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Abstract: This study investigates the application of the Particle Swarm 

Optimization-tuned Gradient Boosting (GB-PSO) model for predicting truck 

arrival times. The proposed model incorporates optimized hyperparameters to 

enhance predictive performance, as measured by the coefficient of 

determination (R) and Root Mean Square Error (RMSE). Using a real-world 

logistics dataset, GB-PSO outperforms conventional Gradient Boosting (GB) 

and expected travel time estimations, achieving a higher R value and lower 

RMSE across training and testing datasets. The analysis of SHAP values 

highlights the dominant influence of transportation distance on model 

predictions. These findings validate the effectiveness of GB-PSO in practical 

logistics optimization, reducing error and improving reliability in time-sensitive 

transportation systems. 

Keywords: Truck delivery, Logistics, Time of arrival, Machine Learning, Data-

driven approach. 

 

 

1. Introduction 

 Accurate prediction of truck arrival times is 

a critical factor in enhancing operational efficiency 

and customer satisfaction in logistics. Timely and 

reliable deliveries help reduce costs and 

strengthen supply chain performance. However, 

real-world logistics involve a wide range of dynamic 

and uncertain factors such as traffic conditions, 

weather variability, and operational delays, making 

time of arrival (TOA) prediction particularly 

challenging [1]. 

Traditional estimation methods such as 

shortest-path algorithm, deterministic route 

planning, and basic statistical models offer limited 

adaptability to real-time changes [2]. These 

methods, although foundational, often oversimplify 

the dynamic nature of real-world logistics. Traffic 

simulation models, such as cellular automata and 

queuing theory, have been employed to provide 

more realistic estimates by incorporating traffic 

congestion patterns and route dependencies. 

Statistical regression models, including linear 

regression and time-series forecasting, have also 

been utilized for modeling historical travel data to 

predict future TOA. However, these classical 

methods struggle to account for complex, nonlinear 

relationships and the interaction of multiple 

variables affecting travel time. Traditional methods, 
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such as shortest-path algorithms or linear 

regression, depend on deterministic models 

utilizing historical data or predefined parameters. 

While these models are foundational, they often 

assume static inputs and struggle to capture the 

nonlinear, interdependent nature of logistics data. 

As a result, they tend to underperform in highly 

dynamic operational environments. 

With the rapid evolution of digital 

technologies and the increasing availability of 

large-scale datasets, data-driven methods have 

emerged as a promising alternative. Machine 

learning (ML) models, in particular, offer the ability 

to analyze complex, non-linear relationships within 

data and deliver highly accurate predictions. [3], 

[4], [5], [6], [7]. Recent advancements in predictive 

analytics and machine learning (ML) have 

significantly enhanced the accuracy of arrival time 

predictions by leveraging real-time data. Studies, 

such as Spoel et al. [8] and Barlogis et al. [9] 

demonstrate the use of IoT and data-driven 

methods to predict truck arrival times at distribution 

centers and intermodal transport hubs. Other 

research, including Žunić et al. [10] and Li et al. [11] 

applies adaptive ML frameworks to real-world 

logistics problems, integrating spatial-temporal 

data and dynamic routing. Notably, most ML 

applications focus on maritime logistics [12], [13], 

leaving truck-based logistics underexplored. This 

paper builds on these advances to develop a 

robust ML-based framework for predicting truck 

arrival times in the Indian logistics sector, 

combining insights from both classical approaches 

and modern adaptive techniques. 

Recent advancements in machine learning 

(ML) have significantly improved estimated time of 

arrival (ETA) predictions in logistics. Some studies 

have employed deep learning approaches such as 

LSTM combined with GPS and traffic data to 

capture dynamic spatio-temporal patterns [14] 

while others have developed hybrid ensemble 

frameworks integrating XGBoost and LightGBM for 

urban delivery forecasting [15]. More recent efforts 

have explored privacy-preserving architectures 

using federated learning for dynamic ETA 

prediction [16]. Despite these developments, there 

remains a notable gap in interpretable and 

optimization-enhanced models for truck-based 

logistics, especially in the context of emerging 

economies.  

Most of these studies, however, focus on 

urban last-mile delivery or containerized intermodal 

transport in developed countries [8]. Research 

specific to truck-based logistics in emerging 

markets like India remains sparse, despite vastly 

different infrastructural and operational 

characteristics. India's logistics sector presents 

unique challenges: highly fragmented road 

infrastructure, with inconsistent quality across 

regions, traffic unpredictability due to unregulated 

local flows, mixed vehicle types, and lack of traffic 

signal harmonization., low telematics penetration in 

older fleets, leading to gaps in real-time visibility, 

variable regulatory enforcement across states, 

causing checkpoint delays, extreme heterogeneity 

in shipment profiles, vehicle types, and route 

patterns. 

This study presents a data-driven approach 

to predicting truck arrival times in the Indian 

logistics sector, leveraging machine learning 

techniques to address the challenges of variability 

and uncertainty. A comprehensive dataset 

encompassing multiple factors, including 

transportation distance, cargo type, and 

operational details, is utilized to train and validate 

predictive models. Gradient Boosting (GB) and its 

optimization with Particle Swarm Optimization 

(PSO) are explored to assess the impact of 

hyperparameter tuning on model performance. 

The methodology adopted in this study 

includes rigorous feature selection, cross-

validation techniques, and performance evaluation 

based on metrics such as R-value and RMSE. 

Additionally, this research contributes to the 

existing body of knowledge by focusing on the 

logistics landscape in India, characterized by its 

unique infrastructure, traffic patterns, and 

operational constraints. 
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The findings of this study aim to provide 

actionable insights for logistics stakeholders, 

enabling more precise arrival time estimates and 

informed decision-making. By addressing the 

complexities of truck delivery through a data-driven 

framework, this research paves the way for 

improved efficiency and competitiveness in 

logistics operations. 

2. Methodology flowchart of this investigation 

The methodology flowchart presented in Fig. 

1 outlines the step-by-step process used in a data-

driven approach for predicting the time of arrival in 

truck logistics. This approach consists of six distinct 

stages, each of which contributes to the overall 

predictive model.  

Stage I. Building dataset  

The first stage involves collecting the raw 

data, which consists of 32 features and 6880 rows. 

This data is typically collected from various 

logistics operations, capturing relevant information 

about shipments, transportation, and associated 

variables. The raw data is used as the foundation 

for further processing and analysis. 

In this stage, the raw data is cleaned and 

refined to form a usable dataset with 9 features (8 

input variables and 1 output variable) and 4653 

rows. This involves handling missing data, 

encoding categorical variables, and possibly 

eliminating outliers. The dataset represents the 

input to the machine learning models used for 

prediction. Descriptive statistics and visualizations, 

such as histograms or correlation matrices, may 

also be produced to better understand the data's 

structure and relationships.  

Stage II. Data analyze 

This stage focuses on transforming the data 

into a more suitable form for model training. The 

process may involve feature engineering, where 

new features are created from the existing ones, 

and feature selection, where irrelevant or 

redundant features are removed. For example, 

interaction terms between variables or 

normalization techniques could be applied to 

enhance the predictive power of the model. 

Visualizations such as feature importance plots or 

heatmaps help assess the contribution of each 

feature to the model’s performance.  

Stage III. Model Training and Tuning 

In this stage, machine learning (ML) models 

are trained on the preprocessed dataset. The 

flowchart mentions the use of Gradient Boosting 

(GB) with default hyperparameters and Gradient 

Boosting with Particle Swarm Optimization (GB-

PSO) algorithms for tuning the hyperparameters. 

These models are trained on both the training 

dataset of 70% whole dataset. Hyperparameters of 

the models, such as the number of trees or 

maximum depth should be optimized using 

optimization algorithm as Particle Swarm 

Optimization. Cost function of optimization process 

is coefficient of correlation R.  

 Stage IV. Model Evaluation and Validation 

 After training, the models undergo 

evaluation and validation to assess how well they 

generalize to unseen data. In this stage, the 

model's R scores and RMSE values on both the 

training and testing datasets are compared to 

ensure the performance of each ML model. 

Validation techniques, as Monte Carlo simulation, 

are employed to verify the robustness and stability 

of the model’s predictions. A combination of box 

plots and scatter plots may be used to visualize 

residuals and assess model fit.  

Stage V. Using best ML model for predicting 

truck arrival time 

The best-performing ML model, identified in 

the previous stage, will be utilized to predict the 

time of arrival in truck logistics. The predicted time 

of arrival will also be compared with the estimated 

time of arrival provided in the raw dataset. 

Stage VI. Feature Importance and 

Interpretation In the final stage, the most important 

features that contribute to the prediction of the time 

of arrival are identified and analyzed. Feature 

importance plots provide insights into which 

variables (such as Transportation Distance, Type 

of Vehicle, or Destination of Location) have the 

strongest influence on the model’s predictions. The 
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model is also interpreted in terms of how each 

feature impacts the output variable, with an 

emphasis on how this knowledge can guide 

decision-making in real-world logistics operations.  

In this data-driven methodology, the six 

stages provide a comprehensive process for 

preparing, training, evaluating, and interpreting a 

model that predicts the time of arrival in truck 

logistics. Starting from the raw data collection, the 

process advances through preprocessing, model 

training, and evaluation, culminating in the 

identification of key features that drive the model's 

predictions. This methodology can be used to 

improve logistical operations and optimize delivery 

times by leveraging machine learning insights. 

In this study, the hyperparameters for the 

Gradient Boosting model were tuned once using 

Particle Swarm Optimization (PSO), with the 

objective function evaluated via 10-Fold Cross-

Validation on the initial training subset (70% of the 

dataset). The optimal hyperparameter 

configuration obtained from this tuning step was 

then held constant throughout the subsequent 

5000 Monte Carlo Simulation (MCS) runs. 

 

Fig. 1. Methodology flowchart of data driven approach for predicting time of arrival in truck logistics 

During each MCS run, only the train/test split 

was randomly varied, while the model architecture 

and hyperparameters remained fixed. This design 

isolates the effect of data variability on model 

performance and ensures a fair comparison 

between models. The use of k-Fold Cross-

Validation was strictly limited to the 

hyperparameter tuning phase and not repeated 

during the MCS evaluation. 

3. Description of database 

 To construct a robust and efficient machine 

learning model, the original dataset comprising 32 

features was refined and reduced to a final set of 9 

features, including 8 input variables and 1 output 

variable (Time of Arrival). The feature selection 

process was conducted using a combination of 

statistical analysis, domain relevance, and data 

quality criteria. 

Firstly, features were retained based on their 

logical and statistical relevance to the target 
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variable. Variables directly related to 

transportation—such as original location, 

destination, current location, type of vehicle, 

customer and supplier identifiers, material shipped, 

and transportation distance—were prioritized. 

Features deemed redundant or irrelevant, such as 

driver names, mobile numbers, and text-based 

identifiers, were excluded due to their lack of 

predictive utility. 

Secondly, features with a high proportion of 

missing data were removed from the dataset to 

maintain consistency and model robustness. This 

included several administrative or operational 

fields that were either sparsely populated or 

inconsistent across records. 

Categorical variables were then encoded 

using label encoding to transform them into 

numerical formats suitable for use in tree-based 

algorithms like Gradient Boosting. Additionally, 

geospatial fields were simplified by focusing on 

numerical measures such as transportation 

distance, rather than using raw latitude and 

longitude pairs. 

The final processed dataset included the 

following features: Original location, Destination of 

location, Current location, Type of vehicle, 

Customer ID, Supplier ID, Material shipped, 

Transportation distance (input features), and Time 

of arrival (output variable). This reduced and 

cleaned feature set preserved the most relevant 

information while ensuring data quality, 

interpretability, and computational efficiency for the 

learning models. 

The Origin location spans 162 unique places, 

with the most frequent being Mugabala, Bangalore 

Rural, Karnataka (415 occurrences), while the 

Destination location includes 391 unique places, 

led by DAIMLER INDIA COMMERCIAL 

VEHICLES, KANCHIPURAM (323 occurrences). 

The Current location field, which has 394 missing 

values, lists 2,128 unique entries, with 

Perumalpattu - Kottamedu Rd, Oragadam 

Industrial Corridor appearing 178 times. Vehicle 

information is represented by the Type of vehicle, 

featuring 42 distinct categories, with 40 FT 3XL 

Trailer 35MT dominating (1,691 instances) despite 

694 missing entries.  

During the data cleaning and preprocessing 

phase, missing values were carefully addressed to 

ensure the completeness and consistency of the 

dataset. A total of 394 missing entries were 

identified in the "Current location" field. These were 

retained and marked with a placeholder value 

("Unknown") to reflect the potential status of 

shipments in transit, thereby avoiding the risk of 

introducing bias through imputation. In the case of 

the "Type of vehicle" field, 694 missing entries were 

detected. These were imputed using the most 

frequently occurring category ("40 FT 3XL Trailer 

35MT"), as this type of vehicle was predominantly 

used and considered representative. This strategy 

was adopted to preserve the dataset’s analytical 

validity while minimizing information loss. 

The Customer ID attribute identifies 38 

unique customers, with LTLEXMUM40 being the 

most frequent (2,478 records). Regarding 

numerical data, Transportation distance varies 

from 3 km to 2,954.7 km, with an average of 587.83 

km, while Time of arrival ranges from 1 to 300.21 

hours, averaging 95.19 hours. Lastly, the Supplier 

ID field lists 262 unique suppliers, with 55471 as 

the most common (402 occurrences), and the 

Material shipped feature encompasses 1,158 

types, led by AUTO PARTS (1,079 instances). In 

the 8 features, there are only one quantitative 

variable as Transportation distance and time and 7 

categorical variables as Original location, 

Destination of location, Current location, type of 

vehicle, customer ID, supplier ID, material shipped.  

Fig. 2 depicts two quantitative variables as 

input variable Transportation distance (cf. Fig. 2a) 

and output variable Time of arrival (cf. Fig. 2b) 

which illustrates the distribution of the time of 

arrival (in hours) for a set of samples. The x-axis 

represents the time of arrival, ranging from 0 to 300 

hours, while the y-axis represents the number of 

samples observed. The data is highly skewed 

towards shorter arrival times, with the majority of 
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samples (over 600) arriving within the first-time 

interval (close to 0 hours). The frequency 

decreases as the time of arrival increases, showing 

a long tail extending towards higher times. This 

distribution suggests a rapid initial accumulation of 

samples, followed by a gradual decline over time. 

  
(a) (b) 

Fig. 2. Histogram of two quantitative (a) input variable Transportation distance and (b) output Time of 

arrival 

Fig. 3 presents a Pearson correlation matrix 

that quantifies the linear relationships among 

multiple variables related to logistics and 

transportation. Each cell in the matrix represents 

the correlation coefficient between a pair of 

variables, with values ranging from -1 (perfect 

negative correlation) to 1 (perfect positive 

correlation). 

The diagonal elements of the matrix, which 

are all equal to 1, reflect the perfect correlation of 

each variable with itself. Off-diagonal elements 

provide insights into the strength and direction of 

relationships between variables. Positive 

correlations are represented by shades of blue, 

while negative correlations are shown in shades of 

red, with the intensity indicating the magnitude of 

the correlation. 

The Pearson correlation matrix provides 

comprehensive insights into the relationships 

among the eight key features: Original Location, 

Destination of Location, Current Location, Type of 

Vehicle, Customer ID, Supplier ID, Material 

Shipped, and Transportation Distance. Below is a 

detailed summary of these relationships. 

Original Location shows a positive 

correlation with Destination of Location (0.14) and 

Transportation Distance (0.09), indicating that the 

origin of shipments is modestly linked to the 

destinations and distances traveled. However, a 

moderate negative correlation with Supplier ID (-

0.21) suggests that certain suppliers are more 

associated with specific origin locations, potentially 

reflecting structured supply chain dynamics. 

Destination of Location is moderately 

correlated with Transportation Distance (0.21), 

which aligns with the expectation that destinations 

further away are associated with longer travel 

distances. However, a weak negative correlation 

with Type of Vehicle (-0.20) suggests that certain 

destinations may influence vehicle selection, 

possibly due to infrastructure constraints or 

shipment requirements. 

Current Location exhibits negligible 

correlations with most features. A very weak 

positive correlation with Type of Vehicle (0.04) and 

a slight negative correlation with Customer ID (-

0.08) indicate that its variability is not strongly 

dependent on these factors, reflecting a lack of 

influence from other features. 

Type of Vehicle is negatively correlated with 

Transportation Distance (-0.36), suggesting that 

different vehicle types are used for shipments with 
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varying travel lengths, potentially due to cost, 

efficiency, or payload capacity. A weak positive 

correlation with Supplier ID (0.08) indicates that 

certain suppliers may prefer or rely on specific 

vehicle types. 

Customer ID demonstrates a strong negative 

correlation with Supplier ID (-0.39), highlighting 

distinct supplier-customer associations in the 

supply chain. A weak positive correlation with 

Transportation Distance (0.13) implies that specific 

customers may require shipments over longer 

distances, possibly due to geographic dispersion or 

demand patterns. 

Supplier ID shows a moderate positive 

correlation with Transportation Distance (0.28), 

reflecting that certain suppliers are associated with 

longer transportation routes. A negative correlation 

with Original Location (-0.21) and Customer ID (-

0.39) further supports the existence of structured 

supplier-customer-location relationships in the 

dataset. 

Material Shipped exhibits weak correlations 

with other features, such as a slight positive 

relationship with Supplier ID (0.02) and Type of 

Vehicle (0.05). The absence of meaningful 

correlations, such as with Original Location (0.00) 

and Transportation Distance (-0.08), suggests that 

shipment material plays a minimal role in shaping 

the observed logistics patterns. 

Finally, Transportation Distance is positively 

correlated with Destination of Location (0.21) and 

Supplier ID (0.28), reflecting logical dependencies 

on destination and supplier behavior. A moderate 

negative correlation with Type of Vehicle (-0.36) 

highlights the influence of vehicle selection on 

shipment distances, potentially related to efficiency 

or route optimization. 

Summary: The strongest relationships were 

observed for Transportation Distance, which is 

significantly tied to Destination of Location, 

Supplier ID, and Type of Vehicle, reflecting the 

central role of these factors in determining 

shipment distances. Conversely, features such as 

Material Shipped and Current Location exhibited 

weak or negligible correlations with most other 

variables, indicating limited influence on the 

dataset's overall variability. 

The analysis of Time of Arrival revealed 

generally weak correlations with all eight features. 

The strongest relationship was a weak negative 

correlation with Supplier ID (-0.18), suggesting that 

certain suppliers might be associated with more 

efficient operations or shorter delivery times. A 

slight positive correlation with Customer ID (0.13) 

further implies potential prioritization or 

geographical effects related to specific customers. 

Minimal relationships were observed between 

Time of Arrival and other features, including 

Original Location (0.04), Destination of Location 

(0.02), and Transportation Distance (-0.08), 

indicating that shipment times are likely influenced 

by factors external to the dataset, such as traffic 

conditions, weather, or operational scheduling.  

Overall, the features are not enough strong 

relation to reduce number of features in building 

the machine learning model for predicting Truck 

arrival time. 

Although the Pearson correlation matrix (Fig. 

2) indicates generally weak linear relationships 

between individual input features and the target 

variable (Time of Arrival), the GB-PSO model still 

achieves high predictive accuracy. This apparent 

contradiction is due to the inherent limitation of 

Pearson correlation, which measures only linear 

pairwise dependencies and does not capture non-

linear or interaction effects among variables. 

Gradient Boosting, especially when 

enhanced by PSO-tuned hyperparameters, excels 

at modeling non-linear, high-order relationships 

between features. It recursively partitions the 

feature space to capture complex patterns that 

cannot be revealed through linear correlation 

analysis. For example, features like transportation 

distance, vehicle type, and destination may exhibit 

weak direct linear correlation with arrival time but, 

when combined, form strong non-linear 

interactions that significantly impact predictions. 

Moreover, the SHAP analysis (Fig. 9) 
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confirms that the GB-PSO model identifies and 

utilizes such interactions effectively, with 

transportation distance and vehicle characteristics 

emerging as dominant predictors despite their low 

Pearson coefficients. This highlights the advantage 

of tree-based models in handling non-additive 

effects and structured heterogeneity, especially in 

real-world logistics datasets. 

 
Fig. 3. Pearson correlation matrix of 9 features in the dataset 

In summary, the model’s superior 

performance reflects its capacity to transcend 

linear assumptions, validating the choice of non-

linear machine learning over classical statistical 

approaches for the truck ToA prediction task. 

4. Data-driven approach 

The choice of Gradient Boosting (GB) and 

Particle Swarm Optimization (PSO) in this study is 

motivated by both theoretical and practical 

considerations. Gradient Boosting is well-regarded 

for its high predictive accuracy in regression tasks 

involving tabular data with heterogeneous feature 

types and potential missing values. It constructs 

additive models in a forward stage-wise manner 

and is particularly effective in capturing complex 

nonlinear relationships, which are common in 

logistics systems. To enhance GB’s performance, 

PSO is applied for hyperparameter tuning due to its 

effectiveness in global optimization. Compared to 

grid search or random search, PSO provides a 

more computationally efficient mechanism to 

explore large and continuous hyperparameter 

spaces. It does not require gradient information, 

making it suitable for non-differentiable and 

complex objective landscapes. 

Alternative models such as Random Forest 

and XGBoost were considered. However, Random 

Forests often lack the fine-grained optimization 

capacity of GB, while XGBoost, although powerful, 

introduces additional complexity and memory 
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overhead, which was not critical for the scale of our 

dataset. Recurrent neural networks like LSTM 

were excluded because the dataset lacks temporal 

sequence dependencies and is better represented 

in tabular form rather than time series. 

Therefore, the combination of GB and PSO 

offers a balance between accuracy, interpretability 

(via SHAP), and computational efficiency, making 

it an appropriate choice for the prediction task in 

this study. 

4.1. Gradient Boosting algorithm (GB) 

Gradient Boosting (GB) is a powerful 

ensemble learning algorithm designed to improve 

predictive performance by combining multiple 

weak learners, typically decision trees, into a 

strong [17]. The algorithm works iteratively by 

building successive models that correct the errors 

of previous models, minimizing a loss function in 

the process.  

 The model starts with a simple initial 

prediction, often the mean value for regression 

problems. At each iteration, a decision tree is 

trained to minimize the residuals (errors) of the 

previous model, using gradient descent to optimize 

the loss function. The predictions from all trees are 

aggregated (summed) to form the final model 

output. Each tree is weighted by a learning rate, 

which controls the contribution of individual trees to 

the final prediction. 

Gradient Boosting often achieves superior 

accuracy by effectively reducing bias and variance 

in the data. It can handle various loss functions and 

be adapted for both regression and classification 

tasks. The algorithm provides insights into the 

importance of features, aiding in interpretability. By 

tuning hyperparameters like the learning rate, 

maximum depth, and number of trees, GB can 

achieve a good balance between model complexity 

and generalization. 

Gradient Boosting in solving regression 

problems, particularly when dealing with complex, 

nonlinear relationships in the data. Its ability to 

handle missing values, outliers, and mixed data 

types makes it a robust choice for predicting the 

time of arrival in truck logistics, as demonstrated in 

this study. 

4.2. Particle Swarm Optimization (PSO) for 

Tuning Hyperparameter 

Particle Swarm Optimization (PSO) is a 

nature-inspired optimization technique that mimics 

the social behavior of swarms, such as birds or fish, 

to identify optimal solutions in a given search space 

[18]. In this study, PSO is employed to fine-tune the 

hyperparameters of the machine learning model, 

thereby improving its performance in predicting the 

time of arrival.  

A swarm of particles (potential solutions) is 

randomly initialized within the search space, where 

each particle represents a set of hyperparameters. 

Each particle adjusts its position in the search 

space based on: its personal best-known position 

(local best) and the best-known position of the 

swarm (global best). 

The velocity updates are guided by the 

following equation (1): 

vi(t+1)=wvi(t)+c1r1 (p
best

-xi(t)) +c2r2 (g
best

-xi(t)) 

The position updates are guided by the 

following equation (2): 

xi(t+1)=xi(t)+vi(t+1) 

Where: 𝑣𝑖(𝑡): Velocity of particle 𝑖 at iteration 

𝑡, 𝑥𝑡(𝑡): Current position of particle 𝑖, 𝑤: Inertia 

weight balancing exploration and exploitation 

 𝑐1, 𝑐2: Acceleration coefficients for local and 

global bests, r1, r2: Random numbers in [0 ,1], 𝑝𝑏𝑒𝑠𝑡: 

Personal best position of the particle. 𝑔𝑏𝑒𝑠𝑡: Global 

best position among the swarm.  

The values for parameters 𝑐1, 𝑐2 and w of 

PSO model are assigned as 0.4, 0.7, and 0.7, 

respectively. 

Each particle’s fitness is evaluated using an 

objective function, such as maximizing the 

correlation coefficient (R) or minimizing the root 

mean squared error (RMSE) on the training 

dataset. The swarm iteratively updates positions 

and velocities until convergence criteria are met, 

such as reaching a maximum number of iterations 

or achieving a predefined error threshold. 
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PSO is used to optimize key 

hyperparameters of the Gradient Boosting (GB) 

model, such as the number of estimators, learning 

rate, and maximum depth of trees. By leveraging 

PSO, the hyperparameter search becomes 

efficient and avoids the exhaustive computation of 

grid search methods. The integration of PSO 

significantly enhances the model's predictive 

accuracy and robustness by identifying the optimal 

combination of hyperparameters for the dataset. 

This ensures a better fit for predicting the time of 

arrival in truck logistics, as demonstrated in 

subsequent evaluation stages. 

4.3. Evaluation criteria of Machine Learning 

model 

To evaluate the performance of the machine 

learning model in predicting the time of arrival, two 

key metrics are employed: Correlation Coefficient 

(R) and Root Mean Squared Error (RMSE). These 

metrics provide insights into the accuracy and 

reliability of the model's predictions. The correlation 

coefficient measures the strength and direction of 

the linear relationship between the observed 

values 𝑝0,𝑗 and the predicted values 𝑝𝑡,𝑗. The 

formula is expressed as (3): 

R=
∑ (p

0,j
-p

0
) (p

t,j
-p

t
)N

j=1

√∑ (p
0,j

-p
0

)N
j=1

2
∑ (p

t,j
-p

t
)N

j=1

2
 

RMSE quantifies the average magnitude of 

errors between the observed 𝑝0,𝑗 and predicted 𝑝𝑡,𝑗 

values. The formula for RMSE is given as (4): 

RMSE=√
1

N
∑ (p

0,j
-p

t,j
)
2

N

j=1

 

Where 𝑝0,𝑗: Observed values from the 

dataset, 𝑝𝑡,𝑗: Predicted values by the ML model, 

𝑝0: Mean of the observed values, 𝑝𝑡: Mean of the 

predicted values, N: Total number of data points. 

R ranges from -1 to +1, A higher absolute 

value of R indicates a stronger linear relationship, 

signifying better model performance in capturing 

trends. RMSE provides an absolute measure of 

prediction accuracy in the same unit as the target 

variable. Lower RMSE values indicate better model 

performance by reducing prediction errors.   

4.4. K-Fold Cross Validation and Monte Carlo 

simulation 

 K-Fold Cross-Validation is a robust 

technique used to evaluate the performance of 

machine learning models and reduce the risk of 

overfitting [19]. It involves dividing the dataset into 

K equally sized folds or subsets, ensuring each fold 

serves as both a training and validation set at 

different iterations. 

Four steps of the technique are described in 

this following: 

- The dataset is split into K folds. 

- The model is trained on K-1 folds and 

validated on the remaining fold. 

- This process is repeated K times, with each 

fold serving as the validation set once. 

- The final evaluation metric (e.g., RMSE, R 

value) is averaged across all folds to provide a 

more reliable estimate of the model's performance. 

K-Fold Cross-Validation is particularly useful 

during hyperparameter tuning. It ensures that the 

selected hyperparameters generalize well to 

unseen data by evaluating their performance 

across multiple train-test splits. This reduces the 

risk of overfitting the model to a single train-test 

split. 

A common choice in practice is 10-Fold 

Cross-Validation, where the dataset is divided into 

10 subsets. This configuration balances 

computational efficiency and performance 

evaluation. By leveraging 10 folds, the model 

benefits from comprehensive validation while 

maintaining manageable computational costs. 

This technique is critical in fine-tuning 

machine learning algorithms such as Gradient 

Boosting or models optimized with Particle Swarm 

Optimization (PSO), as it ensures the 

hyperparameters selected are robust and lead to 

consistent performance improvements across the 

dataset. 

Monte Carlo simulation is a validation 

technique in machine learning that involves 
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randomly splitting the dataset into training and 

testing subsets multiple times to evaluate model 

performance [20]. Unlike traditional methods like k-

fold cross-validation, Monte Carlo simulation does 

not use fixed partitions but instead creates multiple 

random splits, ensuring variability in data subsets 

across iterations. 

For each split, the model is trained on the 

training subset and evaluated on the testing 

subset, and performance metrics (e.g., accuracy, 

RMSE) are computed. The results are averaged 

over all iterations to provide a robust estimate of 

the model's generalization ability. 

This technique is particularly useful for large 

datasets or when the dataset is highly imbalanced, 

as it enables diverse sampling and reduces the risk 

of bias introduced by a single partitioning. 

However, it requires more computational resources 

due to repeated training and testing processes. 

4.5. SHapley Additive exPlanations for 

interpreting predicted result 

SHAP (SHapley Additive exPlanations) is a 

powerful interpretability method used to explain 

individual predictions of machine learning models 

by assigning each feature a SHAP value, which 

quantifies its contribution to the predicted value 

relative to a baseline, such as the mean prediction 

[21]. The method decomposes the prediction into a 

sum of SHAP values for all features, providing a 

clear and additive attribution of the predicted 

outcome. SHAP offers both global interpretabilities, 

by identifying feature importance across the entire 

dataset, and local interpretability, by explaining 

specific predictions. Based on Shapley values from 

cooperative game theory, SHAP ensures a fair and 

consistent distribution of contributions, making it a 

robust tool for understanding and trusting model 

decisions. 

5. Results and Discussion 

5.1. Tuning Hyperparameters 

The hyperparameter tuning process for the 

Gradient Boosting (GB) model aimed to optimize 

the predictive performance, as measured by the 

coefficient of determination (R). The 

hyperparameter space and tuning configurations 

are detailed in Table 1, which lists the ranges and 

increments for six key hyperparameters: the 

number of trees (n_estimators: 500–1200, step: 

30), learning rate (0.1–0.4, step: 0.01), maximum 

depth of each tree (max_depth: 1–5), maximum 

number of features considered (max_features: 1–

8), minimum samples required to split a node 

(min_samples_split: 2–5), and minimum samples 

required at a leaf node (min_samples_leaf: 1–5). 

The objective function for tuning was R, and the 

validation process employed 10-Fold Cross-

Validation to ensure robustness. 

The contour plots in Fig. 4 provide a detailed 

visualization of how different hyperparameters 

influence the predictive performance of the 

Gradient Boosting (GB) model, as quantified by the 

R value (coefficient of determination). Each plot 

captures the interaction between two specific 

hyperparameters while keeping the others fixed, 

thereby illustrating their combined effect on the 

model's performance. The color gradient, ranging 

from blue to red, represents the R value, with red 

indicating higher values (better performance) and 

blue indicating lower values (poorer performance). 

Fig. 4a shows the interaction between the 

number of estimators (n_estimators) and the 

learning rate. A higher number of estimators 

(approaching 1200) generally leads to improved 

performance, provided the learning rate is low 

(close to 0.1). Increasing the learning rate while 

maintaining a high number of estimators results in 

reduced performance, indicating the importance of 

a small learning rate when using more estimators. 

Fig. 4b examines the interaction between 

max_features (the number of features considered 

at each split) and max_depth (the maximum depth 

of each tree). The optimal region for R lies in a 

combination of lower max_features (around 2–3) 

and shallower tree depths (max_depth around 2–

3). Larger max_features (e.g., greater than 5) and 

deeper trees (max_depth > 3) tend to result in 

lower R values, possibly due to overfitting or model 

complexity. 
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Fig. 4c explores the relationship between 

min_samples_split (minimum number of samples 

required to split an internal node) and 

min_samples_leaf (minimum number of samples 

required at a leaf node). The highest R values are 

observed when min_samples_split is around 2–3, 

combined with min_samples_leaf values around 

2–3. Higher values for both parameters (e.g., 

min_samples_split > 4 and min_samples_leaf > 3) 

reduce performance, likely because the model 

becomes too constrained and underfits the data. 

Overall, these contour plots serve as a 

powerful tool for understanding how 

hyperparameters interact and for identifying 

optimal combinations. The optimal hyperparameter 

combination yielded the best R value of 0.6626, 

achieved with the following parameter set: 

n_estimators = 1160, learning_rate = 0.1, 

max_depth = 2, max_features = 2, 

min_samples_split = 2, and min_samples_leaf = 3. 

Table 1. Hyperparameters space of Gradient Boosting models in tuned process 

Number of trees 500-1200 

Learning rate 0.1-0.4 

Max features 1-8 

Max depth 1–5 

Min samples split 2-5 

Min samples leaf 1-5 

Validation technique: 10-Fold CV 

Objective function for tuning hyperparameters: maximizing R 
 

  
(a) (b) 

 
(c) 

Fig. 4. Contour plot for objective function value R in tuning hypermeters of GB model 
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These optimal hyperparameters will be used 

for comparing performance between GB-PSO 

model with GB model using default 

hyperparameters in the next section. 

5.2. Performance comparison of Machine 

Learning model 

The performance of the Gradient Boosting 

(GB) and Particle Swarm Optimization-tuned 

Gradient Boosting (GB-PSO) models is compared 

based on 5000 Monte Carlo simulation runs, as 

summarized in Table 2 and illustrated in Fig. 5. The 

performance metrics include the mean and 

standard deviation (Std) of the R value (coefficient 

of determination) and RMSE (Root Mean Square 

Error) for both training and testing datasets. 

The results demonstrate that the GB-PSO 

model consistently outperforms the standard GB 

model on the training dataset, achieving a higher 

mean R value (0.7769 vs. 0.7131) and a lower 

mean RMSE (48.0497 hours vs. 53.5045 hours). 

Additionally, the standard deviation for R is 

significantly larger in the GB-PSO model (0.0039 

vs. 0.0047), reflecting the impact of optimized 

hyperparameters in GB-PSO. 

On the testing dataset, the GB-PSO model 

shows a slight improvement in the R value (0.6695 

vs. 0.6564) but a marginal reduction in RMSE 

(56.6335 hours vs. 57.5289 hours). The standard 

deviations of both R and RMSE for testing indicate 

minor variability between the two models, with GB-

PSO slightly increasing the standard deviation for 

R but reducing it for RMSE. 

Overall, the GB-PSO model demonstrates 

enhanced performance, particularly for the training 

dataset, confirming the effectiveness of the PSO 

algorithm in tuning hyperparameters and improving 

the predictive power of the Gradient Boosting 

model. 

  

(a) R (b) RMSE 

Fig. 5. Performance index including R and RMSE after 5000 Monte Carlo simulations for (a) GB and (b) 

GB_PSO 

Table 2. Performance metric of GB and GB-PSO models including mean value and Std value of 5000 

Monte Carlo simulation runs 

 Training dataset Testing dataset 

ML model 
Mean Std Mean Std 

R RMSE R RMSE R RMSE R RMSE 

GB 0.7131 53.5045 0.0047 0.4463 0.6564 57.5289 0.0113 1.0209 

GB_PSO 0.7769 48.0497 0.0039 1.4981 0.6695 56.6335 0.0126 1.0506 

5.3. Prediction of Arrival Time using Machine 

Learning model 

 In this section, the best ML model GB_PSO 

is used to predicting truck arrival time. The 

predicted time of arrival is not only compared with 

actual time of arrival but also compared with 

expected travel time found in View The Space Data 

(VTS Data 280820) of Kaggle plaform. The 
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analysis of Figs. 6 and 7 emphasizes the superior 

accuracy of the GB-PSO model compared to the 

expected travel time in predicting truck arrival 

times. For the training dataset, GB-PSO achieves 

a strong correlation with actual times (R=0.7673) 

and a lower RMSE of 48.96 hours, whereas 

expected travel time shows negligible correlation 

(R=0.0013) and a higher RMSE of 101.29 hours. 

Similar trends are observed in the testing dataset, 

with GB-PSO showing R=0.7076 and 

RMSE=53.86 hours, significantly outperforming 

expected travel time (R=0.0002, RMSE=98.44 

hours). This demonstrates the robust predictive 

performance of GB-PSO. 

  

(a) GB-PSO (b) Expected travel time 

Fig. 6. Case of training dataset for actual time of arrival compared with (a) time of arrival predicted by 

GB-PSO and (b) Expected travel time 

  

(a) GB-PSO (b) Expected travel time 

Fig. 7. Case of testing dataset for actual time of arrival compared with (a) time of arrival predicted by 

GB-PSO and (b) Expected travel time (hours) 

The “expected travel time” in the raw dataset 

represents a baseline estimate typically computed 

using simple heuristic calculations based primarily 

on distance and average speed assumptions. It 

does not incorporate real-time dynamic factors 

such as traffic congestion, weather conditions, 

vehicle-specific attributes, or operational delays. 

Consequently, this estimate serves as a 

naive or rudimentary benchmark rather than a 

predictive model output. Our comparison shows 
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that the GB-PSO model substantially outperforms 

this baseline by capturing complex, non-linear 

relationships in the data, as reflected by 

significantly higher correlation coefficients and 

lower RMSE values on both training and testing 

sets. 

Fig. 8 illustrates the data distribution of arrival 

times for both training and testing datasets, 

comparing the actual time of arrival, predictions 

generated by the GB_PSO model, and the 

expected travel times, measured in hours. 

Subfigure (a) represents the distribution for the 

training dataset, while subfigure (b) pertains to the 

testing dataset. The box plots display variations in 

time, capturing the median, interquartile range, and 

potential outliers for each category. Notably, the 

actual time of arrival exhibits a wider range 

compared to both the GB_PSO predictions and 

expected travel times. The GB_PSO predictions 

demonstrate a narrower spread, suggesting 

consistent performance, while the expected travel 

time appears to have the smallest variability. These 

comparisons highlight the alignment and 

deviations among actual outcomes, model 

predictions, and expected values across both 

datasets, providing insights into the model's 

predictive accuracy and reliability. 

Fig. 9 provides a detailed analysis of the error 

distribution for arrival time predictions, comparing 

the performance of the GB_PSO model and the 

proposed ETA model against the true time of 

arrival. Subfigure (a) represents the training 

dataset, while subfigure (b) focuses on the testing 

dataset. The histograms depict the frequency of 

error predictions, measured in hours. In both 

datasets, the GB_PSO model exhibits a narrower 

and more symmetric error distribution, indicating 

improved accuracy and consistency over proposed 

ETA. Conversely, the proposed ETA model shows 

a wider spread with higher variability, particularly 

with errors deviating significantly from zero. These 

findings further validate the effectiveness of the 

GB_PSO model in reducing prediction errors and 

enhancing reliability across both datasets. 

By integrating these insights, the discussion 

emphasizes the comparative strengths and 

predictive accuracy of the proposed GB_PSO 

model in practical applications. 

Fig. 10 provides an in-depth interpretation of 

the GB_PSO model's predictions for truck arrival 

times by analyzing the importance and influence of 

input features using SHAP (SHapley Additive 

exPlanations) values. The two subfigures present 

complementary perspectives on the role of each 

feature in the model's decision-making process. 

Subfigure (a) shows the distribution of SHAP 

values for individual features, providing insights 

into how each feature impacts the predicted arrival 

time. Each dot represents a data point, colored by 

the feature's value (blue for low and pink for high). 

For instance, "Transportation distance" has a wide 

spread of SHAP values, indicating a strong and 

diverse effect on the model's predictions. High 

values of transportation distance generally lead to 

positive SHAP values, increasing the predicted 

arrival time, while shorter distances reduce it. 

Similarly, the "Type of vehicle" feature exhibits 

varying impacts, with certain vehicle types 

significantly influencing predictions. 

Subfigure (b) presents a bar chart of the 

mean SHAP values for each feature, which 

quantifies the average magnitude of their 

contribution to the model's output. "Transportation 

distance" is identified as the most critical factor, 

with the highest mean SHAP value, underscoring 

its dominant role in predicting arrival time. The 

"Type of vehicle" and "Current location" follow 

closely, reflecting their substantial influence. Other 

features, such as "Supplier ID," "Customer ID," and 

"Destination of location," show moderate impacts, 

whereas "Material shipped" and "Original location" 

are less significant in comparison. 

The SHAP analysis reveals that 

Transportation Distance is the most influential 

factor driving truck arrival time predictions, which is 

intuitive since longer distances naturally require 

more travel time. However, beyond this dominant 

feature, subtler yet critical factors such as Type of 
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Vehicle, Current Location, Supplier ID, and 

Customer ID capture variations related to vehicle 

performance, traffic congestion levels, supplier 

reliability, and customer-specific delivery 

requirements. Leveraging these secondary 

features enables logistics managers to optimize 

vehicle assignment to appropriate routes, 

proactively monitor and address potential traffic 

bottlenecks, and customize delivery scheduling 

based on customer profiles. This holistic approach 

enhances operational efficiency, mitigates risks, 

and strengthens competitive advantage. 

Therefore, while transportation distance sets the 

baseline for predictions, integrating the full 

spectrum of influential features allows stakeholders 

to make more informed and effective supply chain 

decisions. 

This analysis highlights the transparency of 

the GB_PSO model by identifying the key factors 

that affect arrival time predictions. It underscores 

the importance of transportation-related variables 

while also acknowledging the contributions of 

contextual features like supplier and customer 

details. This information can guide decision-

makers in optimizing operations and understanding 

the sensitivity of predictions to various inputs. 

 
(a) Training dataset 

 
(b) Testing dataset 

Fig. 8. Data distribution of arrival time data including actual, GB_PSO and Expected travel time (hours) 
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(a) Training dataset (b) Testing dataset 

Fig. 9.  Error of arrival time predicted by GB-PSO and Expected travel time of service compared with 

true time of arrival 

  

(a) (b) 

Fig. 10.  Global SHAP value for interpreting input effect on the predicted arrival time 

The proposed GB-PSO model delivers not 

only strong predictive performance but also 

meaningful operational insights for logistics 

stakeholders, particularly in emerging markets like 

India. 

First, improved arrival time prediction 

enables more efficient scheduling and resource 

utilization. Accurate ETAs allow dispatchers and 

warehouse operators to better coordinate 

loading/unloading activities, reduce vehicle idling, 

and minimize labor idle time. This directly 

enhances throughput and cost-efficiency, 

especially in high-volume distribution centers. 

Second, the model’s capacity to capture non-linear 

interactions among features such as vehicle type, 

supplier, and transportation distance enables 

dynamic routing and fleet allocation. Operators can 

use predictive outputs to reroute or reassign 

shipments in near-real-time, mitigating the impact 

of delays caused by traffic congestion or 

unforeseen disruptions. Third, the system supports 

service-level improvements for third-party logistics 

(3PL) providers. Accurate ETAs allow for tighter 

delivery windows and increased reliability in 

meeting contractual obligations. This not only 

reduces customer complaints but also strengthens 

long-term business relationships and brand 

credibility. Fourth, the insights generated by the 

model can support strategic decision-making under 

infrastructural and regulatory constraints. In India, 

where road conditions, traffic patterns, and 

regulatory practices vary significantly across 

regions, the model helps identify bottlenecks and 

optimize supply chain strategies accordingly. For 

example, specific vehicle types may be prioritized 

for certain routes based on predicted delay 
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patterns. Fifth, the GB-PSO framework offers 

potential value for policymakers and regulators. 

Authorities can integrate such models into freight 

monitoring systems to predict and manage 

congestion at urban entry points, enforce 

emissions or delivery-time regulations in low-

emission zones, and plan logistics infrastructure 

investment based on data-driven risk factors. 

To operationalize these benefits, 

stakeholders must invest in continuous data 

collection, integration with real-time traffic systems, 

and interface tools for visualizing predictions. 

Additionally, the interpretability of the GB-PSO 

model (via SHAP) makes it suitable for deployment 

in settings where model transparency is essential 

for decision trust. 

In summary, the GB-PSO model bridges the 

gap between data complexity and actionable 

logistics intelligence, making it a practical decision-

support tool for enhancing both tactical operations 

and long-term logistics planning. 

6. Conclusions and perspectives 

 This study presents a robust framework for 

optimizing truck arrival time predictions using the 

GB-PSO model. Through hyperparameter tuning, 

the model achieves substantial improvements in 

predictive accuracy, outperforming both standard 

GB models and traditional expected travel time 

calculations. The GB-PSO achieved a higher 

predictive accuracy, with R = 0.7769 and RMSE = 

48.05 hours on training data, outperforming the GB 

model (R = 0.7131, RMSE = 53.50 hours). 

Similarly, in testing data, GB-PSO demonstrated 

superior results (R = 0.6695, RMSE = 56.63 hours) 

compared to the GB model (R = 0.6564, RMSE = 

57.53 hours). 

Furthermore, GB-PSO significantly 

outperformed expected travel time estimations, as 

seen in the testing dataset, where expected travel 

time produced negligible correlation (R = 0.0002) 

and a high RMSE of 98.44 hours. 

The SHAP analysis underscored the 

dominant influence of transportation distance and 

contextual features on model predictions. These 

findings affirm the effectiveness of GB-PSO in 

reducing errors and improving reliability in logistics. 

Future studies could explore real-time applications 

and broader datasets for enhanced operational 

insights. 

This study highlights the GB-PSO model's 

potential as a foundation for developing digital soft 

tools in supply chain logistics, specifically for 

predicting and scheduling truck transportation.  

Future work could involve experimenting with 

new optimization algorithms for hyperparameter 

tuning, such as Bayesian optimization or genetic 

algorithms, and improving data quality by 

incorporating real-time traffic, weather conditions, 

and shipment-specific details to further enhance 

predictive performance. 
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