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Abstract: This paper presents a real-time method for classifying vehicle 

behaviors, particularly related to lane violation behaviors by analyzing the 

output of magnetic sensors. The system assumes the sensor is installed 

beneath lane markings to detect magnetic field disturbances as vehicles 

approach. The feature extraction process emphasizes the vertical (Z-axis) 

magnetic field component and its declination angle, both of which demonstrate 

robust discriminative characteristics across different vehicle types and 

positions. A lightweight neural network classification model, based on those 

features, is trained on these features and deployed on embedded hardware to 

ensure rapid response and minimal power consumption. The proposed model 

achieves an overall accuracy of 89.75%, in distinguishing between legal (in-

lane) and illegal (lane-crossing) vehicle behaviors. This work introduces a 

novel integration of simplified signal processing and efficient machine learning 

suitable for real-time deployment in low-cost Intelligent Transportation Systems 

(ITS), especially in dense or infrastructure-limited environments. 

Keywords: Vehicle behavior, Magnetic field sensor, Magnetic vector 

declination, Neural network, Signal threshold detection. 

 

 

1. Introduction 

Intelligent Transportation Systems (ITS) play 

a crucial role roll in enhancing the efficacy, safety, 

and consistency of transportation infrastructure, 

effectively helping to reduce serious problems such 

as traffic jams and accidents. Most ITS solutions 

operate by gathering information. through various 

sensors, such as Lidar Tracking System, Induction 

loop detectors [1], Camera, Infrared System [2], 

etc., to monitor and analyze traffic characteristics 

such as vehicle flow [3], speed or even traffic 

violations. The advantages and disadvantages of 

those mentioned sensor systems have been 

discussed in numerous studies [4, 5].  

Magnetic field sensors have also been widely 

adopted in ITS for tasks, such as vehicle detection 

and vehicle speed estimation [6]. Owing to their 

advantages of low cost, low power consumption, 

and compact size, magnetic field sensors present 

a viable alternative solution to overcome the 

drawbacks of other traditional systems [7]. ITS 

applications utilizing magnetic field sensors can be 

easily installed and scaled within the transportation 

infrastructure network. Several studies have 

https://jstt.vn/index.php/en
https://doi.org/10.58845/jstt.utt.2025.en.5.3.98-111
https://doi.org/10.58845/jstt.utt.2025.en.5.3.98-111


JSTT 2025, 5 (3), 98-111                                                  Vu et al 

 

 
99 

examined their applications, for instance, in [8], 

anisotropic magneto-resistive (AMR) sensors were 

placed on the road for vehicle identification and 

classification. In subsequent work, Vytautas 

Markevicius et al. proposed methods for estimating 

vehicle length by combining signal threshold 

detection with cross-correlation techniques for 

sensor signals in a dynamic environment. In 

another work, magnetic field sensors can even be 

installed on the roadside, aiming to estimate 

vehicle speed. It has been observed that, in 

aforementioned works, the full magnetic profile of 

the vehicle (from entry to exit over the sensor) is 

used for analysis. However, such approaches are 

unsuitable for applications that require real-time 

responses—such as immediate detection of lane 

violations. To address this limitation, this research 

proposes a new method using a magnetic field 

sensor system specifically designed to identify 

vehicle behaviors related to lane violation events. 

This research direction is motivated by the 

frequent occurrence of lane violation behavior in 

Vietnam and similar contexts [9]. According to 

reports [10], lane violations are a significant 

contributor to severe traffic accidents in the 

country. The leading causes of these accidents 

include reckless driving and speeding. While 

improving traffic awareness among drivers is 

important, it is equally necessary to detect and 

penalize violations effectively—especially on 

highways and in dense urban areas. 

In the proposed system, embedded devices 

equipped with 3-axis magnetic sensors are 

installed beneath the road surface and positioned 

directly between lane markings. This design 

ensures minimal disruption to traffic while 

maintaining sensitivity to vehicle movement across 

or along the lane boundary. The system operates 

independently, with wireless communication 

between modules to allow scalability, 

compactness, and ease of deployment. 

The main contribution of this work lies in 

proposing a novel integration of lightweight signal 

processing and machine learning techniques for 

real-time lane violation detection. Rather than 

analyzing the entire magnetic signal profile, our 

approach extracts feature from only the initial part 

of the magnetic signal—enabling instant 

classification. We focus on the vertical magnetic 

field component (Z-axis) and its angular variation 

(declination) due to their strong discriminative 

properties. Although there are many neural 

networks used such as FNN (Feedforward Neural 

Network) [11] or a type of FNN is MLP (Multi-layer 

Perceptron) [12], or CNN (Convolutional Neural 

Network) [13,14]. A lightweight neural network 

specifically MLP because the data obtained from 

the magnetic field sensor is only digital data sent 

back periodically, consisting of a single hidden 

layer with six neurons, is employed to classify two 

behaviors: (LEGAL – LEG) vehicles passing within 

the correct lane, and (ILLEGAL – ILL) vehicles 

crossing the lane boundary. This neural model is 

optimized for real-time processing on low-power 

embedded platforms and achieves classification 

latency under 20 milliseconds. 

A primary technical challenge lies in 

distinguishing cases where small vehicles pass 

directly overhead from cases where larger vehicles 

pass nearby, as their magnetic signatures can be 

deceptively similar. Additionally, the need for real-

time classification precludes the use of full-signal 

analysis and demands efficient, low-latency 

models. 

2. Materials and method 

2.1. Data acquisition system  

In essence, the Earth possesses a natural 

magnetic field composed of extended field lines 

resembling those of a giant magnet. Magnetic 

sensors utilize this ambient magnetic field as a 

baseline reference. Meanwhile, vehicles, 

comprising metallic components and internal 

combustion engines, generate their own magnetic 

fields. As a vehicle passes by a magnetic sensor, it 

disturbs the surrounding magnetic field. This 

phenomenon is illustrated in Fig.1. 

The data acquisition system prototypes 

leveraging magnetic field sensors consists of 
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embedded modules integrated with 3-axis 

magnetic field sensors. These systems are 

capable of solar powered operation and are 

designed to withstand hazard environment 

conditions. Devices are deployed in a master-slave 

configuration, where a master unit wirelessly 

coordinates several slaves. Sensor data collected 

by the master unit is then transmitted to a PC 

server through wireless communication for 

processing and storage. The entire system is 

powered by proprietary algorithms and software, 

which are developed and managed on a PC server. 

As shown in Fig. 2, the system is highly optimized 

for wide-area management, boasts exceptional 

integration capabilities, and can be easily 

replicated on a large scale.
 

  
(a) (b) 

 
(c) 

Fig. 1. Distortion of local magnetic field at the point of view where the sensor is installed in different 

situations: vehicle approaching, vehicle nearby and vehicle passing overhead sensor 

 

 
Fig. 2. Operating principal diagram of data acquisition system (left) and Embedded board with a built-in 

magnetic field sensor LIS3MDL (right) [15] 

The experimental setup is illustrated in Fig. 

3. Two embedded magnetic field sensor modules 

were installed approximately one meter apart on 

the median strip. The Z-axis of the sensors was 

oriented vertically, perpendicular to the road 

surface, to enhance sensitivity to vehicles moving 

overhead. The installation point was located 20 cm 

from the centerline of the nearest lane, to 

differentiate between vehicles crossing and 

passing legally.  

Drivers were instructed to operate three 

types of vehicles—sedans, small trucks, and semi-

trucks—across various scenarios. For LEG 

maneuvers, vehicles were driven in the correct 

lane, parallel to the median strip. Speeds included 

slow (~10 km/h), moderate (<60 km/h), and 
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simulated high-speed (>60 km/h up to 90 km/h) 

conditions. Since it was not feasible to conduct real 

experiments at high speeds, data for >60 km/h 

cases were reconstructed by compressing valid 

moderate-speed signal windows in time and 

adding Gaussian noise estimated from the 

LIS3MDL’s typical noise profile. This approach 

helped emulate real-time disturbances consistent 

with faster vehicle movement. For ILL maneuvers, 

the driver deliberately crossed into the lane where 

the sensor was placed, simulating a lane violation. 

These trials were repeated multiple times for each 

vehicle type to ensure data consistency. The 

sampling rate of the magnetic field data was set at 

80 Hz, which was sufficient to capture transient 

field changes associated with vehicle movement. 

 

Fig. 3. Experimental setup for data acquisition 

2.2. Vehicle behavior classification: feature 

extraction and classification method 

Due to the fact the Earth's magnetic field 

varies by location, the initial step in signal 

processing involves extracting changes in the 

magnetic field vector as measured by the 3-axis 

magnetic field sensor.  

ΔB = (Δx, Δy, Δz) (1) 

Δx=x-x0; Δy=y-y
0
; Δz=z-z0 (2) 

Where, x0, y
0
,z0 - are background magnetic 

field components in ambient conditions (no vehicle 

present); and x, y, z are the instantaneous 

measured values. As it has been considered in 

many other studies, the presence of a vehicle 

might be detected via a threshold method, with the 

magnetic field change threshold typically ranging 

from 40 and 60 mG [16, 17]. 

It is evident that the magnetic field changes 

more significantly when a vehicle passes directly 

over the sensor than when it passes by the sensor. 

However, the amplitude of change also varies with 

different vehicles. Furthermore, the vertical 

magnetic field component (Z-axis) tends to 

increase sharply when a vehicle goes overhead the 

sensor, indicating that the total magnetic field 

vector aligns more strongly with the vertical 

direction. Thus, this study focuses on the vertical 

declination angle α of the magnetic field, defined 

as: 

α=√
Δ

2
z

Δ
2
x+Δ

2
y+Δ

2
z
 (3) 

To support early-stage detection (e.g., for 

alerting other subsystems like cameras), only the 

initial rising portion of the Z-signal is considered. To 

reinforce this, a new modified Z-component is 

defined as: 

Z=|α×z | (4) 

Fig. 4a illustrates magnetic field variations as 

a vehicle passes either overhead or beside the 

sensor. In this example, the patterns of X- and Y- 

components differ between the two cases. 

However, because the sensor orientation in the 

horizontal plane may vary in practice, X- and Y- 

components are not reliable across deployments. 

In contrast, the Z-axis—perpendicular to the 

road—remains consistent and orientation-

invariant, which justifies its selection for feature 

extraction. Fig. 4b demonstrates the peak 

detection strategy used to extract the feature 



JSTT 2025, 5 (3), 98-111                                                  Vu et al 

 

 
102 

vector from the modified Z-component. 

Specifically, peak detection relies on statistical z-

score analysis to identify the first significant change 

in signal. 

Therefore, the Z-component is primarily used 

for classification. However, it is important to note 

that the actual input for the neural network is the 

modified Z-component, which also includes the 

declination of the magnetic field vector relative to 

the vertical direction, as described by Equation (3). 

To ensure rapid detection, only the initial rising 

portion of the modified Z-component is used. A 

peak detection algorithm based on z-score 

analysis is applied to locate the first significant 

deviation [18]. Specifically, at each time index k, the 

mean and standard deviation of the signal over a 

historical window of length s are calculated as 

follows: 

μ
Z

[k]=
1

s
× ∑ Z[k-i]

s-1

i=0

 (5) 

σZ[k]=√
1

s-1
× ∑(Z[k-i]-μ

Z
[k])

2
s-1

i=0

 (6) 

A local peak is then identified at time k+1 if 

|Z[k+1]-μ
Z

[k]|>z-score ×σZ[k] (7) 

In practice the constant parameter z-score, is 

set empirically, typically greater than 3, to ensure 

only statistically significant peaks are selected. 

Once the first peak is detected, a feature vector is 

constructed using the most recent values of the 

vertical declination angle α: (α[k], α [k-1],…, α[k-

M+1]), where the vector length M is predefined 

(Fig. 4b). 

  

  

  

(a) 

Fig. 4. a) Illustration of magnetic field variations across the three axes when a vehicle passes directly 

over the sensor versus when it passes beside the sensor; b) Detection of the first significant peak in the 

modified Z-component using z-score analysis, followed by feature vector construction based on the 

vertical declination angle α 
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(b) 

Fig. 4. (continued) 
 

For classification purposes, a lightweight 

neural network with a single hidden layer has been 

designed and trained. The hidden layer consists of 

6 neurons, chosen to balance classification 

performance with low computational cost on 

embedded hardware. Choosing a hidden layer of 6 

neurons based on the Hecht-Nielsen method, the 

recommended number of hidden neurons in a 

single-layer neural network should satisfy the 

following condition [19]: 

Hidden Neurons≤
Training Samples

10∙(6-binary classifi)
 (8) 

A total of 976 labeled samples were 

collected; 75% of these (732 samples) were used 

for training, and the remaining 25% (244 samples) 

are used for validation. The data is split into 75% 

for training and 25% for testing based on the 

machine learning benchmark for small and medium 

sized datasets. This ratio strikes a balance 

between the model's learning ability and the 

reliability of the real-world evaluation. Choosing the 

training set as 75% of the dataset ensures that the 

model is exposed to enough data variability to learn 

the parameters and generalize the model 

effectively. 

The overall algorithm applied to the 

embedded device is summarized in Table 1. 

Fig. 5 represents the loss of the model, 

illustrating the relationship between the learning 

rate and the loss value during the training process. 

The learning rate, which was selected for 

computation at 0.0044, falls within the optimal 

range of 10
-3

 to 10
-2

, indicating effective model 

learning and convergence. This choice ensures 

stability and minimizes the loss, avoiding the 

instability observed at higher learning rates (above 

10
-1

) or the fluctuations seen between 10
-2

 and 

10
-1

. 

Network deployed in the embedded system 

and the learning curve of the neural network (loss 

vs iteration). 

To justify the choice of the lightweight neural 

network architecture (single hidden layer with 6 

neurons), an additional experiment compared its 

performance with a deeper model consisting of two 

hidden layers, each with 12 neurons. The deeper 

model achieved a marginal accuracy improvement 

of about 1.5% (96.6% on the validation dataset 
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(244 samples). However, it increased the latency 

by ~30% (from <20 ms to ~26 ms) and required 

higher memory, which is not compatible with 

embedded hardware. Given the real-time 

requirements of intelligent transportation systems 

(ITS) and the need for low-power deployment, the 

single-layer model was chosen because of its 

balance between accuracy, low latency, and 

resource efficiency, designed for embedded 

systems [20]. 

Table 1. Algorithm 

Objective Classify vehicle behaviors based on magnetic field sensor signals as either LEG 

or ILL 

Input Time series data of X-, Y-, and Z- components from the magnetic field sensor 

Output Classification of vehicle behavior: LEGor ILL 

Constant Parameters 1. AMPL_THR: Amplitude threshold for signal detection. 

2. s: Window length for calculating the initial mean and standard deviation. 

3. z-score: Parameter for identifying significant signal deviations (local peaks). 

4. M: feature vector length. 

 

STEPS 

1. Initialization: 

2. Main Loop (For each 
time step (k > N):  
3. Repeat: 

- From the first s measurements Z[1], Z[2], ..., Z[s], calculate: - Initial mean: 𝜇Z 

- Initial standard deviation: 𝜎Z 

 a. Compute the current values: 

- Calculate the current magnitude Z[k] (the signal's strength at time k). 

- Calculate α[k] based on the signal processing step. 

   b. Detect significant peaks: 

- Check if the following conditions are met: 

1. Z[k] > AMPL_THR (the signal exceeds the amplitude threshold). 

2. |Z[k] - 𝜇Z| > z_score × 𝜎Z) (the signal deviates significantly from the mean). 

c. Create the feature vector: 

- If both conditions are true, form the feature vector (Z[k], Z[k-1], ..., Z[k-M+1]) 

d. Classify behavior: 

- Use the feature vector as input to a Neural Network to classify the vehicle's behavior 

as LEG orILL. 

e. Update statistical quantities: 

- Update the mean 𝜇Z and standard deviation 𝜎Z with the new data Z[k]. 

- The process continues for each new time step k. 
 

 
 

Fig. 5. Architecture of the light weighted neural 

2.3. Validation metrics 

The performance of the classification model 

is evaluated using standard metrics derived from 

the confusion matrix. The confusion matrix 

summarizes the classification results by displaying 

the counts of correctly and incorrectly predicted 
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instances for each class. It includes four 

fundamental components [21]: 

- True Positive (TP): The number of ILL 

behaviors correctly predicted as ILL. 

- True Negative (TN): The number of LEG 

behaviors correctly predicted as LEG. 

- False Positive (FP): The number of LEG 

behaviors incorrectly predicted as ILL. 

- False Negative (FN): The number of ILL 

behaviors incorrectly predicted as LEG. 

These components are obtained from the 

neural network's classification output by applying a 

default threshold classifier to separate the two 

classes [22]. The confusion matrix provides a clear 

overview of how effectively the model distinguishes 

between classes. 

Additionally, the metrics of Accuracy, 

Precision, Recall, and F1-Score are used for 

quantitative performance evaluation. Accuracy 

represents the overall proportion of correct 

predictions (TP + TN) relative to the total number 

of samples. Precision and Recall specifically target 

the ILL class to assess the model’s capability in 

detecting traffic violations: 

- Precision measures the proportion of 

correctly predicted ILL instances among all 

instances predicted as ILL. 

- Recall (or sensitivity) measures the 

proportion of correctly identified ILL behaviors 

relative to all actual ILL behaviors. 

The F1-Score combines Precision and 

Recall into a single metric, providing a balanced 

evaluation of the model’s effectiveness in 

recognizing violations. To ensure reliable 

deployment on embedded devices, these 

evaluation metrics were calculated using an 

optimized and lightweight neural network model 

[19]. The evaluation was performed with randomly 

split datasets to verify stability and reproducibility 

[21].  

Furthermore, the Area Under the ROC Curve 

(AUC) was employed to quantify the model's 

discriminatory capability between the LEG and ILL 

classes. The AUC value ranges from 0 to 1, where 

values closer to 1 indicate superior classification 

performance. In our evaluation process, the AUC 

metric was obtained through multiple validation 

runs, ensuring robustness and reliability. 

Additionally, the test dataset underwent noise 

reduction preprocessing, consistent with 

approaches applied in prior vehicle classification 

studies using magnetic field signals [23]. 

3. Results and discussion 

3.1. Optimizing parameters of the model 

To ensure high performance vehicle behavior 

classification system, the parameters AMPL_THR, 

s, z-score, and M were optimized using a grid 

search method, following hyperparameter tuning 

[21]. These parameters are important to the 

system’s signal processing and classification: 

AMPL_THR defines the amplitude threshold for 

detecting magnetic field changes, s decides the 

window length for computing statistical measures, 

z-score fixes the threshold for peak detection, and 

M specifies the length of the feature vector based 

on the vertical declination angle. A grid search was 

conducted to explore combinations of parameter 

values, evaluating performance on the validation 

dataset (25% of the 976 samples, or 244 samples). 

The parameter ranges tested are listed: 

AMPL_THR from 40 to 80 mG (step size: 10 mG), 

s from 3 to 10 samples (step size: 1), z-score from 

2.5 to 4.5 (step size: 0.5), and M from 6 to 12 (step 

size: 2). The selection standard was maximizing 

classification accuracy on the validation set while 

ensuring processing latency remained below 20 

ms on embedded hardware. The optimal numbers 

are selected based on the high mean accuracy 

while maintaining latency constraints, summarized 

in Table 2. 

Table 2. Hyperparameter optimization results 

Parameter Range Optimal Value 

AMPL_THR 40–80 mG 40 mG 

s 3–10 samples 5 

z-score 2.5–4.5 3.5 

M 6–12 6 

The optimal AMPL_THR is 40 mG which 

ensures detection of magnetic interference while 
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minimizing false positives from environmental 

noise. 5 samples balance statistical stability and 

low latency, which is important for real-time 

embedded system. The z-score threshold of 3.5, 

supported by peak detection literature [22], 

effectively identifies significant signal deviations. A 

feature vector length of 6 provides sufficient 

information without increasing computational 

complexity. This configuration achieves a 

validation accuracy of 96.6% and maintains a 

processing latency of less than 20 ms, making it 

suitable for deployment on low-power embedded 

platforms. 

3.2. Validation of the model 

The dataset used for evaluation was 

constructed based on experimental 

measurements, as described in Section 2. Due to 

limitations in the physical testing environment, 

vehicle speeds during the experiment were 

restricted to below 50 km/h. To simulate higher-

speed scenarios (up to 90 km/h), signal windows 

from valid low-speed data were compressed in the 

time domain and augmented with white Gaussian 

noise. This synthetic augmentation was carried out 

carefully to preserve the statistical properties of 

actual high-speed signals, ensuring realistic 

evaluation. The dataset includes three vehicle 

types (e.g., sedan, small truck, semi-truck), each 

tested under approximately 50 different scenarios. 

The sensor sampling period was set to 

approximately 12 milliseconds, corresponding to a 

sampling rate of 80 Hz. The embedded 

classification algorithm was optimized not only for 

accuracy but also for low power consumption. 

From the moment a magnetic disturbance begins, 

the system generates a classification decision 

within 20 milliseconds, as measured by 

oscilloscope trigger timing between input detection 

and output response. 

In Fig.6, after the first 20 epochs the model 

has achieved stability indicating efficient learning 

and the consistently high accuracy/loss values 

indicate robustness and reliability. Loss (orange) 

decreases sharply and stabilizes near 0, Accuracy 

starts low and increases rapidly, Val Accuracy 

quickly reaches and maintains a high value (close 

to 1), Val Loss (red) drops to near 0 and remains 

low. This shows that the model does not overfit, 

ensuring the model performs well. 

The analysis of the provided data reveals that 

the model exhibits exceptional performance across 

both training and testing phases, with its reliability 

and effectiveness for the given classification task. 

During training, the model achieves strong 

convergence, as evidenced by high accuracy 

(95%) and validation accuracy values paired with 

low loss and validation loss (92%), indicating 

effective learning of underlying patterns without 

significant overfitting (Table 3). 

 
Fig. 6. Training and validation metrics 

Table 3. Model training performance metrics 

Metric Value 

Training Accuracy 95% 

Training Loss 0.05 

Validation Accuracy 92% 

Validation Loss 0.08 

The classification results are also 

summarized in Table 4, which is presented based 

on Confusion Matrix. Fig. 7 shows the performance 

of a classification model for LEG and ILL classes, 

with true positives, true negatives, false positives, 

and false negatives. True LEG: 307 (98.4%), False 

ILL: 11 (6.2%), False LEG: 5 (1.6%), and True ILL: 

166 (93.8%). The model is highly effective with low 

error rates (1.6% and 6.2%), high accuracy (98.4% 
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for LEG, 93.8% for ILL), and minimal 

misclassifications, indicating strong performance 

and reliability. 

Table 4. Confusion matrix for testing the model 

Output behavior LEG 98.4% 1.6% 

ILL 6.2% 93.8 % 

 LEG ILL 

Target behavior 

 
Fig. 7. Confusion matrix of for training the model 

Fig. 8 illustrating the model's performance 

based on ROC analysis based on the testing data. 

The results show that the area under the ROC 

curve class LEG is 0.96 (AUC = 0.96) while this 

value for class ILL is 0.96 (AUC = 0.96), both 

showing high performance, alongside the micro-

average ROC (AUC = 0.97) and macro-average 

ROC (AUC = 0.97), reflecting the overall and 

unweighted average model performance 

respectively, with all AUC values ranging from 0.96 

to 0.97. 

Table 5. Model performance metrics using testing 

dataset 

Metric LEG ILL Overall 

Precision 99% 98% 98.5% 

Recall 98.4% 93.8% 96.1% 

F1 Score 97.4% 95.4% 96.4% 

Testing 

Accuracy 
  96.6% 

AUC    97% 

We have also calculated other metrics during 

the testing phrase. Table 5 shows the Recall scores 

are 0.984 for the LEG class and 0.938 for the ILL 

class, indicating strong ability to correctly identify 

actual samples. The F1 Scores, balancing 

precision and recall, are 0.97 for LEG and 0.95 for 

ILL, demonstrating high effectiveness across both 

classes. Overall model performance is reflected by 

an accuracy of 96.6% and AUC values from the 

ROC curve ranging from 0.96 to 0.97 

(Micro/Macro), confirming excellent discriminative 

power and stability during training. 

 
Fig. 8. ROC Curve of the model trained 
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The results also show that the model 

performance remains robust, boasting an overall 

accuracy of 96.6%, an F1 score of 96%, and an 

AUC of 0.97, highlighting its impressive 

generalization capabilities. The confusion matrix 

confirms this by showing a high number of correct 

predictions with minimal misclassifications 

between the two classes, while the ROC curves for 

both classes (LEG and ILL) yield AUC values of 

0.96, with micro-average and macro-average 

AUCs reaching 0.97. The model is impressive in 

detecting illegal maneuvers, characterized by 

distinct, high-amplitude changes in the Z-

component of the magnetic field. However, it 

exhibits a slightly higher false-positive rate for legal 

behaviors, primarily due to heavy vehicles like 

trucks passing close to the sensor without crossing 

the lane, generating strong magnetic signatures 

akin to illegal acts because of their size and 

metallic mass. This limitation, noted for future 

improvement, could potentially be mitigated 

through sensor fusion or contextual constraints 

such as speed or vehicle classification. Despite 

this, the model’s compact architecture, fast 

runtime, and overall accuracy of 96.6% affirm its 

suitability for real-time embedded deployment, with 

its low-latency and energy-efficient design making 

it an ideal solution for infrastructure-constrained or 

weather-affected environments where traditional 

camera or loop-based systems may falter. 

3.3. Limitations of simulated high-speed data 

The simulation technique is shown to be 

consistent with establish literature in sensor signal 

processing [21, 22]. Signal compression preserves 

the temporal structure of the magnetic noise, while 

the addition of Gaussian noise simulates the typical 

noise profile of the sensor, ensuring statistical 

consistency with the real signal [21]. Real-world 

high-speed testing is not able due to limited access 

to controlled highway environments and safety 

concerns, making simulation a practical alternative 

for proof-of-concept evaluation [21]. 

To address these limitations, future work will 

prioritize collecting a small dataset of realistic high-

speed data (e.g., 10–20 samples) in a controlled 

highway setting to validate the performance of the 

model. Additionally, advanced simulation 

techniques, such as physics-based models of 

vehicle magnetic fields, could enhance the 

reliability of the data. These improvements would 

increase the applicability of the system to a variety 

of traffic conditions. Despite the limitations, the 

system’s 96.6% authentication accuracy on 

calibrated high-speed data demonstrates its 

feasibility for urban environments where speeds 

typically remain below 60 km/h. Ongoing research 

will focus on closing this gap to ensure robust 

performance under all conditions. 

3.4. Comparing with existing system 

In this section, three announced methods are 

compared with our method, those there are: vision-

based systems using cameras and artificial 

intelligence (AI) [23], and multi-sensor magnetic 

arrays [24], inductive loop systems [25], 

summarized in Table 6. 

Table 6. Comparison of this study with published works 

System Accuracy Latency 

(ms) 

Against environmental impact 

Proposed (Single Magnetic Sensor + NN) 96.6% 20 High 

Inductive loop systems [23] 85% 30-50 Moderate 

Multi-sensor magnetic arrays [22] 90% 25-40 High 

Vision-based [21] 95% 50-100 Low 

Vision-based system using camera and deep 

learning algorithms, allows it to have high accuracy 

up to 96% under optimal conditions [26]. However, 

the system requires high-performance hardware, 

weak when again harsh conditions. Multi-sensor 

magnetic arrays achieve 90% accuracy [27]. But 
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deploying in a wide area cost high. Inductive loop 

systems only reach 85% accuracy and high latency 

make it become a not recommended system. 

4. Conclusion 

In this paper, we have presented an 

approach to solving a very practical problem a 

practical and lightweight approach for detecting 

vehicle behavior specifically, determining whether 

a vehicle crosses the lane line illegally using a 

single 3-axis magnetic field sensor. The proposed 

method utilizes a z-score-based algorithm to 

extract real-time features related to vertical 

magnetic field declination and employs a compact 

neural network model to classify legal versus illegal 

lane behavior. The classification model has 

achieved an overall accuracy rate of 96.6%, 

demonstrating the feasibility of deploying this 

system on low-power embedded hardware in real-

world traffic scenarios. Future work may focus on 

expanding the range of vehicle types and traffic 

conditions evaluated, as well as incorporating 

multi-sensor fusion on temporal modelling to 

further improve classification robustness. In 

addition to expanding the dataset and 

incorporating multiple sensor fusion, future 

research could aim to extract orientation-invariant 

features from the X and Y components of the 

magnetic field to enhance the robustness of the 

classification. The current system relies primarily 

on the Z component due to its consistency across 

implementations, but the X and Y components 

could contain additional useful information with 

sensor orientation variations. Techniques such as 

spectral analysis or orientation-invariant 

transforms, as demonstrated in prior work, could 

provide more good features from these 

components, improving performance in scenarios 

with variable sensor orientations. This direction 

promises to improve the system’s adaptability for 

diverse real-world applications. 
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