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Abstract:  Autonomous vehicles (AVs) offer a radical leap in transportation, 

delivering safer and more efficient mobility options. The capacity to interpret 

complicated surrounding traffic scenarios in real-time is central to their 

effectiveness. Scene awareness, especially semantic segmentation, is vital in 

allowing AVs to successfully comprehend and navigate their environments. 

However, limited labelled data availability and dataset biases restrict the 

effectiveness of semantic segmentation models, especially in specific contexts 

such as Indian driving scenarios. This study presents a novel approach 

employing reinforced active learning to overcome the aforementioned 

difficulties. Reinforced active learning integrates reinforcement learning into 

the active learning framework, allowing the model to select samples for 

annotation based on model operations and uncertainty estimation. By 

augmenting the segmentation model with annotation effort, our approach 

enhances performance in real-world driving scenarios in India. Rigorous 

testing and validation on the Indian Driving Dataset (IDD) demonstrate 

improvements in segmentation precision and effectiveness compared to 

training methods. Reinforcement Active Learning (RAL) using Inception-Unet 

outperforms Inception-Unet models trained solely on labeled data (DL), 

achieving a score of 0.615. However, it falls slightly behind the performance of 

Inception-Unet models trained on fully labeled datasets (DF). Our findings 

indicate that reinforced learning excels over strategies in selecting samples 

and substantially boosts segmentation accuracy. 

Keywords: Autonomous vehicle, semantic segmentation U-Net, Inception-U-

Net, Deep Q learning, Reinforced Active Learning. 
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1. Introduction 

Autonomous vehicles (AVs) have the 

potential to revolutionize transportation by offering 

more mobility alternatives, with regard to of 

efficiency, safety, and comfort [1]. To operate 

efficiently in real-world environments, AVs must 

understand complex situations, recognize 

changing surroundings, and make accurate 

decisions in real time [2]. AVs depend mostly on 

visual perception to comprehend and navigate their 

environment. This encompasses tasks such as 

identifying objects, semantic segmentation, and 

estimation of motion [3].  

Recent developments in sensor technology, 

computer vision, and machine learning have 

significantly enhanced AVs perception of their 

surroundings. Recent developments in this field 

opened the path for advanced perceptual systems 

that can extract important semantic information 

from sensor data. As a result, autonomous vehicles 

have a cutting-edge over human drivers in 

recognizing and comprehending their surroundings 

[4]. Semantic segmentation plays an essential role 

in visual perception systems because it allows 

autonomous vehicles to build a full and 

interpretable image of their environment from 

incomplete sensor input [5]. Segmenting an image 

semantically involves recognizing each pixel. 

Semantic segmentation is essential for 

autonomous navigation because it allows visual 

analysis, object recognition, and avoidance of 

obstacles. Deep learning technologies, especially 

convolutional neural networks (CNN), have 

substantially enhanced semantic segmentation, 

enabling autonomous vehicles (AVs) to attain new 

levels of environmental monitoring and awareness 

of situations [4].  

Semantic segmentation models have proven 

beneficial for a variety of applications [6]; however, 

they face significant obstacles because of their 

need on large labeled data sets [7], especially in 

fields such as driving in India. The Indian Driving 

Dataset (IDD) is a valuable resource because it 

incorporates vehicle characteristics unique to 

India, such as different road arrangements, 

regional environmental conditions, and driving 

habits [8]. The IDD, like most real-world data sets, 

is vulnerable to specific issues such as 

misunderstandings, class imbalance, and 

fluctuations in light and weather, all of which can 

introduce biases and impair model performance. 

Moreover, manually annotating data is challenging 

and time-consuming, especially when working at 

the pixel level, where topic expertise and careful 

attention to detail are necessary [9].  

One feasible solution to these constraints is 

to increase active learning at the machine learning 

and data annotation interfaces. In comparison to 

human annotation, active learning algorithms 

provide a new and successful method of identifying 

significant instances from large amounts of 

unlabeled data, reducing time and money [10]. 

When reinforcement learning approaches are 

employed combined with an active learning 

framework, decision-making becomes more 

flexible and dynamic [11]. This allows the model to 

continually modify its decision-making process 

based on its evaluation of success and uncertainty 

[12]. 

While active learning algorithms attempt to 

identify the most illuminating instances to analyze, 

passive learning models are often trained using 

randomly selected data. Active learning 

approaches are useful for situations with low label 

data availability, such as driving conditions in India, 

because they frequently boost model performance 

while demanding less annotation work [13]. This 

proactive technique improves learning by reducing 

the amount of annotation work required, enabling 

the model to focus on annotating the most difficult 

and significant data points.  

Active reinforcement learning improves the 

iterative method by adapting data selection 

strategies based on model effectiveness and 

uncertainty [14]. Reinforcement-active learning 

systems continuously evolve and improve through 

feedback mechanisms in the annotation process, 

as well as the discovery and selection of instances 
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that enhance the accuracy and generalization of 

the segmentation model. The model performs 

better in particular scenarios, such as Indian 

driving conditions, and is capable of handling the 

complexity of real-world datasets like IDD due to 

this iterative improvement method [15]. 

The following are the main contributions of 

this work: 

We introduce a reinforcement learning-

driven active learning strategy tailored for semantic 

segmentation of complex, unstructured traffic 

imagery to enhance scene interpretation. 

Our framework leverages a Deep Q-Network 

(DQN) with experience replay, serving as a query 

mechanism to identify and select the most 

informative subset of samples from a large pool of 

unlabeled data. 

Experimental findings, both qualitative and 

quantitative, demonstrate that integrating 

reinforcement-based active learning with the 

Inception-U-Net backbone surpasses existing 

state-of-the-art approaches. In this setup, the 

Inception-U-Net enhances traditional U-Net by 

replacing standard convolutional layers with 

inception modules, enabling the model to extract 

features at multiple scales through parallel 

convolutions within each inception block. 

This research presents a novel framework for 

semantic segmentation on IDD using reinforced 

active learning, aiming to optimize the utilization of 

existing labelled data while actively selecting 

samples for annotation. By leveraging the 

strengths of reinforced active learning, our 

approach enhances the model's performance in 

Indian driving scenarios, demonstrating 

improvements in segmentation accuracy and 

efficiency compared to traditional training methods. 

Through extensive experimentation and validation 

on the IDD benchmark dataset, our method 

showcases the efficacy of reinforced active 

learning in addressing the challenges of semantic 

segmentation in specialized domains, paving the 

way for more robust and efficient autonomous 

driving systems. 

The rest of the research paper is organized 

as follows. Section 2 delves into related work in 

autonomous vehicles and semantic segmentation. 

Section 3 presents the proposed architecture along 

with the associated algorithms. The dataset and 

experimental setup are described in Section 4. The 

results of the proposed models are presented in 

Section 5. Section 6 discusses the results; 

furthermore, section 7 gives a conclusion and 

future directions. 

2. Literature Review 

Scene awareness is critical for 

understanding the behavior of surrounding cars 

and people to navigate intelligently and safely. 

Image segmentation is critical in interpreting the 

scene and its surroundings [16]. Semantic 

segmentation for scene interpretation is a pre-or 

post-processing step in many computer vision 

applications. Handcrafted and graphical models 

served as the foundation for traditional semantic 

segmentation approaches. However, the area has 

changed with the development of deep learning 

and convolutional neural networks (CNNs), which 

now allow for end-to-end learning of 

representations from raw pixels [17]. Initial deep 

learning-based semantic segmentation models, 

such as Long et al.'s Fully Convolutional Networks 

(FCNs) [18], paved the way for further 

advancements. U-Net [19, 20], SegNet [20], and 

Deeplab [21] are three systems that have shown 

very successful in semantic segmentation tasks 

across different domains. The U-Net architecture, 

originally presented by Ronneberger et al. in 2015 

[22], has proven highly effective for tasks involving 

biomedical image segmentation. Its design follows 

an encoder-decoder structure enhanced by skip 

connections, which help retain spatial information. 

In a more recent development, Lee et al. (2023) 

introduced DSUnet, a streamlined variant of U-Net 

tailored for applications like lane detection and path 

prediction in autonomous vehicles. DSUnet 

achieves greater efficiency by incorporating depth-

wise separable convolutions [23]. 

Active learning systems aim to choose the 
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most informative examples for annotation, 

enhancing learning efficiency while requiring the 

least labelling effort. Pool-based techniques, such 

as uncertainty sampling, choose samples based on 

the current model's predicted uncertainty. 

Diversity-based techniques choose samples from 

different portions of the data distribution. Other 

options include query-by-committee, anticipated 

model change, and density-weighted uncertainty 

sampling. Active learning has been used in various 

fields, including image classification, object 

identification, and natural language processing 

[24]. Reinforced active learning combines features 

of Reinforcement and active learning to 

dynamically change the data selection strategy in 

response to model performance and uncertainty. 

Reinforcement learning agents learn to interact 

with their environment (in this case, the dataset) by 

doing actions (such as picking samples for 

annotation) that maximize a cumulative reward 

(better model performance). Recent research has 

examined using reinforced active learning in 

several tasks, including image classification, object 

recognition, and semantic segmentation [25].  

Some studies combine active learning 

techniques with semantic segmentation tasks. In 

order to enhance semantic segmentation, Qiao et 

al. [26] developed an active learning model based 

on reinforcement learning. This model trains the 

agent to selectively annotate appropriate regions of 

images. Similarly, Liu et al. [27] presented a 

reinforcement learning-led active learning method 

for medical image segmentation, which obtained 

high segmentation accuracy while having low 

annotation costs.  

Driving in India can be difficult due to the 

nation's diverse road conditions, inconsistent traffic 

patterns, and inadequate infrastructure. Because 

of this, there has been a significant increase in 

efforts to create useful algorithms for semantic 

segmentation in all of these fields. In order to 

improve vehicle awareness and environmental 

information, multiple studies have focused on 

semantic segmentation in driving contexts. Full 

Convolutional Networks (FCN), U-Net, and 

DeepLab have been chosen as deep learning 

models for this research [28]. Long et al. [18] 

demonstrated with data synthesis, how to train an 

ANN end-to-end for handling semantic 

segmentation of urban driving scenarios in real-

time, with notable outcomes in various cases. The 

need for methods of active learning has been 

investigated to reduce the amount of annotation 

labor necessary to train semantic segmentation 

models. Uncertain sampling, diversity-based 

sampling, and committee-based questioning are 

the three primary methods utilized here. These 

methods attempt to identify the most valuable 

regions or trends for annotation in semantic 

segmentation, resulting to higher performance of 

models with fewer annotated instances [29]. It was 

demonstrated that an uncertainty-based active 

learning system for semantic segmentation may 

successfully lower annotation costs without 

sacrificing segmentation accuracy. Annotation 

efforts can be sped up, and model performance 

can be improved with limited resources by 

combining semantic segmentation to drive 

scenarios with reinforcement learning approaches 

[30]. However, few studies have been done on this 

problem, mainly using datasets like the IDD.  

Nonetheless, research in related areas has 

yielded promising results. Despite substantial 

advances in semantic segmentation within driving 

circumstances and active learning methodologies, 

coupling reinforced active learning with semantic 

segmentation still needs to be explored, especially 

in datasets such as IDD. Our research intends to 

close this gap by introducing a unique framework 

for semantic segmentation in Indian driving terrain, 

which combines reinforced active learning 

approaches to expedite annotation efforts and 

increase segmentation model performance. 

3. Proposed Reinforced Active Learning with 

Inception-Unet as Baseline model 

Reinforcement Learning (RL) and Active 

Learning (AL) are unique approaches that achieve 

different objectives [31]. RL frequently educates 
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agents on interacting with their surroundings to 

maximize cumulative rewards. In contrast, AL is 

used in supervised learning contexts to choose 

which data points to label to improve model 

performance. However, it is possible to combine 

elements of both to develop novel approaches, 

such as Reinforced Active Learning. 

3.1. Reinforced Active Learning for Semantic 

Segmentation 

Reinforced Active Learning (RAL) is a 

framework that combines RL and AL techniques to 

select the most valuable data samples for labelling, 

reducing the labelling effort required to train a 

model while maintaining or even improving 

performance [32].  

Deep Q-learning (Deep Q) is a popular RL 

technique for learning to make sequential 

decisions, typically in discrete action space. It is 

based on the Q-learning technique [33]. However, 

it uses deep neural networks to approximate the Q-

function, representing the expected cumulative 

reward for carrying out a specific action in a 

particular state. Fig. 1 illustrates the detailed 

architecture of reinforcement active learning. 

 
Fig. 1. Detailed architecture of reinforced active learning 

The detailed architecture of RAL with Deep Q 

as the query network is as follows: 

Semantic Segmentation Network: In our 

research, we employ the Inception-U-Net model as 

the foundation for semantic segmentation tasks on 

a curated set of labelled datasets within the RAL 

framework. This model merges two advanced deep 

learning architectures: Google's Inception network 

and the U-Net design. Specifically, the traditional 

convolutional layers in U-Net are replaced with 

Inception modules from GoogLeNet, enhancing 

feature extraction. The model retains the U-Net's 

characteristic encoder-decoder structure, including 

a central bottleneck, to efficiently capture and 

reconstruct spatial information. 

State Representation: In RAL, the state 

representation includes vital information about the 

semantic model's current status alongside 

unlabeled data. This includes attributes from the 

model's parameters or representations of 

uncertainty linked to each unlabeled data point. 

Action Space: It defines the set of actions the 
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RAL agent can carry out. In this context, activities 

represent a collection of data points to be 

examined for labelling from an unlabeled dataset. 

These acts serve as indices for unlabeled data 

points. 

Reward Function: It assesses the goodness 

of an agent's actions. It indicates the usefulness of 

the labelled data points obtained by searching a 

specific data point.  

Query Network: The Query Network is a 

critical component of our active learning 

framework. It is designed as a convolutional neural 

network (CNN) capable of processing image data 

efficiently. 

The architecture consists of several layers: 

Input Layer: The input layer receives the 

state representation of the data. 

Convolutional layers: These layers extract 

features from the input image using convolutional 

filters. 

Pooling layers: Pooling operations down 

sample the feature maps, reducing the spatial 

dimensions. 

Flatten layer: This layer flattens the output 

from the convolutional layers into a vector format. 

Dense layers: Fully connected layers 

process the flattened features to make the final 

decision. 

The network outputs a binary decision 

indicating whether to query the label for an 

unlabeled image or to save it for future exploration. 

Epsilon-Greedy Action Selection: To balance 

exploration and exploitation, we employ an epsilon-

greedy strategy for action selection. At each step of 

the training process, the Query Network decides 

whether to query the label for an unlabeled image 

or to save it for future exploration. Probability 

epsilon selects a random action, allowing 

exploration of the unlabeled dataset. Otherwise, 

the action that maximizes the Q-value predicted by 

the Query Network is chosen, promoting the 

exploitation of already learned information. 

Training and Experience Replay: RAL model 

trained in two steps namely, training the base 

segmentation model and training query network. 

Training the Base Segmentation Model:

 The base segmentation model is trained on 

the labelled dataset during each iteration of the 

leading training loop. This involves optimizing the 

model's parameters to minimize a predefined loss 

function between the predicted segmentation 

masks and the ground truth labels. 

Training the Query Network: 

Simultaneously, the Query Network is trained to 

learn a querying policy that determines whether to 

query the label for an unlabeled image or to save it 

for future exploration. During interaction with the 

environment (unlabeled dataset), the Query 

Network predicts actions based on the current 

state (image) and updates its parameters to 

improve decision-making. The training objective for 

the Query Network is typically formulated as a 

reinforcement learning problem, aiming to 

maximize a cumulative reward signal over time. In 

our case, the reward signal could encourage the 

Query Network to select informative samples for 

labelling while minimizing labelling efforts. 

Experience Replay: Experience replay is 

commonly used in reinforcement learning to 

improve sample efficiency and stabilize training. 

During exploration, samples (states) that are not 

immediately labelled are stored in a replay 

memory. Periodically, a batch of samples is 

randomly sampled from the replay memory to train 

the Query Network. By replaying past experiences, 

the Query Network can learn from diverse states 

and actions, leading to more robust and efficient 

decision-making. 

Updating the Models: Both the base 

segmentation model and the Query Network are 

updated iteratively throughout the training process. 

The base model is updated to improve 

segmentation performance on the labelled dataset, 

while the Query Network is updated to learn an 

effective querying policy for active learning. 

Balancing Exploration and Exploitation: 

Throughout the training, the exploration rate 

(epsilon) is gradually annealed to balance 



JSTT 2025, 5 (3), 112-125                                                  S. Kolekar et al 

 

 
118 

exploration and exploitation. Initially set to a high 

value, epsilon encourages exploration by selecting 

actions randomly. Over time, epsilon decays to a 

minimum value, promoting exploiting the learned 

knowledge. 

The proposed Reinforced Active Learning 

(RAL) framework combines Deep Q-learning with 

active learning to boost semantic segmentation in 

data-starved environments. Unlike traditional 

approaches that rely on static uncertainty-based 

selection, RAL uses a dynamic, reward driven 

querying policy to select the most informative 

samples to label. This reduces annotation cost 

while maintaining high segmentation accuracy. 

Designed specifically for unstructured Indian traffic, 

the model is trained on the IDD-Lite dataset which 

mimics the diverse and chaotic nature of Indian 

roads. RAL is well suited for such environments 

where traffic is non-lane disciplined and highly 

variable. Also, the Inception-U-Net backbone 

captures multi-scale contextual information so the 

model can handle scenes with occlusions, mixed 

traffic and poor infrastructure. This targeted design 

ensures better generalization and robustness in 

real world driving scenarios found in developing 

countries. Together these innovations make RAL a 

scalable and context aware solution for semantic 

segmentation in unstructured traffic. 

4. Experimental Setup 

This section discusses the dataset utilized, 

model training parameters, and hyperparameters 

used. The performance measures used to 

compare the proposed model's performance 

against state-of-the-art (SOTA) models are 

discussed in detail in section 4.3. 

4.1. Dataset 

In our study, we meticulously evaluated the 

performance of the proposed architecture using 

IDD Lite [34], a downscaled variant of the IDD 

explicitly tailored to facilitate efficient computational 

processing in resource-limited environments. The 

significance of utilizing IDD Lite lies in its focused 

representation of unstructured driving conditions, a 

critical aspect, especially in countries like India, 

which are characterized by diverse and challenging 

road environments. IDD Lite gained widespread 

recognition when it was featured in an online 

semantic segmentation competition held in 

December 2019, coinciding with the 7th National 

Conference on Computer Vision, Pattern 

Recognition, Image Processing, and Graphics 

(NCVPRIPG). 
 

 
Fig. 2. Original Images with ground truth 
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The dataset depicts frequent obstacles in 

irregular traffic scenarios, such as difficult-to-cross 

muddy terrain and obscured road borders. IDD Lite 

is home to many cars and people who are 

carelessly placed and violate traffic restrictions. 

The dataset, which includes 1404 training shots 

and 204 validation images, correctly simulates 

driving scenarios in India, replete with complicated 

barriers, hazy road markings, a diversity of cars 

and pedestrians, shifting lighting, and disregard for 

traffic rules. Its semantic segmentation consists of 

seven categories: driving region, live beings, non-

driving area, roadside objects, autos, sky, and 

distant objects.  

To facilitate the implementation of reinforced 

active learning, we partitioned the IDD Lite training 

dataset (DF) into two distinct subsets: a labelled 

dataset pool (DL) and an unlabeled dataset pool 

(DU). The DL subset, which constitutes 80% of the 

DF, comprises annotated images used for model 

training. In contrast, the DU subset, comprising the 

remaining 20% of the DF, consists of unlabeled 

images awaiting annotation. This partitioning 

strategy balances leveraging existing labelled data 

and maximizing the potential for active learning-

based annotation strategies to improve model 

performance. Fig. 2 depicts examples of 

unstructured traffic situations and the multi-label 

segmentation ground truth for these images. 

4.2. Model Training 

The proposed model was trained on 1120 

labelled data, and 280 unlabeled samples and 

tested on 204 samples. The Adam optimizer [35] 

was then utilized to improve the categorical cross-

entropy loss functions. We used the ReLu 

activation function [36] except after the final 

convolutional layer to avoid the vanishing gradient 

problem. After the final convolutional layer, the 

SoftMax activation function is used to provide pixel-

level categorization. 

4.3. Performance metrics 

Mean intersection over union (mIoU), 

accuracy, sensitivity, specificity and F-score are the 

performance metrics used to evaluate the 

performance of multi-label semantic segmentation 

models [37]. All performance metrics are listed 

below. 

Accuracy=
(TP+TN)

(TP+FP+FN+TN)
 (1) 

Sensitivity= 
TP

(FN+TP)
 (2) 

Specificity= 
TN

(TN+FP)
 (3) 

F-Score= 
2 ×TN

(2×TN+FP+FN)
 (4) 

IoU Score=
Area of overlap

 area of union
 (5) 

The intersection over the Union (IoU) metric 

is widely used to evaluate the performance of 

semantic segmentation models [38]. Accuracy, 

sensitivity, specificity and F-Score are the 

performance metrics mainly used for classification 

problems. As semantic segmentation is achieved 

using pixel-level classification, this performance 

metric also helps to evaluate the proposed model's 

performance accurately. 

5. Results 

The proposed RAL method utilizes baseline 

models, Inception-Unet, to carry out multi-label 

semantic segmentation from single images of 

unstructured roadways. The method contains two 

crucial steps:  

Training of baseline models: In the 

beginning, the proposed baseline models are 

trained employing the whole training dataset (DF) 

and a subset of the training dataset's labeled 

samples (DL). This stage attempts to provide an 

elementary understanding about the semantic 

segmentation challenges by using data that is both 

labeled and unlabeled.  

RAL Training: The learnt baseline models are 

subsequently used with a pool of labeled and 

unlabeled data to perform reinforced active 

learning (DL/DU). This method continually picks 

suitable samples for annotating based on the 

model's predictions and uncertainty estimations, 

continually improving model performance and 

reducing annotation costs.  
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Table 1. Performance of proposed models on IDD-Lite dataset 

Model Training Dataset Mean IoU Accuracy Sensitivity Specificity F-Score 

Inception-
Unet 

DL 0.609 0.957 0.705 0.974 0.726 

RAL with 
Inception-
Unet 

DL+DU 0.615 0.958 0.708 0.974 0.732 

Inception-
Unet 

DF 0.622 0.958 0.728 0.975 0.740 

Table 2. Performance evaluation of state-of-the-art-models (SOTA) on IDD-Lite validation dataset 

Model Proposed Model U-net [34] DRN ResNet18 [38] E-Net [34] ERF-Net [38] 

Mean IoU 0.615 0.603 0.598 0.566 0.554 

 
Fig 3. Illustrates the comparative segmentation results of multi-label semantic segmentation using RAL 

with the Inception-Unet model 

 
Fig 4. Segmentation result of multi-label semantic segmentation using RAL with Inception-Unet model 

 

Fig 5. Segmentation result of multi-label semantic segmentation using Inception-Unet model on full 

dataset 
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To evaluate the effectiveness of RAL models 

vs baseline models, we utilized the intersection 

over union (IoU), accuracy, specificity, sensitivity, 

and F-score measures. Table 1 and 2 compares 

the performance of RAL models with the baseline 

models as well as state-of-the-art models. Fig. 3 

illustrates the comparative analysis of semantic 

segmentation results of RAL with Inception-Unet 

model. The proposed RAL with inception-Unet 

baseline model's mean intersection over union 

(mIoU), accuracy, sensitivity, specificity, and F-

score are 0.615, 0.958, 0.708, 0.974, and 0.732, 

respectively. The RAL with Inception-Unet's 

intersection over Union (IoU) is 0.615, which is 

higher than Inception-Unet models trained on a 

pool of labelled data (DL) but lower than Inception-

Unet models trained on whole training samples 

(DF). The sample input images and their 

corresponding multi-label semantic segmentation 

output and ground truth of the RAL with inception-

Unet baseline model are presented in Fig. 4, while 

the results from the Inception-U-Net model trained 

on the full training dataset are shown in Fig. 5. 

6. Discussion 

Multi-label semantic segmentation is 

essential for scene understanding of unstructured 

traffic environments [39], especially in nations that 

are developing where traffic trends are very 

random and unpredictable. These algorithms 

assure the safety of autonomous vehicles on 

unstructured roads by understanding the scene 

and predicting the behaviors of nearby traffic users 

[40]. Researchers studying traffic conditions in 

developing nations can utilize the Indian Driving 

Dataset Lite (IDD-Lite) to better recognize and 

tackle particular challenges in these contexts. This 

article offers a unique technique for multi-label 

semantic segmentation on the IDD-Lite dataset 

that utilizes Reinforcement Active Learning (RAL). 

We aim to improve segmentation results in 

unstructured traffic circumstances, which are 

frequent in developing countries, by employing an 

Inception-Unet baseline model. The RAL approach 

increases model performance while decreasing the 

amount of time and resources required for 

annotation [41]. 

Despite these advantages, several 

limitations should be noted. RAL works well with 

small to medium sized datasets but might 

bottleneck when applied to larger datasets due to 

sample selection and model retraining complexity. 

Also, IDD-Lite dataset is specific to Indian roads 

and traffic behavior, the trained model might not 

generalize well to other geographies without 

domain adaptation. Incorporating domain 

adaptation techniques and evaluating the 

framework on datasets from different regions 

would improve its robustness and allow broader 

applicability in global traffic scenarios. Enhancing 

the model’s ability to generalize across diverse 

environments would significantly strengthen its 

practical relevance in real-world autonomous 

systems.  

The proposed RAL with inception-Unet 

baseline model's mean intersection over union 

(mIoU), accuracy, sensitivity, specificity, and F-

score are 0.615, 0.958, 0.708, 0.974, and 0.732, 

respectively. The mean intersection over the union 

(mIoU) of the the proposed RAL with inception-

Unet is 0.615 which is better than inception-Unet 

when trained on inadequate quantity of labeled 

data (DL) and smaller when trained on full dataset.  

The evaluation of our proposed approach 

produced promising results. The intersection over 

union (IoU) method accurately predicts semantic 

segmentation effectiveness. These results 

demonstrate an important advancement over the 

default model trained on an inadequate quantity of 

labeled data (DL). However, it is also important to 

highlight that although RAL significantly enhances 

performance under low-labeling conditions, it still 

falls short of models trained on the full dataset 

(DF). This indicates the potential need for further 

data augmentation or more generalized feature 

learning approaches. It is important to recall that, 

despite their outstanding results, the RAL models 

fall short of those trained on the whole dataset 

(DF), emphasizing the potential benefits of more 
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data improvement. Finally, we demonstrate how 

reinforced active learning enhances semantic 

segmentation on the IDD-Lite dataset. We 

acquired significant improvements in segmentation 

performance through combining RAL techniques 

with cutting-edge baseline models, enabling 

intelligent vehicle safety systems to tackle the 

unique difficulties of developing rural roads. 

7. Conclusions 

Semantic segmentation plays an important 

role in computer vision, particularly for systems 

such as autonomous vehicles, where safe and 

secure navigation needs an in-depth 

understanding of the surroundings at all times. 

Reinforced Active Learning (RAL) proposes an 

alternative to these problems by automatically 

recognizing suitable instances for annotation, 

improving annotation efficiency and model 

performance.  

  We recommend using RAL in this work to 

carry out semantic segmentation on the Indian 

driving dataset, that provides different obstacles 

due to constantly changing challenging driving 

conditions, road design, and ambient issues. We 

were able to automate the process of selecting 

samples for annotating by employing a 

reinforcement learning method that assesses each 

sample's informativeness and potential impact on 

model performance. Using this approach, we can 

develop reliable segmentation models that respond 

to the driving variables in developing countries in 

order to address the issues that come with them.  

The main contributions of this work include 

the integration of a Deep Q-learning-based 

querying mechanism within the RAL framework to 

enable more effective sample selection, enhancing 

the efficiency of the active learning process. 

Additionally, the study employs Inception-Unet as 

a strong baseline model, leveraging its capability 

for multi-scale feature learning to improve 

segmentation performance. Finally, the approach 

demonstrates substantial performance 

improvements on a real-world, unstructured 

dataset (IDD-Lite), all while significantly reducing 

the overall labelling effort required.  

Our results showed that, on the Indian driving 

dataset, RAL increases semantic segmentation 

effectiveness. The intersection over union (IOU) 

statistic is a vital factor affecting segmentation 

accuracy. RAL with Inception-Unet surpasses the 

Inception-Unet model trained solely using labeled 

data, with an IOU of 0.615. This is less than models 

trained on the whole training dataset (DF). 
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