The finalized crash rate model results are 

presented in Table 2. Given the modest dataset 

size (n=30), the models were validated using 

Leave-One-Out Cross-Validation (LOOCV). Model 

performance was evaluated using standard error 

metrics including Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE). Validation results 

are provided in Table 3, while comparative outputs 

from different modelling techniques are 

summarized in Table 4. All model development and 

validation procedures were conducted using the 

open-source platform RStudio (Version 

2025.05.01). 
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Table 2. Crash prediction model summary based on stepwise backward elimination with transformed 

dependent variables 

Response variable Parameter Estimate t-Stat p-value VIF R2 AIC 

√Cr_T 

Curt -0.329 -2.39 0.02 1.85 0.685 -40.88 

Atl -0.003 -2.62 0.01 1.19   

Dtl -0.002 -2.09 0.04 1.19   

S_Def 0.007 6.79 <0.001 1.46   

√Cr_D 

DA -0.005 -3.24 0.004 2.44 0.797 -59.93 

CL +0.002 3.63 0.002 3.13   

e_Def -0.022 -2.64 0.015 1.40   

Atl -0.003 -4.01 0.001 1.57   

Dtl -0.003 -4.28 <0.001 1.75   

S_Def +0.005 6.79 < 0.001 1.67   

∆MCHD +0.0051 2.65 0.0145 1.10   

√Cr_N DA -0.0042 -3.3487 0.0027 2.40 0.71 -68.49 

CL +0.0012 2.5038 0.0195 2.85   

Atl -0.0014 -2.0768 0.0487 1.45   

Dtl -0.0013 -2.2457 0.0342 1.43   

S_Def +0.0047 7.3766 < 0.0001 1.59   

√Cr_M CL +0.0035 2.66 0.014 5.28 0.744 -25.69 

Curt –0.8707 -3.78 0.001 3.27   

S_Def +0.0074 5.56 0.000 1.70   

Sh_W +0.3974 2.15 0.043 1.92   

Log(IL) –3.9909 -4.43 <0.001 7.20   

∆VMD –0.0220 -2.30 0.031 1.50   

√Cr_C e_Def –0.0374 –2.310 0.030 1.27 0.43 -18.91 

Atl –0.0067 –2.942 0.007 3.03   

Dtl –0.0048 –2.543 0.018 3.02   

Log(S_Def) +0.1791 +2.737 0.011 1.07   

Log(IL) +2.2848 +2.681 0.013 5.03   

√Cr_H Curt –0.6040 –3.711 0.001 1.33 0.55 -22.64 

S_Def +0.0074 +5.661 0.000 1.33   

Cr_T- Total Crash rate (number of crashes per 1 lakh kms), Cr_D -  Daytime crash rate , Cr_N - Nighttime 

crash rate, Cr_M- crash rate for MTW, Cr_C- Crash rate for CAR, Cr_H- Crash rate for HCV, DA- Deflection 

Angle, CL- Curve Length, Curt- Curvature, e_Def- Superelevation deficiency, Atl- Approach Tangent 

Length, Dtl- Departure Tangent Length, S_Def- Sight distance deficiency, Sh_W- Shoulder width, IL- 

Influence length, ∆_VMD- Change in operating speed from entry point to mid-point of curve MTW during 

day, ∆MCHD- Change on operating speed at mid point between CAR and HCV during daytime, VIF- 

Variance inflation factor 

With an in sample R2 value of 0.685, the 

crash rate prediction model for total crashes, ‘Curt’, 

‘Atl’, ‘Dtl’ and ‘S_Def’ emerged as significant 

variable predictors. Among these ‘S_Def’ emerged 

as dominant factor indicating higher crash rates for 

higher deficiency of stopping sight distance on 

curevs. The geometric variables ‘Curt’, ‘Atl’ and ‘Dtl’ 

showed inverse relation with crash occurrence 
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indicating flatter curves and approach geometry 

plays important role in crash mitigation. These 

results are in consistent with recent works on road 

user safety [34], [35], [36].  The daytime crash rate 

prediction model explains 79.7% variability in the 

response variable. CL, S_Def and ∆MCHD had 

positive impact and DA, e_Def, Atl, Dtl showed 

inverse relation on daytime crash rate. This 

indicates the provision of flatter curves, limiting the 

operating speed of cars and HCVs and provision of 

adequate sight distance and superelevation on the 

horizontal curves reduced occurrence of road 

crashes during daytime. In contrast to daytime 

crash rate model, the nighttime model with 71% of 

variation explaining power, did not show 

dependency on the length of curve, speed 

differential and superelevation. However, the 

turning angle, transition lengths and sight distance 

had significant effect on crash occurrence. 

Deficiency in stopping sight distance on curves 

emerged as strong predictor of crash rate during 

nighttime. The model also implied that the flatter 

and longer transitions before and after the curve 

reduced crash rate risk. Crash rate model for MTW 

indicate that the smoother speed transition, wider 

shoulders, longer influence lengths lower that 

crash occurrence and Sharper curves, deficiency 

in sight distance worsens the chances of crash 

occurrence. Even with lower predictive power of 

43% variance explanation, the crash rate model for 

CARs has shown dependency on expected 

geometric and sight distance related variables. 

Higher influence lengths and transition lengths 

tend to reduce crash occurrence and greater 

deficiency in stopping sight distance tend to 

increase the crash occurrence. Surprisingly, 

superelevation has contrasting response of 

increased crash occurrence with reduced 

deficiency. With an R2 value of 0.551, crash rate 

model for HCV emerged out as a good predicting 

model. It involved just two variables giving an 

advantage to the policymakers in understanding 

their effect on possible crash occurrences and 

decide on implementing necessary changes. 

Although some models, especially for passenger 

cars resulted moderate R2 values, such levels are 

typical for crash-based analyses where 

randomness introduce high variability. In road user 

safety modelling, R2 values between 0.4 and 0.8 

are considered acceptable, since crashes are 

influenced by several unobserved behavioural and 

environmental factors that are difficult to quantify 

directly. Thus, the model performance achieved 

here is consistent with the inherent unpredictability 

of crash phenomena [37].  

To evaluate the predictive performance of the 

developed models, validation was carried out using 

LOOCV in terms of MAE and RMSE. This 

approach ensures an unbiased assessment of 

model generalizability by systematically leaving out 

one observation at a time for testing. RMSE 

penalizes larger errors more heavily than smaller 

ones, thereby providing a sensitive measure of 

prediction accuracy, particularly in the presence of 

outliers. It is particularly useful for identifying 

whether the model produces a few large deviations 

from actual values. On the other hand, MAE offers 

a more balanced evaluation by measuring the 

average magnitude of the errors in prediction, 

regardless of their direction. It is less sensitive to 

outliers than RMSE and represents the typical size 

of the prediction errors. General equations of 

RMSE and MAE are given in Eq. (1) and (2).  

MAE=
1

M
∑|Ai-Pri|

M

i=1

 (1) 

RMSE=√
1

M
∑(Ai-Pri)

2

M

i=1

 (2) 

Where,  

M= Number of observations 

Ai= Actual values 

Pri= Predicted values 

The LOOCV was carried out using the 

function ‘caret::trainControl(method = "LOOCV" 

caret::trainControl (method = "LOOCV") in 

RStudio. The results for all the six BSR models 
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demonstrate acceptable results with lower RMSE 

and MAE values. Also, the Kolmogorove- Smirnov 

normality test results for residual distributions 

validate the BSR model approach. In addition, 

actual vs predicted values were also plotted as 

shown in Fig. 4 to supplement the validation. 

Among all the predicted models, the crash rate 

prediction model showed poor results for CAR. 

However, with almost same validation R2 value for 

validation of the model, overfitting is not expected. 

Also, a separate Quantile-Quantile (Q-Q) plot was 

plotted to check the normality of residuals. The Q-

Q plot depicted normal distribution of residuals as 

shown in Fig. 5. 

The results of BSR were also compared with 

advanced machine learning techniques to 

understand improvisations, if any (Table 4). Results 

of BSR were compared with Lasso regression and 

Random Forest regression techniques. Except for 

total crash rate, Lasso and Random Forest 

regression techniques showed better predictability 

than BSR technique. Although Lasso and Random 

Forest techniques showed marginal improvements 

in some models, the final selection of backward 

elimination was guided by considering the limited 

dataset and a balance of predictive adequacy, 

statistical robustness, model transparency and 

normalisation of skewed dataset [38]. This 

guarantees the results are not only technically valid 

but also practically interpretable and 

implementable in roadway safety assessments and 

design practices.  

Table 3. Model validation results based on LOOCV test 

Response variable RMSE MAE Residual normality Check (p-value) 

√Cr_T 0.121604 0.101 0.994 

√Cr_D 0.091 0.078 0.927 

√Cr_N 0.076 0.058 0.355 

√Cr_M 0.156 0.128 0.936 

√Cr_C 0.178 0.145 0.729 

√Cr_H 0.164 0.127 0.670 

Table 4. Model comparison results 

Model  Model type R2 RMSE MAE 

Total crash rate model BSR 0.686 0.055 0.041 

 LR 0.118 0.155 0.114 

 RF -0.124 0.175 0.142 

Daytime crash rate model BSR 0.797 0.068 0.058 

 LR 0.931 0.040 0.034 

 RF 0.971 0.026 0.020 

Nighttime crash rate model BSR 0.710 0.076 0.058 

 LR 0.778 0.065 0.050 

 RF 0.814 0.059 0.048 

Crash rate model for MTW BSR 0.744 0.125 0.100 

 LR 0.747 0.124 0.102 

 RF 0.920 0.070 0.060 

Crash rate model for CAR BSR 0.43 0.145 0.118 

 LR 0.49 0.137 0.113 

 RF 0.92 0.053 0.044 

Crash rate model for HCV BSR 0.55 0.150 0.115 

 LR 0.57 0.147 0.119 

 RF 0.91 0.067 0.053 

BSR- Backward stepwise regression; LR- Lasso regression; RF- Random Forest 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 4. Predicted vs Actual crash rate results for (a) Total, (b) Daytime, (c) Nighttime, (d) MTW, (e) CAR 

and (f) HCV 
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Fig. 5. QQ plot for checking normality of CAR model 

There is high chance of LASSO selecting 

variables randomly from correlated group without 

considering its importance in real-time condition 

[39]. Also, random forest method emphasizes 

accuracy optimisation rather than considering 

actual on-field relation between significant and 

dependant variables [40]. Due to these limitations, 

and specific advantage of BSR, it was adopted in 

the current study. The study’s findings support the 

use of backward stepwise regression as a robust 

and interpretable approach in small-sample safety 

modelling. 

4. Conclusions 

This study developed and validated crash 

rate prediction models tailored to vehicle type 

(MTW, CAR, HCV) and time of day (daytime, 

nighttime) using a 30-kilometer stretch of rural 

highway in Karnataka, India. Through 

comprehensive data collection by leveraging high-

resolution LiDAR for geometric profiling and laser 

speed cameras for operating speed data, key 

geometric and operational parameters influencing 

crash risk were identified. The main conclusions 

drawn from current study are: 

Vehicle-specific and time-specific crash rate 

models achieved reasonable predictive strength, 

with R² values ranging from 0.43 to 0.80, 

demonstrating the feasibility of disaggregated 

crash modelling on rural horizontal curves. 

Sight Distance Deficiency (S_Def) was found 

to be the most consistent and influential predictor 

across all models, reinforcing the role of visibility in 

crash mitigation. Other significant factors included 

curvature (Curt), tangent lengths (Atl and Dtl), and 

operating speed differentials between vehicle 

classes and along curve segments. Notably, the 

influence of these factors varied by vehicle type. 

Curvature and sight-distance deficiency were 

dominant for two-wheelers and heavy vehicles, 

while transition lengths had greater effect on 

passenger-car crashes indicating the need for 

vehicle-specific design considerations. 

While Random Forest and Lasso offered 

superior predictive accuracy, BSR mothod was 

selected for its interpretability, transparency, and 

alignment with evidence-based road safety design 

practices. Square-root transformation of the 

dependent variable improved linearity and residual 

behaviour. The models demonstrated strong 

internal validity, with R² values ranging from 0.43 

(for cars) to 0.80 (daytime crashes), and 

Kolmogorov-Smirnov tests confirming residual 

normality (p>0.05) in all cases. 

The developed models provide a practical 

tool for infrastructure designers, policymakers, and 

safety auditors to assess curve-related crash risk 

and prioritize geometric improvements. 

Future scope 

While the crash rate model for CAR exhibits 

statistical significance and acceptable predictive 

ability, the relatively low R² value highlights the 

need to incorporate additional influencing factors to 
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improve its predictive strength. 

Given the constraints of a limited dataset in 

the current study, model predictability could be 

significantly enhanced with a larger and more 

comprehensive data pool. Despite the challenges, 

future research should aim to collect extensive 

datasets to enable more refined and accurate 

crash prediction on rural highways. 
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