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Abstract: This paper introduces a method for accurately estimating cable 

tension by combining the energy approach with the cable’s mode shape. The 

method simultaneously accounts for the cable’s bending rigidity and the 

rotational stiffness at both ends. Rayleigh’s energy-based method is applied to 

analytically derive a formula for cable tension, while the mode shape is 

approximated using a nonlinear regression analysis algorithm. The accuracy 

of the method is validated through comparison with available experimental 

data. The approach is then applied to the An Dong Extradosed Bridge in 

Vietnam, demonstrating its effectiveness in evaluating cable forces in similar 

bridge structures. Notably, a significant difference of up to 13.13% in cable 

forces is observed when considering the rotational stiffness at the cable ends, 

highlighting the importance of this factor in structural analysis. 

Keywords: Cable tension; Shape function; Rayleigh’s method; Rotational 

stiffness; Nonlinear regression analysis. 

 

 

1. Introduction 

The cable forces must be measured 

accurately during construction and maintenance 

stages in the cable system bridges [1, 2]. Cable 

tension, currently, can be ascertained through 

direct and/or indirect measurement methods. In 

term of direct measurement, tension of the cable is 

measured directly utilizing dedicated load-

measurement devices (e.g., hydraulic jacks, 

pressure and displacement meters), the cable 

forces extracted from this technique, for example 

lift-off test, are highly converging (less than 2% 

difference) to the design tension [3]. The cost of 

conducting measurement, however, would be 

prohibitively expensive because of using not only 

advanced instruments but also skillful labors, and 

other problems like installed difficulties or poor 

endurance of sensors are come across in practical 

applications. To alleviate this, the vibration-based 

method, one of the indirect measurement methods, 

is prioritized alternative to practical applications 

because of its simplicity, speediness and economic 

efficiency [4]. In vibration-based method, the 

values of cable tension are commonly calculated 

through field-measured natural frequencies along 

with geometrical and mechanical parameters of the 

cable.  

Studies on cable tension by the vibration 

method have been received the consideration of 

various authors with disparate approaches, both 
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analytical and numerical analysis to derive cable 

tension formulas. The sharp distinction of these 

estimated cable equations, basically, depend on 

given dynamic cable model and affected cable 

parameters (e.g., antisymmetric or symmetric in-

plane model, cable flexural rigidity, boundary 

conditions). From that point of view, the existing 

formulas can be classified straightforwardly into 

four categories: Taut string theory [5-7]; 

Considering bending stiffness [8-15]; Cable model 

with sag extensibility [5, 8]. Cable forces 

simultaneously accounting for cable sag and 

bending. stiffness [2, 16-19]. The practical 

applications of the formulas derived from simplified 

transversely vibrating string theory, Eq. (1) [6] can 

trigger huge errors owing to neglecting cable 

flexural rigidity and sag effect, 

2 2

n

2

4ml f
T

n
=  (1) 

where fn, T, m, l and n refer to nth measured natural 

frequency cable tension, mass per unit length of 

cable, and the mode number of the cable, 

respectively. In a case study conducted by Casas 

[1], the author mentioned that the Eq. (1) can only 

be applied if the seven lowest frequencies, 

measured with 0.5% accuracy, lie on a proportional 

line of natural frequency – mode number diagram. 

That requirement regarding a total signal length of 

six-minute is not realistically available for a free-

damped vibration of actual cables because free-

vibrating time of the cable is limited due to decay of 

vibration [1]. So far, the vibration-based cable 

formulas obtained in three final categories have 

been widely applying to assess cable forces of 

various cable-stayed bridge in the world.  

However, the aforementioned methods have 

two key limitations. First, they rely on complex 

frequency equations that require numerous 

iterations due to eigenproblem constraints. Ren et 

al. [8], introduced an energy-based tension 

expression without addressing eigenproblems, but 

their approach used a fixed-fixed beam mode 

shape, neglecting axial tension effects and other 

boundary conditions. Second, previous studies 

typically assume purely hinged or fixed ends, 

whereas actual cable behavior depends on 

anchorage type, support configuration, and 

anchoring method (Fig.1). Incorrect boundary 

assumptions can lead to significant force 

estimation errors, particularly for short or long 

cables. In practice, elastic supports (rubbers) are 

often installed at anchorages to reduce bending 

effects and resist external vibrations, making 

rotational restraints more realistic boundary 

conditions. While studies by Ceballos and Prato [9] 

have considered such conditions, their methods 

still involve transcendental equations requiring 

extensive iterations. These limitations complicate 

practical applications, making accurate cable 

tension estimation challenging for field engineers 

when actual boundary conditions deviate from 

assumptions. 

 

Fig. 1. Elastic support of cable 

This paper presents an investigation on 

energy approach and shape function for estimation 

of cable tension, in which bending stiffness and 

various arbitrary boundary conditions, including 

rotational stiffness at cable ends, are taken into 

account. The simplified formula of cable force is 

constructed based on energy principle, so-called 

Rayleigh's method, without solving eigenproblems 

of dynamic motion, hence the mathematical 

complexity made about transcendental equations 

is significantly reduced. Shape function of the 
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cable, a crucial part of Rayleigh's method, is 

approximately predicted through an optimization 

algorithm using a nonlinear regression analysis in 

accordance with axially loaded beam theory. Also, 

the schematic diagram and the algorithm of axially 

loaded beam are presented to analytically derive 

formulas of rotational stiffness at cable ends. The 

accuracy of the proposed method is verified 

through the experiments conducted by Shinke et 

al. [20]. The calculated results show that the effect 

of assumed boundary conditions, hinged or fixed 

ends or rotational restraints on cable tension are 

extremely remarkable. An application of present 

method herein is shown on a selected Extradosed 

bridge, An Dong Bridge, crossing Phan Rang river 

in Vietnam. It shows that the distinction in term of 

cable forces between with and without considering 

rotational stiffness reaches a threshold of 13.13%. 

2. Tension formulation by Energy Approach 

2.1. Rayleigh’s Method 

Analytical schematic diagram of in - plane 

transverse motion of cable with bending stiffness is 

considered, as shown in Fig. 2. In such case, the 

cable contains rotationally elastic supports, which 

are situated nearby the anchorages, assuming that 

free length of cable, l1, and deviation angle are 

marked from the deviators; therefore, the length of 

the elastic supports l0 at points A and B is neglected 

in the analysis. These elastic supports at A and B 

are treated as elastic springs with constant 

stiffness KA and KB, respectively. Without the 

elastic supports, cable model turns back 

conventional analysis under hinged or fixed 

boundaries (KA = KB = 0). 

 

Fig. 2. Equivalent model of cable with rotational 

restraints 

The concept in the Rayleigh’s method is 

based on the principle of conservation of energy. 

The frequency of vibration can be found by 

equating the maximum potential energy developed 

during the motion to the maximum kinetic energy. 

The potential energy of this system, Eq. (2), 

include entirely the energy of the axial load, flexural 

deformation of the cable and strain energy of two 

springs.  

1 1

1

l l2
2 2

2

0 0

22

A B

y 0 y l

1 v(y, t) T v(y, t)
V EI[ ] dy [ ] dy

2 2 yy
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K K

2 y 2 y
= =

 
= +



   
+ +   

      

 
 (2) 

Kinetic energy of distributed mass is given by  

1l

2

0

1 v(y,t)
T m[ ] dy

2 t


=

  (3) 

The displacement of the generalized 

coordinate in free vibration of cable in the y-

direction is written as the subsequent equation: 

0v(y, t) (y) Z sin( t)=     (4) 

in which (y) is the shape function of cable, which 

represents the ratio of the displacement at any 

point y to the reference displacement or 

generalized coordinate.  Equating the maximum 

potential energy to the maximum kinetic energy 

gives 

1 1

1

1

222 2l l2

A B2

0 0 y 0 y l2

l

2 2

0

d (y) d (y) d (y) d (y)
EI dy T dy K K
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f

w
4 (y) dy

g

= =

        
+ + +      

          
=

 
  
 

 



 (5) 

where KA, KB are rotational stiffness at A and B, 

respectively; and EI, l, T, w, g, f = ω/2π, are the 

bending stiffness, length, cable tension, weight per 

unit length, gravitational acceleration, measured 

fundamental frequency of the cable, 

correspondingly. Cable tension can be deduced 

using Eq. (5).  

Next sections shall introduce a method to 
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approximate mode shape of the cable, (y), 

through optimization algorithm, as well as propose 

formulas of rotational stiffness, KA and KB.  

2.2. Rotational Stiffness at Cable Ends 

This section sets out to introduce proper 

schemes to derive formulas of static rotational 

stiffness at one end or both ends of the cable 

through cable static analysis. The vibration model 

of the cable with rotationally elastic boundaries 

symmetrically imposed at both ends is shown in 

Fig. 2, in which deviators are located at a distance 

l0 of lower and upper anchorage, and elastic 

supports are placed between deviator and exit pipe 

of the cable. Assumptions that stiffness of elastic 

support KA = KB = K at both cable ends; free length, 

l1, and deviation angle of the cable are started from 

the location of elastic support. For those 

assumptions, the system become symmetric, and 

hence, it can be reduced to half structure as 

indicated in Fig. 3. 

 

Fig. 3. Half taut-string cable model with a spring 

Differential equation: 
4 2

4 2

d v(y) T d v(y)
0

dy EI dy
− =  (6) 

Solution of differential equation 
y y

1 2 3 4
v(y) C C y C e C e −= + + +  (7) 

with 2 T

EI
 =  (8) 

where C1, C2, C3 and C4 are constants. With the 

purpose of obtaining rotational stiffness at ends of 

cable, the cable is assumed to subjected to unit 

moment at deviators. Rotational stiffness is then 

found by dividing unit moment to rotational angle of 

cross section at deviator. The constants of Eq. (7) 

are obtained by substituting v(y) from Eq. (7) into 

the following boundary conditions, both 

displacement and force conditions. 

(y 0)
v 0 :

=
=   

1 3 4
C C C 0+ + =  (9) 

(y 0)
EIv '' 1:

=
− =  

2

3 4
EI (C C ) 1−  + =  (10) 

1(y l /2)
v ' 0 :

=
=  

1 1
1 1

l l
2 2

2 3 4
C C e C e

 − 

+  −   (11) 

1(y l /2)
EIv ''' 0 :

=
− =  

1 1
1 1

l l
3 32 2

3 4
EI C e C e 0

 −  
−  −  = 

 
 (12) 

Finally, the rotational stiffness at both ends of 

cable is given as 

1 1

1 1

1 1
l l

2 2

(y 0)

1 1
l l

(y 0) 2 2

EI e e
EIv ''

K
v '

e e

 − 

=

 − 
=

 
 + 

−  
= =

−

 (13) 

where α refers to Eq. (8); and EI and l1 are bending 

stiffness and free length of cable, respectively. It is 

noted that field measurements such as vibration 

tests can be conducted to assess cable behavior. 

By analyzing the relationship between applied 

loads and rotational deformations at the supports, 

the effective rotational stiffness can also be 

determined. 

For cable with single rotational restraint 

acting at only one end of the cable, the analyzed 

procedure to explicitly obtain expression of one-

end rotational stiffness, KA, are the same as 

presented in the first case. The boundary 

constraints are presented as follows  

(y 0)
v 0 :

=
=  

1 3 4
C C C 0+ + =  (14) 

(y 0)
EIv '' 1:

=
− =  

2

3 4
EI (C C ) 1−  + =  (15) 

1(y l )
v 0 :

=
=  

1 1l l

1 2 1 3 4
C C l C e C e 0 −

+ + + =  (16) 

(y l )1
EIv '' 0 :

=
− =  

( )1 1l l2 2

3 4
EI C e C e 0 −
−  +  =  (17) 

the rotational stiffness at one end of cable is 
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obtained as 

( )1 1

1 1 1 1

l l2

1(y 0)

A l l l l

(y 0) 1 1

EI l e eEIv ''
K

v ' e e l e l e

 −

=

 − − 

=

 −−
= =

− + +  + 
 (18) 

2.3. Shape Function of Cable 

Shape function of cable is a function that 

describe configurations of cable as accurate as 

possible when cable deform. Assumed shape 

function, firstly, must satisfy all possible 

displacement boundary conditions. In fact, there 

are a large number of assumed shape functions 

meet geometric boundary conditions of the system; 

therefore, in some simple cases, shape function 

can be assumed directly, on the basis of practical 

experiences of analyzers, without any intensive 

analysis. Consequently, if mode shape of cable is 

predicted inappropriately, it can bring about 

unaccepted errors in prediction of cable tension 

from Rayleigh’s Method. In other words, a shape 

function that satisfies only the geometric boundary 

conditions does not always ensure an accurate 

result for the estimation of cable tension. For that 

important reason, the method introduced herein 

allow estimating mode shape of cable, from static 

analysis of cable, not only satisfying displacement 

boundary condition but also covering force 

conditions and static differential equation of the 

cable. Practically, two typical shape functions often 

used are polynomial and trigonometric functions. In 

this paper, the former which is demonstrated as Eq. 

(19) has been selected due to its simplicity, 

computational efficiency, and ability to approximate 

cable deformation with sufficient accuracy. 

2 i n

0 1 2 i n(y) a a y a y ... a y ... a y = + + + + + +  (19) 

in which a1, a2, …, an are constants of the shape 

function. The algorithm to ascertain these 

constants is given in next section.  

2.4. Optimization of Shape Function 

This section puts forward optimization 

algorithm, so-called nonlinear regression analysis 

to reasonably identify the constants of shape 

function, Eq. (19). As mentioned earlier, the 

accuracy of cable tension estimated using 

Rayleigh’s method depends heavily on the shape 

function of the cable. Addressing the question of 

how a reasonable shape function can be selected 

to ensure good results, becoming the most 

interested. The common approach is that an 

appropriate mode shape can be determined as the 

deflected shape due to selected set of static forces. 

Two general static forces are inertia forces at each 

time instant or self-weight of the cable applied to 

the cable in an appropriate direction. The former is 

not helpful because inertia forces involve with 

unknow shape. As a result, the proposed algorithm 

herein shall predict mode shape of the cable, Eq. 

(19), as deflected shape of cable subjected to its 

self-weight, as well as simultaneously satisfy 

geometric boundary conditions, force boundary 

conditions and differential equation of cable. 

The differential equation representing the 

static profile of the cable, accounting for bending 

stiffness, under its self-weight is shown as  

4 2

4 2

T

EI

d (y) d (y) q(y)

dy dy EI
− = −

 
 (20) 

where q(y) refer to uniformly transverse load.  

Mode shape of the cable is obtained after 

normalizing displacement of cable to reference 

displacement. The nonlinear regression analysis is 

used to properly identify coefficients (ai) of the 

mode shape. The content of regression analysis, 

carried out in this study, is that with any value of y 

in the domain of shape function, the parameters (ai) 

from Eq. (19) are ascertained to minimize the sum 

of squared error (SSE) between data values and 

predicted values. The procedures are following 

three steps: 

Step 1. Set a target function: Target 

function is designed to minimize the sum of 

squared error (SSE) in coincide with nonlinear 

regression algorithm. 

( )
2n

f fpi i
i 1

MinSSE  −
=

= →  (21) 

in which fpi is the values predicted by 

regression model; and fi refers to data values. 

Knowing differential equation of the cable, Eq. (20), 
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predicted values of fpi and data values of fi can be 

deduced as sequent expressions. It is 

recommended that the objective function values 

range from 10-6 to 10-4 indicating good 

convergence of the analysis. 

4 2

4 2

d (y) T d (y)
f
pi EIdy dyy y y yi i

 
= −

= =

 
 
 
 

 (22) 

q(y)
f
i EI y yi

=
=

 (23) 

Step 2. Set constraints for target function: 

The constraints of target function consist of 

geometric and force boundary conditions of the 

cable model. Three cases of boundary conditions, 

including hinged, fixed and rotational restraint 

ends, are investigated correspondingly. 

Case 1: Hinged end conditions 

(0) 0; (l) 0 =  =   (24a) 

2 2

2 2
EI EI

d (y) d (y)
0; 0

dy dy
y 0 y l

 
= =

= =

 (24b) 

Case 2: Fixed end conditions 

(0) 0; (l) 0 =  =  (25a) 

d (y) d (y)
0; 0

dy dyy 0 y l

 
= =

= =
 (25b) 

Case 3: Rotational restraint end conditions 

1
(0) 0; (l ) 0 =  =  (26a) 

2

2
d (y) d (y)

K EI ;
A dy dyy 0 y 0

 
=

= =

 (26b) 

1 1

2
d (y) d (y)

K EI ;
2B dy dyy l y l

 
= −

= =

 (26c) 

where KA, KB are elastic stiffness of rotational 

restraints at the corresponding cable ends. The 

value of these stiffness is computed using Eq. (13) 

or Eq. (18). The degree of fixity in the supports can 

also be represented through the non-dimensional 

parameters ka and kb [9]. 

A B

4 4

A B

K l K l
k ;ka bK l EI K l EI

= =
+  + 

 (27) 

Step 3. Iteration: Entering initial guessed 

values of ai of shape function for regression model 

coefficients, then run the iterative steps. In this 

paper, the arbitrary values of 1 for each coefficient 

are used. Better initial guessed values will speed 

up iterative process, but the arbitrary guesses 

provide a good test of the ability of iteration – 

supported tools. The iterative process shall be 

stopped after a huge number of consecutive loops. 

As a result, the reasonable coefficients of shape 

function of the cable shall be found if both the target 

function and all boundary conditions are satisfied. 

Next section will shortly introduce a powerful 

iteration tool called Excel Solver to help conducting 

speedily and conveniently the optimization of cable 

shape function. 

3. Numerical Results and Discussions 

In this section, firstly, cable tension was 

estimated utilizing Eq. (5) for three cases: the cable 

model with hinged end conditions, fixed ones and 

rotational restraints at both ends. In which, mode 

shape of the cable is predicted in the form of Eq. 

(19). Secondly, the feasibility of the proposed 

method is confirmed by comparing with exact 

solution. Then, the accuracy of the proposed 

method in estimation of cable forces is verified by 

comparison with available experiment results. 

Finally, an investigation on rotational restraints for 

evaluation of cable tension were presented.  

Explanations of numerical results and discussion 

are following points: 

3.1. Compare to the exact solution 

A dimensionless parameter ξ = l(T/EI)1/2 is 

introduced to investigate the simultaneous 

influence of bending stiffness and cable tension on 

the vibration behavior of the cable. Fig. 4(a) and 

4(b) present the ratio of fundamental frequency of 

proposed method and exact solution to based 

frequency of beam (small ξ) and taut string theory 

(large ξ), respectively. In Fig.4(a), λ = fp/fb whereas 

λ = fp/fst in Fig.(4b). The detailed expressions of 

these parameters refer to Table 1. 
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(a) (b) 

Fig. 4. Ratio of fundamental frequency versus ξ: (a) small ξ; (b) large ξ 

Table 1. Expressions and features used in investigation 

 Small ξ Large ξ 

Boundary condition Fixed ends Hinged ends 

Fundamental frequency 
using proposed method (fp) 

Refer to Eq. (5) Refer to Eq. (5) 

Fundamental frequency 
using exact solution (fp) 

2( l)( l)[1 cos( l)cosh( l)]  −    

+ 2 2[( l) ( l) ]sin( l)sinh( l) −     

where 2 4 4 1/2 2 2 4 4 1/2 2( ) ; ( ) =  +  −   =  +  +    

2 T / (2EI); =  
4 2 2

p4 f w / (gEI) =   

2

p 2 2

EI g
f (T )

l 4wl


= +  

Fundamental frequency of 

beam theory (fb) 
b 4

gEI
f

wl2
=


 No use 

Fundamental frequency of 

taut string theory (fb) 
No use st 2

gT
f

wl

1

2
=  

 

For small ξ, which corresponds to short 

cables, the natural frequency tends to align with the 

values predicted by beam theory under fixed-end 

conditions. As shown in Fig. 4(a), fixed-end 

boundary conditions provide a more accurate 

estimation of cable tension for short cables 

compared to hinged-end conditions. Using hinged 

condition can cause unaccepted overestimation of 

cable forces. Proposed method highly coincides 

with exact solution, error around 1%, for the region 

0 < ξ < 10.  

In case of large ξ as shown in Fig. 4(b), 

regarding long cable, the dynamic characteristics 

of cable close to a taut string theory. For ξ > 100, 

the natural frequencies of the cable are nearly 

same as its of string theory, with the difference of 

0.1%. Also, hinged end conditions seem to be more 

realistic rather than fixed ends when predict cable 

tension through vibration analysis of long cable. 

Both exposed formula and exact solution agree 

extremely well to each other within the error of less 

than threshold of 0.1%.  

One particularly noticeable point from Fig. 4 

is that even small or large value of ξ, the 

discrepancy in dynamic behavior of cable between 

hinged and fixed end boundary conditions are 

significant, especially short cable.  

3.2. Compare to the experiment 

The experiments on cable tension were 

conducted by Shinke et al [20]. The short cable of 
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3.4m and long cable of 31.5m from experiment 

were chosen for validation of feasibility of proposed 

method. The properties of the experimental cables 

as shown in Table 2. 

Table 2. Cable properties 

l (m) w (kN/m) EI (kN.m2) 

3.4 0.144 34.5 

31.5 0.144 34.5 

Cable tension employing present method are 

in a good agreement with those from the 

experiment with the error of around 4% (Fig.5). It 

also matched well on a wide range of frequencies 

with those using formula proposed by Zui et al [2]. 

One point to consider when estimation of cable 

tension is that cable forces calculated from taut 

string theory beget extreme error in case of short 

cable (Fig.5a). By comparing estimated cable 

forces between proposed method and available 

experimental results in both short and long cable, 

the accuracy and feasibility of present method are 

validated.   

 

  
(a) (b) 

Fig. 5. Tension forces: (a) 3.4 m-long cable; (b) 31.5 m-long cable 

3.3. Effect of the rotational on cable tension 

  
(a) (b) 

Fig. 6. Impact of boundary conditions on cable tension: (a) small ξ; (b) large ξ 

The cable tension accounting for bending 

stiffness and rotational restraint ends are 

investigated utilizing present method as shown in 

Fig. 6. In this investigation, the non-dimensional 

parameters of rational stiffness ka and kb shown in 

Eq. (27) are used. The values of ka and kb take from 

0 to less than 1. If ka = kb = 0, boundary conditions 

are hinged ends. The degree of rotational restraints 

shall increase with an increase in the value of ka 

and kb. Boundary condition is treated as fixed ends 

if ka and kb close to 1. Figs 6(a) and 6(b) shows 

effect of assumed boundary conditions on cable 
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tension of 3.4m - long cable 31.5m – long cable. 

When the natural frequency of cable is high 

enough, the gaps of cable tension between fixed 

ends, hinged ends and rotational end restraint are 

enormously lager. For example, when ξ is around 

10, corresponding to approximated frequency of 28 

Hz, the discrepancy in term of cable forces 

between hinged ends and fixed ends are 

surrounding 38%. 

3.4. Case study: An Dong-Extradosed Bridge  

An Dong Bridge is crossing Dinh river of Ninh 

Thuan province, Vietnam. It connects Ninh Hai 

commune, Ninh Phuoc, to Dong Hai ward, Phan 

Rang – Thap Cham, and carry four traffic lanes. 

The total length of An Dong Bridge is 1018 meters, 

in which main bridge are an extradosed structure 

with the length of 580 meters. The approach spans 

of An Dong Bridge are simple beam structure.   

An Dong extradosed Bridge has a three cell 

box girders cross-section that is supported in five 

spans by extradosed cable in a twin cable of fan – 

harp shaped layout with 48 pairs of stay cables, 

Fig. 7 

The cable tensions of some typical cables of 

An Dong extradosed Bridge were evaluated, using 

formula of proposed method herein and practical 

formula introduced by Zui et al [2]. In term of cable 

anchorage to the box-girder and towers, according 

to configuration of the anchorage at girder, Fig. 8, 

rubbers were placed at the deviators. The cables 

were also not terminated at the towers. It passed 

through the tower over the saddle. This such 

anchorage type at girder and anchoring method to 

the towers led to boundary condition of cable 

becoming imperfect hinged or fixed condition. 

Therefore, the rotational restraints at cable ends 

were considered in force determination of selected 

cables in order to increase the accuracy of 

calculated forces. For more simplicity, In this cable 

tension evaluation, the vibration cable model was 

assumed with rotationally elastic boundaries 

symmetrically imposed at both ends. 

Six typical extradosed cable as indicated in 

Fig.7, namely C-01, C-02, C-03, C-04, C-05 and C-

06, were selected for cable force estimation. The 

geometrical and mechanical properties of these 

selected cables are indicated in Table 3. It shows 

that the rotational stiffness calculated applying 

proposed formula and formula presented by 

Ceballos and Prato [9] were in good agreement 

with the error of about 1.32%. 

To record the dynamic response of the 

extradosed cables, a three – dimensional 

acceleration transducer, namely, ARF-20A which 

was supplied by Tokyo Sokki Kenkyujo Co.,Ltd, 

was employed. Frequency range of the transducer 

reach to maximum of 80 Hz, with sensitivity 

deviation of 5%. The recorded signals, then, were 

converted and processed through a dynamic 

measurement equipment, SDA-7910. To capture 

different frequencies of the cable, an algorithm 

called Fast-Fourier-Transform (FFT) is used with 

sampling frequency of 50 Hz. FFT is an efficient 

implementation of the Discrete-Fourier-Transform 

(DFT), converting cable response from time 

domain representation into frequency domain 

representation. Based on that frequency domain, 

different natural frequencies of the cable were 

extracted. Hanning window function were used to 

reduce spectral leakage of the signals. 

Consequently, power spectrums of extradosed 

cables, from C-01 to C-06, are shown in Fig. 9, 

respectively, in which the value of fundamental 

frequency is marked at the first peak of the 

corresponding dominant spectrums. Cable tension 

of selected cables are indicated in Table 4. 

Table 4 illustrates cable forces of six selected 

extradosed cable of An Dong Bridge using formula 

of proposed method herein and practical formula 

introduced by Zui et al. [2]. The former accounted 

for rotational restraints at both ends of the cables, 

whereas the latter assumed boundary conditions 

as fixed ends. Consequently, the different assumed 

boundary conditions between two methods posed 

a discrepancy in the results of cable forces, a 

maximum of 13.13% among these selected cables. 

It is noted that the rotational restraints provide 

additional stiffness to the cable system. In the Zui 
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et al. [2] model, the natural frequency of the cable 

is influenced by both cable tension and bending 

stiffness, whereas in the proposed model, 

rotational stiffness also contributes to the natural 

frequency. At the same measured natural 

frequency, the cable forces estimated using the 

proposed method are consistently lower than those 

obtained using the Zui et al. [2] model. 

 
Fig. 7. An Dong extradosed Bridge: Source from Sbtech Joint Stock Company, Vietnam 

 

Fig. 8. Stay anchorage configuration with elastic support, rubbers, of An Dong extradosed Bridge 

Table 3. Geometrical and mechanical properties of extradosed cables of An Dong Bridge 

Cable strands length l1 w EI Proposed formula Ceballos and Prato [9] 

 (n) (m) (kN/m) (kN.m2) K (kN.m/rad) K (kN.m/rad) 

C-01 37 55.50 0.47 514.75 1236.86 1246.21 

C-02 37 47.90 0.47 514.75 1248.67 1259.51 

C-03 37 40.60 0.47 514.75 1224.11 1236.92 

C-04 37 33.20 0.47 514.75 1220.07 1235.78 

C-05 37 26.00 0.47 514.75 1174.09 1194.23 

C-06 37 19.70 0.47 514.75 1128.72 1155.47 
 

   

(a) C-01 (b) C-02 (c) C-03 
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(d) C-04 (e) C-05 (f) C-06 

Fig. 9. Power spectrums of response of six selected cables 

Table 4. Cable forces of six selected cables 

Cable    Natural frequency f Proposed method Zui et al [2] Difference 

 (Hz) T (kN) T (kN) (%) 

C-01 2.44 2972.10 3421.13 13.13 

C-02 2.85 3029.21 3460.34 12.46 

C-03 3.29 2911.15 3288.05 10.11 

C-04 4.00 2891.86 3216.95 13.13 

C-05 4.90 2678.09 2906.56 7.86 

C-06 6.20 2475.23 2595.86 4.65 
 

4. Conclusions 

This paper presents a method for estimating 

cable tension using an energy-based approach 

that accounts for cable bending stiffness and 

rotational restraints at the cable ends. An 

optimization algorithm employing nonlinear 

regression analysis was introduced to accurately 

approximate the cable mode shape, and practical 

formulas for rotational stiffness were derived. The 

estimated cable forces obtained using the 

proposed method show strong agreement with 

both exact solutions and experimental data. The 

influence of boundary conditions is particularly 

significant for short cables, where variations in 

cable force are more pronounced compared to 

longer cables. When the parameter ξ is small, the 

estimated tension approaches the values of a 

fixed-fixed end cable, whereas for sufficiently large 

ξ, the forces align with those of a hinged-hinged 

end condition. At high natural frequencies, the 

discrepancy in cable tension between fixed ends, 

hinged ends, and rotational end restraints 

becomes excessively large. The effectiveness of 

the proposed method was demonstrated in the 

evaluation of cable forces on the An Dong 

Extradosed Bridge in Vietnam, where the 

difference in cable tension with and without 

considering rotational stiffness reached a threshold 

of 13.13%. 
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