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Abstract: Structural problems are commonly analyzed using implicit solvers, 

such as the finite element method (FEM), which often demand manual 

processes and are computationally intensive, especially for structural 

optimization problems that involve multiple FEM evaluations to identify the 

optimal design solutions. In addition, implementing optimization algorithms 

also demands significant expertise for accurate application. This study 

proposes a simple yet efficient procedure to address structural optimization 

problems by transforming the implicit analysis into explicit performance 

functions using the response surface method and simulating the space of input 

variables by random samples. The explicit performance functions enable quick 

evaluations for all generated samples of inputs, and a search routine is 

developed to identify optimal solutions efficiently. The proposed procedure is 

validated through three case studies, demonstrating its ability to achieve 

accurate solutions within minutes of analysis. 

Keywords: Response surface method; Structural optimization; Random 

simulations. 

 

 

1. Introduction 

Most structural problems are now solved 

using finite element methods, thanks to the rapid 

development of computer technology [1]. Many 

commercial software packages are available for 

structural analysis [2,3]. For example, SAP2000 

and ETABS are commonly used for building 

structures, while MIDAS Civil or RM Bridge are 

widely applied to bridge structures. These 

fundamental software tools support various types 

of analysis, such as static, dynamic, transient, 

linear, and nonlinear analyses [4]. 

Recently, more advanced software such as 

ANSYS, ADINA, or ABAQUS has been introduced 

to handle more complex analyses [5]. With 

enhanced element types, boundary conditions 

(e.g., contacts, interactions), material models, and 

advanced analysis methods, these tools are well-

suited for tackling complex engineering problems 

[6]. However, these advanced software packages 

are often expensive [7]. Additionally, computational 

time increases significantly for more complex 

analyses. For instance, solving time-history or 

nonlinear analyses may take hours of computation 

[4,8]. 

Furthermore, many problems require 

repetitive analyses, such as optimization or 

reliability assessments [9,10]. For these types of 

problems, computing time can escalate to days or 

even weeks [11]. To address this challenge, various 

https://jstt.vn/index.php/en
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approximation methods have been proposed to 

accelerate the analyses. Response surface 

methods and machine learning-based surrogate 

models have gained prominence in tackling these 

problems [12–14]. While machine learning 

techniques are powerful, they require sufficient 

expertise to ensure appropriate hyperparameter 

selection and result interpretation [7]. Alternatively, 

response surface methods (RSM) are widely 

applied to engineering problems [13,15–17]. The 

core concept of RSM involves first establishing a 

set of input variable samples, commonly referred to 

as design of experiments (DOEs), and then 

obtaining true responses using actual models. 

Subsequently, mathematical equations, known as 

the response surface functions (RSFs), are 

developed to best fit the initial experimental data 

[18]. The RSFs then serve as surrogate models, 

replacing the original computationally expensive 

problems. By leveraging the RSF, the 

computational effort required for the initial 

problems can be significantly reduced. 

Optimization is a crucial task in the design 

process, as it helps minimize investment costs 

while ensuring compliance with technical 

requirements [19]. For instance, multiple design 

solutions may satisfy a given load-carrying 

requirement, but their associated costs can vary 

significantly. Therefore, selecting the most cost-

effective solution is essential to balancing technical 

performance and economic feasibility. However, 

optimizations often demand extensive 

computations due to their iterative nature, 

demanding significant computing time and effort, 

especially for implicit problems such as structural 

optimizations [19,20]. For example, optimizing the 

cost of a three-story frame requires at least 20 

iterations, each involving a finite element method 

(FEM)-based analysis to achieve the optimal 

design [20]. 

Considering the aforementioned drawbacks, 

this study introduces a practical and effective 

method for addressing structural optimization 

problems. The proposed approach consists of two 

main steps. First, the implicit nature of structural 

analyses, which typically depend on complex 

numerical solvers such as FEM, is reformulated 

into explicit performance functions. This 

transformation is achieved using the RSM, which 

simplifies the structural behavior into more 

manageable mathematical models. Second, 

random simulations are conducted to generate 

diverse sets of input variables, thereby covering a 

broad range of potential design scenarios. The 

explicit formulation of the performance functions 

significantly accelerates their evaluation compared 

to traditional FEM computations. Furthermore, a 

tailored search routine is developed to 

systematically explore the generated input sets 

and identify optimal design solutions. 

The remainder of this study is organized as 

follows. Section 2 details the procedure for 

constructing RSFs and describes a routine that 

integrates RSFs with random simulations for 

optimization. Section 3 presents numerical 

examples to evaluate the efficiency and accuracy 

of the proposed approach. Section 4 provides 

important discussions, and Section 5 concludes 

the study.  

2. Methods 

2.1. A brief summary of RSM 

The response surface method is a well-

established approximation technique for modeling 

computationally expensive processes. It begins 

with a well-designed experiment, where a set of 

input samples is generated, and their 

corresponding responses are determined using the 

original problem. Subsequently, explicit 

mathematical functions are formulated to best fit 

the experimental data. These functions, commonly 

referred to as empirical models or RSFs, provide 

an efficient approximation of the underlying 

problem. The main steps for implementing RSM 

are outlined below, while further details can be 

found in the literature, e.g., [17,18,21]. 

Step 1: Generate a set of input variables. 

This step, commonly referred to as the design of 

experiments, involves selecting an appropriate 
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sampling strategy. Box-Behnken design (BBD) and 

central composite design (CCD) are widely used in 

practice. Notably, for high-dimensional problems, 

CCD-based DOE results in a significantly larger 

sample size compared to BBD, making BBD a 

more practical choice in certain cases. 

Step 2: Obtain responses for the DOE of the 

input set. The true experiments or actual problem 

evaluations are performed for each sample in the 

input set generated in Step 1. 

Step 3: Construct response functions. 

Exponential and polynomial functions are 

commonly used to approximate the system's 

behavior. In general, quadratic polynomials are 

suitable for most engineering applications 

[10,22,23], and they are adopted in this work.   

2.2. Random simulation for optimization 

problems 

In optimization problems, a feasible domain 

of input variables is typically defined first. The 

optimal solution is then sought within this domain. 

Generally, optimization methods can be broadly 

classified into gradient-based (deterministic) 

methods and stochastic (metaheuristic) methods 

[9]. The former is applicable when the objective 

function is explicitly defined, whereas the latter is 

more robust as it can handle both explicit and 

implicit problems. 

Considering a simple example of an 

optimization problem, as shown in Eq. (1): 

( ) 3 2

x

1
min f x x 3x 2

2

s.t.              2 x 5

= − + −

−  

 (1) 

It is well known that the optimal solution for 

this explicit objective function can be obtained 

using a gradient-based method. This involves first 

finding the critical points by setting the derivative of 

f(x) to zero and then evaluating the objective 

function at these points. To determine the global 

minimum, the function values at the critical points 

are compared with those at the domain 

boundaries. 

Alternatively, stochastic methods can also be 

used to search for the optimal solution. The 

problem can be solved numerically by evaluating 

the objective function at a large random set of x 

values within its domain. Fig. 1 shows the results 

of 1,000 evaluations corresponding to 1,000 

randomly generated samples of x in the range [−2, 

5]. Since the objective function is evaluated 

numerically for these samples, the minimum value 

can be easily identified among the 1,000 computed 

values, as indicated by the star marker in Fig. 1. 

This approach is commonly known as Monte Carlo 

simulation-based optimization. 

 

Fig. 1. An illustration of the stochastic optimization 

Unlike gradient-based methods, which 

require explicit derivatives, stochastic methods 

provide a simple yet flexible way to estimate the 

optimal solution, particularly when the objective 

function is complex or non-differentiable. Clearly, 

the stochastic approach eliminates the need for 

derivative calculations but requires a large number 

of function evaluations. However, computing 

objective values can become challenging when the 

function is implicitly defined or costly to evaluate 

experimentally. Conversely, for explicitly defined 

objective functions and constraints, numerical 

evaluations remain feasible and convenient. 

Hence, integrating the stochastic approach with the 

RSM offers a practical and effective strategy for 

structural optimizations. 

The stochastic approach described above 

can be extended to optimization problems with 

multiple variables and constraints, as outlined 

below. Notably, the RSM introduced in Subsection 

2.1 will be utilized in Step 3 to develop explicit 
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models for constraint requirements. 

Step 1: Randomly generate a large sample 

set for all input variables. 

Step 2: Compute objective function values for 

the samples created in Step 1. 

Step 3: Evaluate constraint conditions to 

identify feasible samples within the suitable 

domain. 

Step 4: Determine the optimal objective value 

from the computed results in Steps 2 and 3. 

Step 5: Identify the optimal variables by 

matching them to the optimal objective value 

obtained in Step 4. 

3. Illustrative examples 

In this section, three structural optimization 

problems are examined. The first example 

investigates the stochastic optimization presented 

in Subsection 2.2 for explicit constraints. The last 

two examples handle implicit constraints, where 

the response surface method and stochastic 

optimization outlined in Section 2 are combined to 

search for optimal solutions. 

3.1. Example 1 

This example is adapted from the previous 

work [24]. A cantilever beam subjected to a 

concentrated load Q, as shown in Fig. 2, is 

designed to satisfy both strength and serviceability 

requirements, as defined in Eq. (2). In Eq. (2), 

constraints for limiting deformation and stress are 

given in Eq. (2a) and (2b), respectively. Here, yLS 

represents the maximum allowable deformation, 

while [] denotes the material strength. In this 

example, yLS is set to 1 cm, and [] is 120 MPa. The 

optimization problem aims to minimize the beam’s 

weight by selecting the optimal width and height of 

its cross-section. The initial parameters for this 

example are summarized in Table 1. 

3

LS3

4QL
y

Ebh
  (2a) 

 2

6QL

bh
   (2b) 

Mathematically, the problem can be written in 

Eq. 3. In Eq. (3), V denotes the volume of the 

beam, while FSSer and FSStr represent the safety 

factors corresponding to the serviceability and the 

strength conditions. 

 

Fig. 2. The problem of a cantilever beam 

Table 1. Considered uncertainties 

Symbol Description Value Unit 

Q Load 400 kN 

E Young’s 

modulus 

200 GPa 

L Beam length 2 m 

b Section width 4-36 cm 

h Section height  8-72 cm 

[] Strength limit 120 MPa 

yLS Limit of 

deformation 

1 cm 

 

( )= =





Opt b,h

Ser

Str

V min V argmin Lbh

s.t.               FS 1

                   FS 1

 (3) 

Since the problem is explicitly defined, the 

analytical solution can be easily obtained, as 

shown in Fig. 3—Fig. 3(a) for the serviceability 

constraint and Fig. 3(b) for the strength condition. 

In the figures, the dark regions indicate infeasible 

zones, while the white areas represent safety 

zones. The dot red lines depict the contours of the 

beam volumes. The results indicate a positive 

correlation between beam volume and the width 

and height of the section. The optimal dimensions 

of 0.08 m for the width and 0.72 m for the height 

are identified, as indicated by the star markers in 

the two figures. 

Using the proposed method in Subsection 

2.2, numerical solutions are presented in Figs. 4 

and 5. In Fig. 4, the search domain is represented 

by 100,000 input samples uniformly distributed 

within their space. Based on these samples, the 

strength and serviceability requirements, as well as 
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the objective function, are evaluated and presented 

in Fig. 5. The horizontal axes in Fig. 5 represent 

safety factors, while the vertical axes correspond to 

beam volume. 

 

(a) 

 
(b) 

Fig. 3. Analytical solutions for Example 1: (a) 

contours of strength requirement and volume; (b) 

contours of serviceability requirement and volume 

 

 
Fig. 4. Random simulations of inputs for Example 1 

 

(a) 

 
(b) 

Fig. 5. Results obtained by the proposed 

procedure for Example 1: (a) Volumes estimated 

for all samples; (b) Optimal volume 

In Fig. 5(a), dark points indicate infeasible 

samples that violate the serviceability condition 

(FSSer < 1), whereas green points denote feasible 

samples satisfying FSSer ≥ 1. The search routine is 

applied to identify feasible solutions – those 

satisfying both design conditions and providing 

minimum volume – as highlighted by red markers 

in the figures. Notably, the limit values (FS equal to 
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unity) are indicated by the vertical dashed lines in 

the figure. Fig. 5(b) further refines the results by 

displaying samples closest to the strength limit 

state (i.e., FSStr closest to unity). Ultimately, the 

optimal solution is identified, marked by star 

symbols in the figure. It is observed that the optimal 

solution (i.e., the minimum volume of 0.111 m3 

denoted by the star marker in Fig. 5) exactly 

matches the analytical result in Fig. 3, which 

demonstrates the accuracy of the proposed 

procedure. 

3.2. Example 2 

In Example 1, the objective functions and 

constraint equations are explicitly defined, allowing 

for fast and convenient computations across a 

large set of input samples. In this subsection, a 

two-story frame, shown in Fig. 6, is examined. The 

frame has a height of 6 m and a span of 5 m. The 

columns and beams have rectangular cross-

sections, with widths and heights of 0.2 m × 0.2 m 

and 0.2 m × 0.3 m, respectively. The frame is made 

of concrete with an elastic modulus of 30 GPa and 

subjected to a uniformly distributed load of q = 5 

kN/m acting on the left columns, as illustrated in 

Fig. 6. The optimization problem is to determine the 

optimal widths of the beams (bb) and columns (bc) 

that minimize the frame's weight. The widths are 

assumed to be in the range from 12 cm to 28 cm. 

A maximum top-story drift of 1.5 cm is imposed as 

a constraint for the drift of the frame (x). 

Using uniform distributions, input samples 

are generated within their domains, as shown in 

Fig. 7. It is observed that the samples are 

distributed within the range of 12 cm to 28 cm. The 

RSM is then applied to construct the RSF for 

approximating the drift behaviors. Using the CCD, 

the sample set and corresponding drift values are 

summarized in Table 2. Notably, nine samples are 

generated for the two design variables, as shown 

in the table. The drifts (x) of the frame are analyzed 

for each sample, and the safety factors (defined by 

FS = 1.5/x) are summarized in the final column of 

Table 2. Based on these data, a full quadratic 

polynomial to estimate FS for any new input is 

easily established, as shown in Eq. (4). Fig. 8 

compares the safety factors predicted by Eq. (4) 

with true values obtained directly from the FEM for 

100 random samples. The results indicate that the 

RSF provides highly accurate approximations, as 

demonstrated by a high coefficient of 

determination, R2 of 0.9997. 

 
Fig. 6. The two-story frame in Example 2 

 
Fig. 7. Simulations of random inputs for Example 2 
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Table 2.  CCD sample sets for the RSFs of Example 2 

No bb bc bb
2 bc

2 bb  bc FS 

1 0.1800 0.1800 0.0324 0.0324 0.0324 1.0703 

2 0.1800 0.2200 0.0324 0.0484 0.0396 1.2282 

3 0.2200 0.1800 0.0484 0.0324 0.0396 1.1326 

4 0.2200 0.2200 0.0484 0.0484 0.0484 1.3082 

5 0.1717 0.2000 0.0295 0.0400 0.0343 1.1343 

6 0.2283 0.2000 0.0521 0.0400 0.0457 1.2353 

7 0.2000 0.1717 0.0400 0.0295 0.0343 1.0665 

8 0.2000 0.2283 0.0400 0.0521 0.0457 1.3031 

9 0.2000 0.2000 0.0400 0.0400 0.0400 1.1893 

b c

2 2

b c b c

FS 0.0032 1.7928b 4.1746b

        5.5444b 5.5155b 11.0347b b

= + +

− − +
 (4) 

 
Fig. 8. Validations of RSF in Example 2 

Based on the accurate RSF constructed, the 

proposed optimization procedure is implemented, 

and the results are presented in Fig. 9. Fig. 9(a) 

illustrates the estimated drifts for 100,000 samples, 

where dark markers indicate the cases exceeding 

the 1.5 cm constraint, while green dots represent 

feasible samples. Samples with drifts close to the 

threshold are highlighted by circular markers. It is 

evident that numerous cases result in threshold 

drift; however, the corresponding structural weights 

(depicted by the structure's volume in the vertical 

axis) vary significantly. Specifically, for the same 

drift value, the structure’s volume can range from 

0.82 m³ to 1.29 m³, differing by approximately 1.5 

times. Fig. 9(b) summarizes 100 cases at the limit 

state, with the optimal solution—satisfying the 

constraint while minimizing the frame's weight—

denoted by the star marker. The results indicate 

that the optimal beam and column widths are 12 

cm and 19 cm, respectively. 

 
(a) 

 
(b) 

Fig. 9. Results of Example 2: (a) predicted 

volumes and drifts for all samples; (b) feasible 

solutions at the limit state 

3.3. Example 3 

In this example, a truss structure shown in 

Fig. 10 is analyzed. The truss consists of 23 

members connected at 13 nodes and is subjected 

to six concentrated loads at the upper nodes. The 

optimization problem aims to determine the cross-

sectional areas of the truss members to minimize 
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their total weight. The constraints include limiting 

the maximum deformation to 1/300 of the span 

length and satisfying the strength requirements of 

all members. Mathematically, the optimization 

problem can be formulated by Eq. 5. 

( )

i

23

Opt i i
A

i 1

Ser

Str

V min V argmin L A

s.t.             FS 1

                 FS 1   i 1 23

=

 
= =  

 



 = −



 
(5) 

Here, L and A are the lengths and the cross-

sectional areas of the truss elements. FSSer and 

FSStr denote the safety factors for serviceability and 

strength conditions, respectively, as defined in Eq. 

(6). In Eq. (6), ui represents the nodal 

deformations, while Pr and N correspond to the 

resistance capacities and axial forces in truss bars. 

Ser

i

L / 300
FS min   , i 1 13

u

 
= = − 

 
 (6a) 

= = −r
Str

i

P
FS min             , i 1 23

N
 (6b) 

 
Fig. 10. The truss structure in Example 3 

To simplify the problem, the truss members 

are classified into three groups: lower, upper, and 

bracing members, with corresponding cross-

sectional areas of At, Ac, and Ad, respectively. 

Circular cross-sections are selected for all 

members, and the design follows AISC 360-16, 

including checks for buckling in compression 

members. Further details on truss member design 

using AISC 360-16 can be found in previous 

studies, e.g., [25,26]. 

Using the BBD, the RSM is applied to 

develop RSFs for predicting FSSer and FSStr. The 

accuracy of the RSFs is then validated against the 

true responses of the truss problem, as shown in 

Fig. 11 for 100 random samples. The figures show 

that the RSFs yield responses identical to those of 

the actual system, as evidenced by R2 values of 

unity. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Validations of RSFs for truss example: (a) 

for tension bar; (b) for compression bar; (c) for 

deformation 

The RSFs are then used to predict the 

responses for 1,000,000 samples in the search for 

the optimal solution. Fig. 12 illustrates the 

relationship between safety factors and the 

volumes of all samples. In the figure, feasible 

design solutions (i.e., FS≥1) are represented by 

cyan dots, while approximate limit cases are 
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marked in red. The optimal solution is highlighted 

by the black dot. Based on the estimated optimal 

volume, the cross-sectional areas for lower, upper, 

and diagonal bars are determined as 4.375, 4.588, 

and 1.388 cm2, respectively. The results 

demonstrate that by leveraging the explicit RSFs, 

responses can be efficiently obtained even for a 

large sample set, highlighting the superior 

performance of the proposed method. 

 
Fig. 12. Predictions for all samples in Example 3 

4. Discussions 

Based on the three illustrative examples, it is 

evident that the proposed method can provide 

accurate solutions. The following subsections 

thoroughly examine the effectiveness of the 

proposed procedure. 

4.1. Effects of distribution types 

Normal and uniform distributions, referred to 

as ND and UD, respectively, are commonly used in 

practice for generating random sets of design 

variables. Fig. 13(a) compares the sample 

distributions of the section height in Example 1. 

Notably, a coefficient of variation of 20% is applied 

to ND, and 1 million samples are generated in Fig. 

13(a). The figure shows that while UD produces 

samples uniformly distributed across the input 

domain, ND tends to concentrate samples around 

the mean. 

The proposed optimization routine is then 

applied to predict the responses for the sample set 

generated by ND, with results presented in Fig. 

13(b). It is observed that the best solution from ND-

generated samples is suboptimal compared to that 

from UD, yielding an optimal volume of 0.122 m³ 

versus 0.111 m³ (Figs. 3 and 5). This discrepancy 

arises because the optimal solution in Example 1 

is located at the boundary of the input domain (h = 

0.72 m), whereas ND rarely generates samples 

near the boundaries (Fig. 13(a)). Hence, UD is 

suggested in the practice. 

 
(a) 

 
(b) 

Fig. 13. Effects of distribution types for Example 

1: (a) sample sets for section width; (b) solution 

searched from the normal distributions-based 

samples 

4.2. Effects of formats of RSF 

In practice, linear and quadratic polynomials 

are commonly used to construct RSFs [10,18]. This 

subsection examines the accuracy of RSFs, 

considering linear formulations as well as full and 

reduced quadratic polynomials. 

 Fig. 14 compares 1,000 safety factors 

predicted by three RSF models (FSRSM) – linear 
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(FS(l)), reduced quadratic (FS(2,r)), and full quadratic 

(FS(2,f)) – against the true values (FSFEM) for 

Example 2. The accuracy of the models is 

evaluated using the coefficient of determination 

(R2) reported in the figure. The results show that 

the full quadratic polynomial provides the most 

accurate estimations, as evidenced by an R² value 

of 0.9997. Based on this analysis, the full quadratic 

polynomial model is recommended for structural 

response predictions. 

 
Fig. 14. Effects of RSFs for Example 1 

4.3. Evaluations on sample size and computing 

time  

The computational time for optimization 

problems is affected by the size of the sample set, 

especially when constraints are defined implicitly, 

such as safety factors in Examples 2 and 3. This 

section examines the impact of sample size on 

computational time in the proposed procedure for 

Example 3. 

To assess the impact of sample size on the 

optimization procedure, ten different sample sizes 

ranging from 100,000 to 1 million are considered, 

and the corresponding optimal volumes are 

summarized in Fig. 15. The computational time (in 

milliseconds, (using a Dell laptop with 16 GB RAM 

and one Intel Core i7 CPU @ 3.0 GHz)) required 

for predicting and identifying the optimal solution is 

also indicated by blue text in the figure. Notably, 

Example 3 is completed within two seconds, even 

for the largest sample size of 1 million. 

Interestingly, the computation time increases by 

only about a factor of two, even when the sample 

size increases tenfold, thanks to the exclusive use 

of explicit functions in the proposed procedure. In 

general, larger sample sizes result in smaller 

optimized volumes. However, the variation in 

optimal volume remains minor across the ten 

sample sizes examined. 

 
Fig. 15. Effects of sample sizes on Example 3 

5. Conclusion 

In this study, a computationally efficient 

procedure is proposed to address the high 

computational cost of structural optimization. The 

response surface method is employed to develop 

explicit functions that approximate the original 

implicit constraints. A random sampling strategy is 

utilized to represent the input domains, and the 

response surface functions are then used to 

formulate the optimization problem explicitly. This 

allows the optimal solution to be efficiently 

identified within the feasible design space. 

The accuracy of the proposed RSM-based 

optimization is validated against analytical 

solutions in Example 1, demonstrating its reliability. 

Across three examples, high coefficients of 

determination confirm the precision of the RSM in 

approximating computational evaluations of 

structural problems. Among the investigated 

models, the full quadratic polynomial consistently 

provides the best approximation and is 

recommended for practical applications. 
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Furthermore, the study reveals that uniform 

sampling yields superior optimization results 

compared to normal sampling. This is because the 

uniform distribution ensures better coverage of the 

design space, making it particularly effective when 

the optimal solution lies near the domain 

boundaries. 

A key advantage of the proposed procedure 

is its computational efficiency. Even when 

evaluating up to a million samples, the optimization 

process is completed in just seconds. This 

highlights the robustness and practicality of the 

method for handling complex structural 

optimization problems, making it a valuable tool for 

engineering applications. 
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