Journal of Science and Transport Technology Vol. 5 No. 1, 40-60

IJCUH\MLQFSCENCE

AND TRANSPORT TEGHHOLOGY

Journal of Science and Transport Technology
Journal homepage: https://jstt.vn/index.php/en

Article info
Type of article:
Original research paper

DOI:
https://doi.org/10.58845/jstt.utt.2

025.en.5.1.40-60

“Corresponding author:
Email address:

tubt@utt.edu.vn

Received: 02/01/2025
Received in Revised Form:
28/02/2025

Accepted: 10/03/2025

An analytical approach for nonlinear thermo-
mechanical buckling behavior of Porous FG-

GPLRC circular plates and spherical caps

Nguyen Thi Phuong™?, Vu Hoai Nam3, Bui Tien Tu45"

'"Mechanics of Advanced Materials and Structures, Institute for Advanced
Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam;
nguyenthiphuong@tdtu.edu.vn

2Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City,
Vietnam

SFaculty of Civil Engineering, University of Transport Technology, Hanoi,
Vietnam

4Institute of Transport Technology, University of Transport Technology, Hanoi,
Vietnam

SFaculty of Fundamental Science for Engineering, University of Transport
Technology, Hanoi, Vietnam

Abstract: This paper presents an analytical approach for the nonlinear thermo-
mechanical stability analysis of porous functionally graded graphene platelets
reinforced composite (Pr-FG-GPLRC) circular plates (CPs) and shallow
spherical caps (SCs) resting on nonlinear elastic foundation. Pr-FG-GPLRC is
considered to have three different types of foam distribution. The applied load
includes uniform external pressure and uniform thermal loads. The governing
formulations are established by the first-order shear deformation theory
(FSDT) and the von Karman geometrical nonlinearities. The deformation
compatibility equations are established and the stress function is introduced to
reduce the equilibrium equation system into three equations with three function
variables (deflection, rotation, and stress function). The chosen solution form
approximately satisfies the clamped boundary conditions and the Ritz energy
method is applied to obtain the equilibrium equation system in nonlinear
algebraic form. The explicit expressions of buckling loads and thermo-
mechanical post-buckling curves can be obtained. Numerical investigations
are performed to discuss the remarkable effects of nonlinear foundation
stiffness, material, and geometrical properties imperfection on the nonlinear
thermo-mechanical buckling behavior and load-carrying capacity of CPs and
SCs.

Keywords: First-order shear deformation theory; Pr-FG-GPLRC; Shallow
spherical caps; Ritz energy method; Nonlinear buckling and post-buckling;
Nonlinear elastic foundation.

1. Introduction

The outstanding advantages in terms of load-
bearing capacity, aesthetics, and expanding usable

space of shallow spherical cap structures make
them increasingly popular in engineering designs
such as industrial and construction works. The
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combination of this structure with composite
materials has attracted the attention of many
domestic and foreign researchers on thermo-
mechanical behavior.

Functionally graded materials (FGM) are
typical advanced composite materials that combine
the beneficial properties of two-component
materials, ceramic and metal while overcoming the
delamination disadvantages of classical composite
materials. FGM has a wide range of applications in
engineering design. FGM plate and shell structures
have achieved many important research results on
static and dynamic stability. The analysis of
thermo-mechanical behavior of FGM spherical
caps based on classical shell theory and first-order
shear deformation theory was carried out by
Shahsiah et al. [1] with the problem of nonlinear
static instability; Boroujerdy and Eslami [2, 3] with
the influence of piezoelectric layers on the
nonlinear axisymmetric behavior; Moosaie and
Panahi-Kalus [4] with thermal stress and Phuong
et al. [5] with nonlinear vibration. In Vietnam, the
FGM spherical caps with material properties
dependent on temperature, axisymmetric
deformation, considering geometric nonlinearity
and initial imperfections, placed on elastic
foundations were studied by Duc et al. [6], Bich et
al. [7], Tung et al. [8, 9] with explicit expressions of
critical loads and load-deflection relationships
using the Galerkin method.

Functionally graded graphene platelets
reinforced composite (FG-GPLRC) is the next
potential material with outstanding mechanical
properties that are being studied for application in
important plate and shell structures. Many types of
FG-GPLRC plate and shell structures have been
studied so far in bending, buckling, and vibration
problems, such as rectangular plates [10, 11],
irregular quadrilateral plates [12], cylindrical panels
[13], double-curvature shells [14] and annular
plates [15, 16]. The number of publications on FG-
GPLRC CP and SC structures is still insufficient
due to their mathematical complexity. Ly et al. [17]
used the high-order shear deformation theory and
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the Ritz method to analyze the nonlinear thermo-
mechanical stability of sandwich FG-GPLRC CPs
and SCs. Also using the Ritz method to solve the
problem, Phuong et al. [18] analyzed the static
stability of FG-GPLRC CPs and SCs placed on a
nonlinear elastic foundation. In addition, Nam et al.
[19] used the Rizt method to analyze the nonlinear
thermo-mechanical stability of the FG-GPLRC CPs
and SCs stiffened by spiderweb stiffeners. Liu et al.
[20] analyzed the free vibration and bending of FG-
GPLRC spherical shells using three-dimensional
elasticity solutions.

Pr-FG-GPLRC with foam sizes distributed
according to certain rules in the direction of
structural thickness has many advantages in terms
of sound insulation and heat insulation [21-24].
However, studies on the thermo-mechanical
behavior of Pr-FG-GPLRC CPs and SCs are still
limited.

This is the motivation for the researcher to
conduct the first studies on the nonlinear stability of
Pr-FG-GPLRC CP and SC structures using the
stress function approach combined with the Ritz
method in this study to contribute to the
improvement of the thermo-mechanical behavior of
this potential structure.

2. Model of Pr-FG-GPLRC circular plates and
shallow spherical caps on nonlinear elastic
foundation

Fig. 1 shows the FG-GPLRC CPs and SCs
placed on a nonlinear elastic foundation with three

coefficients K,, K,, K,. The geometrical

parameters of the caps include thickness h, main
radius R, and base radius a. The caps are
subjected to uniformly distributed external pressure
q and uniformly distributed thermal load AT either
in combination or separately. The deformation of
the caps is assumed to be axisymmetric.

The Pr-FG-GPLRC is designed with a
uniform distribution of GPLs and three different
distributions of foam (PF-U, PF-X, and PF-O). The

Young modulus E(z) and mass density p(z) of
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the structure are determined corresponding to the
three types of foam as follows

eE PF-U

s?

E(z)=<E, —e.E, cos (%Zj

E, -e,E, {1 —cos (%ZH PF-X

PF-O (1)

Py PF-U

p(2)=1ps —Lops COS(%ZJ,

P. — APy [1 - cos[%zﬂ, PF-X

where E, and p, are respectively the Young

modulus and mass density of the Pr-FG-GPLRC
with zero porosity; e,, e, and e, are foam

PF-O (2)

coefficients, p,, po and p, are mass density

coefficients.
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The extended Halpin-Tsai model is used to
determine E_, as
_ 3(1+6,8, Ve )
*o8(1-8,Vg) "

5(1+ 6,8, Ve, )
8(1-5,v) ~ O

where
B (EGF/Em)—1 B (EG,/Em)—1

1_(EGr/Em)+C1’ 2_(EGr/Em)+C2,

aGr _ bGr
SO
w
VGr — Gr ,
Wy, +(par/Pm)(1- We, ) ®)

with V;, and W, are the volume fraction and

(4)

mass fraction, respectively of graphene platelets
(GPLs); E,, and E, are the elastic modulus of the

matrix and GPLs, respectively; a; , b, and tg,

are the length, width, and thickness of GPLs,
respectively; p,, and p; are the densities of the

matrix and GPLs, respectively.

Fig. 1. Classification of Pr-FG-GPLRC and model of CPs and SCs

The typical mechanical property of Pr-FG-

GPLRC are expressed by [22,23]
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=) [ote]” o

E Ps

By substituting Eqg. (1) and Eq. (2) into Eq.
(6), the relationship between the foam coefficients
and mass density coefficients of Pr-FG-GPLRC
can be obtained as

= Ay, PF-U

27Seu
2A731—eocos(n—zj=1 A cos( ] PF-O
h h
(7)

2.7\3/1 —ey [1 —Ccos (n—zﬂ

h
:1—%{1—003[75—2}},

h

From Eq. (7), the mass of each type of pr-

PF-X

FG-GPLRC structure with different foam
distributions is equal, leading to
h/2
[ 271-eg cos( jdz
o h
h/2 (8)
= | 2%e,dz= | 2731-e,|1-cos dz.
I I \/ { ( h ﬂ
The Poisson's ratio v and thermal

expansiono of the Pr-FG-GPLRC are constant
and independent of the foams, determined by the
rule of mixture, as

=V (1= Var ) + Ve Ve

= am (1 - VGr ) + OLGrVGr' (9)

3. Formulation and solving method

The governing equations and resulting
expressions are established based on FSDT
applied to Pr-FG-GPLRC SC placed on a nonlinear
elastic foundation subjected to mechanical and
thermal loads, the results for the circular plate are
obtained correspondingly when the main radius

R=w.
N, Ain Ay, By By 8? @
N, _ Ay Ap By By 83 _ D
M, B,y By, Dy Dy, Xr @
Me B,y B, D, D, Xo o
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The relationship between the displacement
components at the point with coordinate z
(U,v,w) and at the corresponding point at the

middle surface (u,v,w) of the shell in the ¢,6 and

Z directions, respectively, is expressed as
u(r,z)=u()+v(rz

v(r,z) =0,

w(r,z)=w(r)+w (r),

where vy (r) is the rotation of the normal to the mid-

(10)

surface and w’ (r) is the geometrical imperfection

of the shell.
The strain components of the shell at any
point are

€, el +2zy,
€0 r =180+ ZYy tr (11)
8[2 \V + W,I’
in which €°, &) and y,, y, are strains at the mid-
surface and curvatures, respectively, are
determined as
2
&
0 1 1
€q —-W—+U-
= r (12)
Xr v,
Xeo 1
\V_
r

The Hooke law applies in this case as follows

.| _E@ [1 v][e
o, _1—v2{v ‘I} €,
]

AT

1-v
cSI’Z = E(Z) 8I‘Z'
2(1+v)
The expression of internal forces of the
structures obtained

(13)

AT, Q =KH, (v+w,), (14)
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in which
h
2
(H;A;ByDy ) = [ Q;(112,2° )z,
u
h
2
= j (Q,a+Qya)dz,
3
h
2
o, = I (Qy0 + Q, 0. )zdz,
.
h
2
D, = j (Q,a + Q0 )z,
u
h
? E(z
e 2[v(2) | )+ 1]
2
(z
Q']'] Q22

E
1-[v(z)]"
E(z)
—
1—[\/(2)]
The shear correction factor is chosen
according to the common value K, =5/6. The

Q, =Q, = V(Z)

e, &) expression is derived from Eq. (14), as

. . . . . (15)
|:A11Nr +Bix, +Bigxe + ANy —ATO,

AN, + B, +Booxy + AN, —ATO,, ’

where
. A . -A
A11 — 22 ,A12 — 12 ,
A11A22 - A12A21 A11A22 - A12A21
B* _ (A1sz1 B AzzB11) _ (A12822 - AzzB12)
" A11A22 - A12A21 * A11A22 - A12A21
. -A . A
A21 _ 21 1A22 — 11 ,
A11A22 - A12A21 A11A22 - A12A21
B — (A11Bz1 - A21B11) _ (A11Bzz - A21B12)
21 T sHop — ’
A12A21 - A11A22 A12A21 - A11A22
O = APy —Ap®y DO = Ay @y — APy
I 119 :
A11A22 - A12A21 A11A22 - A12A21

By substituting Eq. (15) into Eq. (14), the
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expression M.,M, can be obtained as

{C;Nr +D;,x, +D,x, +Ci,N, —AT®,, (16)
C,N. +D, 3, +Dyyo +CypN, —ATD,, |

where

C,,=B,A,, +B,A,,,C., =B, A, +B,A,,

D,, =B, B, +B,B,, +D,,,

D,, =B, B}, +B,,B,, +D,,,

C, =B, A, +B,A,.C, =B, A, +B,A,,
D,,=B,B;,+B,,B,, +D,,,

Dy, =B, B}, +B,,By, + Dy,

®, =B, ®, +B,D,, +D,,

®,, =B,®, +B,,®, +®

207

The strain compatibility equation of an
imperfect spherical cap is expressed as
Yoo e 20, = L (tw, +w,)
r - Tr 7 RrY :
(17)

* * 1
+(w‘rw'rr +W W, W W )F

The stress function f(r) is defined to satisfy

the following conditions
f

N, :'Tr, N,=f . (18)

Considering the symmetry across the mid-
surface of the Pr-FG-GPLRC, substituting Eq. (18)
into Eqg. (15), and then the resulting equations are
substituted into Eq. (17), the compatibility equation

is obtained
frrr (A;2 - A;1 - 2'A‘*ZZ)

A22frrrr r

FAL FAL 1(w

o T T w 19
r? rP Rl " (19)

* * 1
+ (W,rw,rr W W W W, )F

Substituting Eq. (18) into Eq. (16) results in

frC;1
M =—+
r (20)
Dy, — AT®,, + Dy, + C12frr’
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M, = f.Ca +
r
D;1Xr - AT(D;G + D;2Xe + C;2f,rr
The Pr-FG-GPLRC spherical cap is
considered to be axisymmetric deformed and
clamped at the boundary edge. The boundary

conditions at the center (r=0) and the edge

(r=a) are expressed as
r=0: y=0, f.=Nr=0, 01
r=a: w=0, y=0, N =Q,, 1)

where Q, is compressive stress due to the

clamped and immovable edge.
Based on boundary

approximate solutions for

component and rotation are

r(a®-r?)
N

conditions  (21),
the displacement

(22)
@-r?) . @=r?)
WZWa—4,W ZW a—4

where W and ¥ are maximal displacement
constituent and rotaton, W  is maximal
imperfection.

Substituting Eq. (22) into Eq. (19), then some
mathematical transformations are applied to obtain

the stress function, as
f =Y +Y,r+Y,r’ +Y,r2 +Y,r,
where
Y, =Y, W?+Y,WW",
Y, = Y, W2 + Y,,WW" +Y,,W,
Y, = Y, W2 + Y,,WW" +Y,W,

(23)

Y, =0,
Y, = Yo, W2 + Y, ,WW' +Y,W +Q,,
S E—
a® (—7A, +TAL, —49A,, +A},)
16

7 (<TA;, +TA;, —49A,, + A),)

|
a®(-5A;, +5A1, —25A;, + A},)

Y, - 32

a®(-5A,, +5A], —25A,, + A}, )’
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v - 4

® R(-5A, +5A}, —25A, + A, )a*’
v _ 8

*(-3AL +3A, -9A, + A )at
v - 16

¥ (-3A+3A, -9A,, +A] )a*’
v __ 4

P R(-3A,+3A;,-9A, +A, )a*’

__1 8
Y@ (<AL +TAL - 49A,, + A,

16
(-5A; +5A;, —25A;, + AY,)

8
+ * * * * b
(-3A% +3A%, —9A,, + A, )]
4
Y52 = " " " "
R(-3A +3A;, —9A;, + A;,)
~ 4
R(-5A}, +5A;, —25A;, + A, )’
1 16
Y53 =" " " - "
a®| (-7A, +TAL, —49A,, + A
32

(-5A; +5A], ~25A;, + A;,)

16
+ * * * * )
(-3A, +3A%, —9A,, +A,)

and Q, is determined by the average end-

shortening displacement condition A=0 at the
edge, as

2t a
A=- u rdrdd =0.
7 | 1 (24)
leading to
1
Q, = m[_(wzsa“ +6U @’ +12U,, )W

-(3U,@° +4U,a* +6U,@° +12U,, )W?

(25)
~(3a°U,, +4U,,a* + 62Uy, + 12U, )WW’

~(6Uy@® +12U,, ) ¥ ~12U,AT |

where
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— 7a8A12Y11 + 8A22A11 — 8A21A12 _aSYﬂAzz

e _aBAzzAﬂ + a8'6‘21'6‘12 ,
U, = 7a8Y12A12 +168A22A11 _1§A21A12 —a8A22Y12 ,
—a A22A11 +a A21A12
U21 _ 536Y21A12 _12A11A22 +1§A21A12 _36A22Y21 ’
—a A22A11 +a A21A12
U22 — 536Y22A12 _ 326A11A22 + 3§A21A12 _a6A22Y22 ’
—a' A A, Ha ApA,,
U, = 5A12Y23 _A22Y23 _ J ,
_A22A11 + A21A12 a'R
u,, = (_A22Y31 +3Y3A,, ) —(8A AL —ARA; ),
(A12A21 - A22A11)
U32 _ (6Y32A12 B 2A22Y32)+ 32(A11A22 — A21A12),
(_2A11A22 + 2A12A21)
U = 3A12Y33 - A22Y33 2A11A22 _2A21A12

PALAL-ALA, @ (ALA, -ALAL)R’

3 2A,, (3821 +B,, ) -6A,B,,-2A,B,,

- a’(-2A,A,, +2A,A,))

_ ALY — ALY, _ ALY, — ALY,

* A21A12 - A22A11 e A21A12 _A22A11 ’
— A12Y52 _A22Y52 1

U34

U

U43 - +=,
A21A12 _A22A11 R
U = Ay + Ay _ AP, —ALD,
“UALAL-ALALT T ALAL —ALA,,
2172 T MMM 2172 T MM
U. = ZB11A22 + 2A12 (_821 B Bzz)"" ZB12A22
46 — .

a(—2A, A, +2ALA,))

The potential energy equation of the
structure is represented by

T CERUPARCERYS
0
+Q, (w+w, ) Jrdr - {zn]ﬂ. qurdr -
a ° (26)
—n“K1WK2 (w’” + ;w,, j +K,w? } wrdr} _
0

a

ATr[ (@8] + Dy, +D 15 + Dy, )rdr.

rr
0

Substituting Egs. (15), (16), (18), (22), (23),
and (25) to the potential energy, finally, applying the
Ritz method, as follows
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OUrgai oUs
oa _(, and ~—Toa =0,
o oW @7)

The expression ¥ can be solved from the
first expression of Eq. (27), as
¥ =-M,W? + M,WW" +M,W +M,AT. (28)

where the coefficients M; (i=1,...,4) are presented

in Appendix.

Substituting Eq. (28) into the second
expression of Eq. (27) yields the equation of the
relationship between the loads and the deflection
amplitude as follows

(C,=NK;)W?* +(C,W" +C,)W?
+[C4 (W) +CW +CAT+C, -NK,  (29)
-N;K, W + C,ATW' + C,AT —N,q=0.
Eq. (29) is used to analyze the nonlinear
thermo-mechanical buckling behavior of Pr-FG-

GPLRC shallow spherical caps and circular plates.
The post-buckling curves W /h-q and

W /h—AT are derived from Eq. (29)
q= Ni[(q —KN,)W? +(C,W +C, ) W?

4
+(c4(w*)2 L C,W +CAT+C, (30)
KN, —K,N; )W +C,ATW' + CoAT |,

1

AT =- -
CW+C,W +C,4

[(Cy—KN)W?

+(C2W* +C, )W? +(C4 (W*)2 +C W’ (31)
+C, —KN, =K,N, )W -N,q].
where the coefficients Cj(j=1..,9) and
N (k=1...,4) are presented in Appendix.
The thermal critical buckling loads of perfect
circular plates (W' =0,R— ) are obtained by

applying W — 0 in Eq. (31)
AT =_C7 -K\N, —K,N, _
cr C6

(32)

4. Numerical examples
Table 1 illustrates the comparison of the
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thermal critical buckling loads AT, (K) of the

perfect sandwich FG-GPLRC CPs with different
coefficients of porosity in the study of Nam et al.
[25] with the results of the present method. The
results clearly show that the reliability of the
present method is confirmed.

The numerical investigation is carried out to
evaluate the thermo-mechanical behavior of Pr-
FG-GPLRC CPs and SCs with different
geometrical and foundation parameters. The Pr-
FG-GPLRC is composed of copper matrix and
GPLs frame with parameters taken from Wang et
al. [26].

The critical thermal buckling load of perfect
Pr-FG-GPLRC circular plates is investigated in
Table 2. The effects of material parameters
including foam coefficient, GPLs mass fraction,
and foam distribution type are considered. The
investigation results clearly show that when the
foam coefficient increases, the critical thermal
buckling load of PF-O circular plates increases, on
the contrary, the critical thermal buckling load of
PF-X circular plates decreases. In particular, the
critical thermal buckling load of PF-U circular plates
remains almost unchanged with increasing foam
coefficient. With the same foam coefficient value,
the mass fraction of GPLs increases, causing the
critical thermal buckling load of three types of
circular plates to increase. The foam coefficient
and mass fraction of GPLs are taken as the same
values to compare the thermal buckling load of
plates with three different foam
distributions. The PF-O distribution type showed
the highest value, while the PF-X showed the
lowest value.

circular

Figs. 2a, and b show the comparison of the
thermo-mechanical buckling curves of different
spherical caps by three types of foam distributions,
PF-0O, PF-X, and PF-U. The results show that the
curve of the PF-O foam distribution type is the
highest and that of the PF-X foam distribution type
is the lowest. However, the difference between the

Nguyen et al

curves is clearly shown in the case of q—W /h

and is insignificant in the case of AT—-W /h. The
influence of foam coefficient on the thermo-
mechanical post-buckling curves of the Pr-FG-
GPLRC spherical caps is investigated in Figs. 2c
and d. It can be observed that the increase of foam
coefficient causes the g-W /h curves to be

lowered, whereas the AT -W/h curves are
raised. For both cases, the mechanical and thermal
load capacity after buckling of the Pr-FG-GPLRC
spherical caps increases sharply as the mass
fraction of GPLs increases (Figs. 2e and f).

The geometric ratio a/h shows a large
influence on the post-buckling mechanical load
capacity of the spherical cap in Fig. 3a. The values
of the geometric ratio a/h and the post-buckling
mechanical load capacity of the spherical cap are
opposite. The effect of imperfections on the post-
buckling curves of the spherical caps is studied in
Fig. 3b. In the small deflection region, the g—W /h

curves are lower with larger imperfections and this
order is reversed in the large deflection region after
passing through an intersection point of these
curves.

The remarkable effects of the foundation
parameters on the post-buckling mechanical and
thermal behavior of the Pr-FG-GPLRC spherical
caps can be obtained in Fig. 4. As the linear

foundation parameters increase, both the
q-W/h and AT-W/h curves of the spherical
caps are raised higher. Another important

observation obtained in Fig. 4a is that increasing
the linear foundation parameters also clearly
reduces the snap-through phenomenon. In
addition, the influence of nonlinear foundation
parameters is considered in Figs. 4c and d for the
cases of hard and soft foundations. It is clear that
a steady upward trend is shown in the post-
buckling curves for hard foundations. In contrast, a
steady downward trend is shown in the post-
buckling curves for soft foundations.
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Table 1. Comparison of the critical thermal buckling loads AT, (K) of the perfect sandwich FG-GPLRC

CPs (UD-PC-UD) with other results [25]

h=0.027m,a = 35h,q = OMPa,K, =8MN/m?® K, = 0.2MN/m,K, = OMN/m”,

R=o0,W =0,W;, =2%

Deviation
€ Present Nam et al. [25]
(%)
0.2 68.9535 69.3236 0.5367
0.4 72.0065 72.5838 0.8017
0.6 74.2311 75.3874 1.5577
0.8 76.7919 77.5883 2.3701

Table 2. Effects of foam coefficient, GPLs mass fraction, and foam distribution type on the critical
thermal buckling load AT, (K) of perfect Pr-FG-GPLRC CPs

(h=0.015m,a =35h,q =0MPa,K, = OMN/m?® K, =OMN/m,K, =OMN/m®,R =, W’ =0)

N W, (%) PF-U PF-X PF-O
2 25.43818927 24.14717231 26.18305686
0.1 4 28.09727090 26.67116372 28.92014047
6 30.61747114 29.06350250 31.51399238
2 25.43820709 21.10673482 28.02415919
0.3 4 28.09733677 23.31263916 30.95361612
6 30.61754302 25.40359851 33.73020175
2 25.43807384 17.40913970 30.55177877
0.5 4 28.09729979 19.22865662 33.74587558
6 30.61741646 20.95280862 36.77294942
12 P 250 ——— PF-0O
a/h =45 h—0015m,  Spherical caps
R=75m e;=05, ) SN Spherical caps — —PF-X
e, =08112, ¢, =0.6711, ; S IR— PF-U
05 | Wo=2%W=0 ! 3 ,f,’, 200 \\\\
. 7, S
K, = 100MN/m’, 7 N ah =45, h = 0.01m, R - Sm
K,=20MN/m, Ry 150 | N ep=05,e,=08112 e,=06711
- K= OMN/m? e - D W5 = 4%, g = OMPa, W5 =0
e ey % D
=2 T —ur-k | R = AN
= = AT = 250K AT < o0 b ™
J 2% .2 [
.z - =T
==%_ -~ ~
B a=sfmEoTT —L:PF-0 so b K= OMN/m, X
PLad ——2:PFX K;= OMN/m, X
r ——3:PR-U K;= OMN/m*
2 . 0 . . .
0 1 2 3 4 2 -L5 -1 05 0
Wik Wih
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Fig. 3. Effects of geometrical properties on the mechanical post-buckling curves of Pr-FG-GPLRC SCs
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Fig. 4. Effects of foundation parameters on the thermo-mechanical post-buckling curves of Pr-FG-
GPLRC SCs

5. Concluding remarks

This paper presents the analysis of the
buckling and post-buckling behavior of Pr-FG-
GPLRC circular plate and spherical cap structures
subjected to external pressure loads and thermal
loads distributed uniformly along the thickness of
the shell. With the approach from the stress
function, according to FSDT, the Rizt method is
used. Some important results are as follows.

1) The post-buckling load capacity increases
significantly and the snap-through strength
decreases significantly as the mass fraction
of GPLs increases.

2) The post-buckling load capacity of the PF-O
spherical cap is the highest, while that of the
PF-X spherical cap is the lowest.

3) The post-buckling curve of Pr-FG-GPLRC
circular plates and spherical caps increases
and the snap-through  phenomenon
decreases as the stiffness of the elastic
foundation increases.
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Gia = (42Y32Y11 +42Y,,Y,, )( 1

AL +AL, AL .
+50Y,,Y,, | —&—12 L L AD |,
21 22( 5 25 ZZJ
Guas = 2Y5, Yy, (5AL +5AL, +21A7, + AL ) + 2Y,, Yy, (BA;, +5A, ++25A;, + Ay,),

Gias =2Y,, Y, (5A, +5A, +21A5, + A ) + Y3, (5A;, +5A;, +25A,, +Al,),
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Guas = 2Y53 Yy, (5A, +5A, + 21A5, + AL ) +2Y,,Y,5 (BA,, +5A;, +25A,, + AL,
Y

Giye = ——31(21B}, +Bj, + Cy + 21C;, +7B;, + 7C,, +3C;, + 3B;,),
a

Gy = Y5 (+5A;, +5A], +25A;, + A;,),

G,y = —Y—f(ss; +B}, +3C;, +21C;, +21B,, + 7B,, + C,, + 7C;, ),
a

Grur = 2Y5 Yoy (4A5 +4A,, +TA, + AL ) +2Y,, Yy, (4A5, +4A5, +15A, + A, ),

G142 = (2Y11Y53 + 2Y12Y51 + 2Y21Y32 + 2Y22Y31 )A1*1 + (8Y11Y53 + 8Y12Y51 + 8Y21Y32 + 8Y22Y31 )A:2

15Y,,Y,, 15Y,,Y, ) .-
2132 + 22 " 31 A22’
7 7

ot 4;\12 Ay j + 30(Y21Y33 + Y3 Y4 )[A;z + P ’:\151 s ],

Grus = 2Y53 Yoy (4A5, +4AL, + TAL, + AL )+ 2Y,,Y,, (4A;, +4A, +15A,, + AL,

+(8Y,,Yss +8Y,, Y5, +8Y,,Y,, +8Y,,Y,, )A;1 +14 (Y“Y53 +Y,, Yy, +

G143 = 14Y52Y11 (A;z +

TA,, +4A, + A, +4A,
7

4A., +4A, +15A , + A,
(3145 — 14Y52Y12 { 12 211 5 22 11 J,

j +30(Y,, a3 + Yy Yoy )E

1

Gy = a—g[vﬂ (7B, +Cy, +7Cy, +By, + 7By, + Cy, +By, + 7C,, )@

-Y,, (1 5C;, +5C,, + C,, +B,, + 3B}, + 15B,, + 5B, + 3C,, )J
G147 = _Y11 (q):r + 7(1);9)! G148 = 2Y11 (A:1 + 4A:2 + 4A;1 + 7A;2)’

. . . .\ 16K _H
Guao = 2Y54 Vs (AL +4AL, +4A,, +15A,, )+ ——4,

G1410 = f(cm +By, +By+7B, + 7By, + C11 + 7C12 + 7C22)
_ Yi2 Y2

a3

Giai =Y (q):r + 7@:9), Giaz =2Y, (A:1 + 4A;2 + 4A;1 + 7A;2)!

(Coi +5C;, +3B;, +Bi, +15B,, + 5B,, +15C}, + 3C}, ),

-15Y. . C..+B; C. +B. C..+B; . 8K H
G1413 — a3 23 [012 + 2115 12 + 22 3 22 + 11 5 11 +B21)_ a7 44’
G =ﬂ G, =2Y.Y. (3A* +A . +5A. +3A,; )+Y2 (+3A* +3A. +9A. +A*)
1414 a6 @ st 51721 21 11 22 12 31 21 12 22 1)

3A.. + A, +3A, \ 3A.. + A +3A, \
G5, =10V, Y, ( = ; 2+ Azzj +10Y5,Y,, ( 2 5;1 12+ Azz}

9

3A,. +3A, + A \
— 11j+10\(51\(23[A22+

3A,, +3A;, + A;1]
9 3

+18Y,,Y,, (3A21 #3R, H A A;ZJ,

Giss =10Y,, Y5, (A;z + Ay + 3+ Ay j

5

+18Y,,Y,, (A;Z +

57



JSTT 2025, 5 (1), 40-60 Nguyen et al

Giss = 2Ys3 Yy (3A5 +5A;, +3A%, + AL )+ Y5, (A5, +3AL, +9A,, +Aj,),
A, +3A, AL | ALZ]

5

3Ay + 39/;12 A LA J

G155 = (1 0Y52Y22 +1 0Y53Y23 )[

+18Y32Y33(
Gies = f(c21 +B;, +5C,, +B}, + 5B, + 5C}, +58;, + C},)
—Y—3;(c;;1 +B;, +3C,, + 3B}, +3C}, + 9B}, + 3B}, + 9C}, ),
a

G157 ==Yy (cD:r + 5(1);9), G158 = 2Y21 (3A;1 + 3A;2 + 5A;2 + A;1 )!

3A,, +3A + A, .\

A
5 ZZJ . * * *
+ 9Y323 A22 + A‘11 + A12 + A21 _ 32K56H44 ,
3 3 a

10Y,,Y,, (

G =
159
a°

G1510 = f(cﬂ + B12 + 5022 + 5821 +5BZZ + 5C12 + C11 + B11)

- %(B;2 +Cy, +3B;,+9B,, + 3C;, +9C}, + 3C;, + 3B}, ),

G1511 = _Yzz (cD:r + 5®:e)’ G1512 = 2Y22 (A; + 3A:2 + 3A;1 + 5A;2 )7
G1513 = 2Y23 (A:1 + 3A;2 + 3A;1 + 5A;2), G1514 = _st ((D;r + 5®:e)1
G1515 = E(Bzz + C:1 + 5C:2 + C;1 + 50;2 + SB;2 + B;1 +5B;1)

a
16K H,,

a®

_3\(—333[%44012 +C;, +%+B*22 +C,, +B;,+3B;, )+
a

9D}, +3D;, +3D; +D;, 2K .H,,
a’° a’

Gie = 2(Y31Y53 + Y32Y51)(2A;1 + 2A;2 + 3A;2 + A:1)’G163 = 2(Y31Y52 + Y33Y51)(2A;1 + 2A:2 + 3A;2 + A:1)’

Gios =2Y3, Yss (2A;1 +2A5, +3A5, + A )’Gws =2(Yy,Ys, + Y33Y53)(2A;1 +2A5, + AL +3A, )’

Y

Gigs =—(3C;, +Cyy + 4B}, +3C;, + By, + 3B}, +3B;, + C;,)
a

G1516 = ) G161 = 2Y31Y51 (2A;1 + 2A:2 + 3A;2 + A;1)’

- 81_21(812 +Cy +By, +Cyy +3B,,+3C,, + 3B, + 3C”)’

Gier =Y (q);r + 3®;6)’G168 =2Y;, (ZA;1 + 2A;2 + 3A;2 + A;1)’
. . ..\ 16K .H
G169 = 2Y33Y52 (2A21 + 2A12 + 3A22 + A11 ) + —444,

C:"16‘10 = f(BC‘IZ + B12 + C21 + 3C22 + B11 +3821 + C11 + 3822)

Y . . N « N * * *
-5 (Bl +C +3C;, + C;, 438, + 3B;, + B3, +3C;,).

Gig =Y (q);r + 3CD:9)’G1612 =2Y,, (2A;1 + 2A;2 + 3A;2 + A;1)’G1613 =2Y,, (2A;1 + 2A:2 + 3A;2 + A;1 )’
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Gisrs = Yas (CD;r + 3(1);9)’

G1615 = f(cﬂ + B12 + 3C12 + 3822 + C21 + 3C22 +B11 + 3B21)

8KsH44
a’

’ a_533(_3c11 -B,;, -3C;; -G, -B;, -C, - 3B, - 3821) B

1 . . 1 . . . . . . . .
Giots = ;(3®2r + q)29)1G1617 = a_s(_3C12 =3B, —3C;; 3By =By, —Cy =By, - sz)’
-6D,, -4D,, -4D,, -2D,, K.H . . . .
Giots = = 12a4 = 24—t Gy =Yg (A21 +Ap+ A, + A11)’

Girp = 2Y5 Yes (Ap + Al + Ay + AL ), Gpg =24, Yo, (Ay + AL + AL, +AY),
Girs = Y& (A + AL + AL, + AL, Girs = 2Y5, Y3 Ay + Al + AL, + A,
G :%(B; 4B}, +Cj, +B)y +B}, +C}y+C}, +Cyy), Gppy =Y () + @),
Gurs = 2Y5 (A + AL + A +AL), G = Y5 (AL + AL +A, +AL),

Girig =2 By + Cia +Bla + oy + B + Cyy B3y +Cla), Gy =Yoo (@, + 03,

Gi712 = 2Y (A;1 + AL+ A, + A;1)1 G713 =2, (A;1 + A, A, + A;1)’

Giria = Y5 (q)w + (D1e)’ Giis = f(czz +By; +Cp, +By +Ci 4By +Cy + B12)’
1, .« . . D, +D,, +D;, +D;

Girie = _g(q)zr + (Dze)’ Gipiy = —@y — @y, Gyppg =— 22a2 =,

Girie = 5(022 +By; +B,y +C 4B, +Cpp +Byy + 021)’ Gl = A + Ay +Au + A,
1 1 1 1 1 1 1

T1 = ﬁGmaM + EGmam + %Gmam + gG141as + 6G15136 + ZG161a4 + §G171az’
1 1 1 1 1 1 1

T,= HGMzaM + Eszam + Eszam + §G14238 + 663152&16 + ZG162a4 + §G17232’
1 1 1 1 1 1

T, = EGmsau + EG133a10 + §G14338 + 6615336 + ZG16334 + §G17332!
1 1 1 1 1 1 1

T, = HGHsaM + 5612@12 + EG134310 + §G144a8 + 6(315436 + ZG164a4 + §G174az1
1 1 1 1 1 1

T = EG125a12 + ﬁGmsaw + §G14538 + EGwsaG + ZG16534 + §G17532’
1 1 1 1 1

T = ﬁGmeam + §G14638 + gGweaB + ZG166a4 + §G176az’

T -1G, a°+.G, 8+ G at+.G a8

7T g e G 158 4 168 o T178%
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1 1y A 7o A 1y e 7o A
T = (g G147 - §Y11A11q)1r - §Y11A12(D1r _§Y11A21(D1e - gYﬂ'A‘zzCija8

1 1 . 5 . 1 . 5

+ EG157 - €Y21A11(D1r - €Y21A12q)1r _€Y21A21q)1e - €Y21A;2cb1e)a6

+ Z G167 - _Y31A11 4 Y31A12(D1r 4 Y31A21(D1e - ZY31A;2(D19J34

4

1 . 1 1 . 1 ] 1

+ _§Y51A22q)1e + EG177 - §Y51A21(D1e - §Y51A11 2 Y A (D a
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(1 1 . 3 1 . 3
[

1 1 1 1 1

Ty = EGmam + §G14938 + EG159a6 + ZGmga4 + §G17932’
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10 8 6 4 2

1 1 1 1
T11 = §G1412as + EG1512a6 + ZG161234 + §G171zaz’

1 . 7 . 1 . 7

1 .
T12 = [561411 - §Y12A11q)1r - §Y12A12q)1r _§Y12A21(D1e - §Y12A22CD1eja8

1 . 5 . = 1 1 .. 5 .
(_Eq)szzAm - EYzzAzzq)“9 + EG1511 - €A11(D1rY22 - g®1rY22A12 36

1 1 . 3 . 1 . 3 .
+( G1611 Y32A11(I)1r - Z Y32A12(D1r _ZY32A21(D19 - Z Y32A22(D1eja4
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1 . 1 1 . 1 . 1
+ _§Y53A22(D1e + 561711 - §Y53A21<1)19 - §Y53A11 5 A12Y53q)1r a’,
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T13 §G141sa += 6 G1515a +— 4 G1615a += 2 G1715 ’ T14 = €G1513a6 + ZG161334 + §G171332,
5 1 5 . 1 .01 .
T15 :( 6 ~A 2Y23q)1r + €G1514 _EY23CD16A22 _EYza(DwAﬂ - 6Y23®19A21j36
1 1 . 1 3 . 3 .
+ (4 G1614 - ZY33A11 4 A Y CD ZY33CD19A22 - ZY33CD1rA12ja4
1 1 .1 .1 1
+ 2 G1714 2 Y52CD1rA11 - §Y52CD1rA12 - §Y52CD19A 2 Y q) A )
1 1 1 1 1 1
T16 8 G1414a += 6 G1516a +— 4 G161sa += 2 G1718 ) T17 = ZG1617a4 + §G171932’
G..a' G,.a* (1 — o1 o1 1 1 .
T = 16‘1‘_6 + 17; + (Z 0B, + an)wBﬂ _chDme + an)Zr _an)ze - Z(DmnBzzja!
G, a° 1 <1 1. 1 1 .
T19 :%’ Tzo :(_§®16A21§G1717 2A12 2ACD A 2 1rA11jaz’
a’ . . 2na’ a’ 4 a’
T21=?(CD“CD1F+CD1GCD1S), N1=_T’ sz_g’ N3=—§, N4:?’
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