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Abstract: Efficient ship detection is essential for inland waterway 

management. Recent advances in artificial intelligence have prompted 

research in this field. This study introduces a real-time ship detection model 

utilizing computer vision and the YOLO object detection framework. The model 

is designed to identify and locate common inland waterway vessels, such as 

container ships, passenger vessels, barges, ferries, canoes, fishing boats, and 

sailboats. Data augmentation techniques were employed to enhance the 

model's ability to handle variations in ship appearance, weather, and image 

quality. The system achieved a mean Average Precision (mAP) of 98.4%, with 

precision and recall rates of 96.6% and 95.0%, respectively. These results 

demonstrate the model's effectiveness in practical applications. Its ability to 

generalize across diverse vessel types and environmental conditions suggests 

its potential integration into video surveillance for improved maritime safety, 

traffic control, and search and rescue operations.  

Keywords: Computer Vision; Ship Detection; YOLOv8 algorithm; Artificial 

intelligence; Roboflow platform; 

 

 

1. Introduction  

Ship detection in waterways is crucial for 

diverse maritime management applications. 

Accurate identification of vessels is the initial step 

in tracking their positions, movement patterns, and 

other pertinent data. This task is essential for the 

surveillance of both inland and international 

waterways [1, 2]. In the civilian sector, ship 

detection aids traffic regulation, mitigates the risk 

of collisions and accidents, and ensures vessel 

safety. It also facilitates infrastructure planning, 

improves cargo transport efficiency, and 

contributes to environmental protection. 

Additionally, it provides essential data for urban 

planning along waterways and for responding to 

emergencies. Precise ship detection is therefore a 

key factor in enhancing the overall management 

and fostering the sustainable development of 

waterways, particularly inland waterways.  

Multiple technologies and methods currently 

exist for ship detection in inland waterways.  

Among these methods, radar is widely used [3–6]. 

Radar systems detect and track vessels within a 

designated area, operate under all weather 

conditions, and provide precise information about 

vessel location and movement. However, this 

method presents some challenges, notably high 

installation and maintenance costs and the 

necessity for human interpretation and data 

analysis. Surveillance camera systems installed at 

strategic locations along waterways capture visual 

data of traffic conditions. These systems may also 
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incorporate pressure and sound sensors for vessel 

detection and tracking [7].  This approach offers the 

advantage of providing direct visual information 

about the waterway traffic; however, its 

effectiveness can be hindered by weather and 

lighting conditions and requires substantial data 

storage and analysis. Automatic Identification 

Systems (AIS) enable vessels to transmit and 

receive information regarding their position, speed, 

course, and other relevant data [8–10]. This 

system allows authorities and traffic management 

to monitor vessel activities in real time. It also 

readily integrates with other technologies, such as 

radar and GPS. However, AIS requires vessels to 

be equipped with compatible devices and may 

experience limitations in areas with weak or absent 

signal coverage. Other ship detection approaches 

employed globally include Global Positioning 

Systems (GPS) [11, 12], remote sensing and 

satellite imagery [13, 14], and sonar hydroacoustic 

sensors [15]. Each of these methods presents 

unique advantages and disadvantages, with the 

selection of an appropriate method depending on 

specific requirements, environmental factors, and 

budgetary constraints. 

Existing ship detection methods for waterway 

management are often limited by cost and 

accuracy, and their performance is often affected 

by weather and environmental factors. Modern 

river and inland waterway management faces 

additional challenges such as increased vessel 

traffic, illicit activities, and personnel shortages 

[16]. The continuous rise in vessel traffic in rivers 

and inland waterways not only places a burden on 

the transportation system but also elevates the risk 

of collisions and accidents. Illegal activities, such 

as smuggling and unauthorized resource 

extraction, pose threats to both the environment 

and security. Additionally, relying on manual 

surveillance is expensive and risks human error. To 

address these issues, the development of 

automated, efficient, and affordable ship detection 

methods is crucial. 

In recent years, spurred by the rapid 

advancement of the fourth industrial revolution, 

Artificial Intelligence (AI) has found growing 

applications across various societal sectors [17]. 

AI, a field in computer science, focuses on creating 

computer systems capable of performing tasks that 

typically require human intelligence. Machine 

learning (ML), a subset of AI, involves the 

development of techniques that enable systems to 

learn from data and solve specific problems. By 

constructing models for image-based object 

recognition, AI and ML have been explored for 

application in fields such as transportation [18], 

healthcare [19], agriculture [20], and retail [21]. 

These advances have led to AI and ML becoming 

integral components of science and technology, 

offering solutions to various problems through 

intelligent automation. Automating ship detection 

using AI and ML offers several benefits [22]. This 

enables continuous, 24/7 surveillance of all vessels 

in a defined area, thereby enhancing the overall 

monitoring efficiency. Automation also reduces the 

risk of violations and accidents by quickly 

identifying rule infractions and providing warnings 

about potential collisions. In addition, incorporating 

AI and ML into maritime surveillance systems 

improves their adaptability and dependability. 

With the progress of AI, numerous studies 

have investigated ML models for ship detection. 

The key criteria for these models include the 

capacity to identify ships from different 

perspectives, detect various ship types, and 

achieve high accuracy. Recent research has 

focused on enhancing ship detection under low 

visibility conditions and across diverse image 

scenarios, as demonstrated by Liu et al. [23]. In this 

study, they applied AI and ML models, including 

Random Forest, Decision Tree, Naive Bayes, and 

Convolutional Neural Network (CNN), to 4000 

satellite images of ships, resulting in a robust ship 

detection model [24]. Among these models, 

Random Forest demonstrated the highest 

accuracy, achieving 97.2% with Red Green Blue 

(RGB) images and 98.9% with Hue, Saturation, 

and Value (HSV) images. Additional research has 
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explored ML models for ship detection based on 

radar and remote sensing data [25–27]. However, 

to date, few studies have utilized ML to develop a 

ship detection model based on surveillance 

camera imagery. This highlights the need for a 

robust AI/ML model capable of accurately 

recognizing various ship types from multiple 

angles. This research introduces a real-time ship 

detection model that utilizes YOLO V8 and trained 

on a diverse dataset of 17,707 images, with a 

particular focus on leveraging surveillance camera 

imagery, an approach not extensively explored in 

previous studies. 

2. Database description and analysis  

The dataset used in this study comprises 

17,707 images sourced from two primary locations: 

(1) 756 images of various ship types, including 

container ships, passenger vessels, barges, 

ferries, canoes, fishing boats, and sailboats, 

captured by the authors using a smartphone and 

collected from the internet; and (2) 16,951 images 

obtained from open database repositories.  

To ensure dataset diversity and cover a wide 

spectrum of real-world scenarios, the selected 

images include various ship types, hull sections, 

scales, viewpoints, lighting conditions, positions 

within the frame, and occlusion levels. The images 

also depict ships in complex environments. All 

images in the dataset were manually labeled with 

precise ship annotations and bounding boxes 

using the Roboflow platform, a tool designed for 

computer vision data management and 

preparation. The dataset was divided into three 

subsets for model development and evaluation: 

training (80%), validation (10%), and testing (10%). 

The training set is used to train the ML model, 

allowing it to learn features and make predictions. 

The validation set helps adjust model 

hyperparameters and monitor training progress. 

The test set provides an independent model 

performance assessment. A sample of the 

collected data is shown in Figure 1. 

   

   

   

Fig. 1. Illustration of images collected in the dataset (includes open-source images from various online 

repositories) 



JSTT 2024, 4 (3), 39-52                                                        Tran et al 

 

 
42 

3. Machine learning Methods 

3.1. YOLO 

3.1.1 Introduction of YOLO  

YOLO (You Only Look Once), a computer 

vision algorithm introduced in 2015 by Joseph 

Redmon, is designed to detect objects in images 

[28]. Unlike traditional methods, which often 

require multiple processing steps, YOLO's unique 

architecture enables it to predict both bounding 

boxes and object classes in a single pass of an 

image. This streamlined approach results in 

exceptional computational efficiency, and thus, 

YOLO is particularly well-suited for real-time 

applications in which rapid object detection is 

essential [29]. For example, in autonomous 

vehicles navigating complex urban environments, 

the onboard computer vision system must rapidly 

and accurately identify pedestrians, other vehicles, 

and traffic signs. YOLO's ability to process an 

entire image and generate all necessary 

predictions simultaneously makes it a strong 

candidate for such tasks. This real-time capability 

is vital for ensuring the safety and responsiveness 

of self-driving cars. In addition to its speed 

advantage, YOLO has received recognition for its 

accuracy. Since its initial release, multiple versions 

of YOLO have been developed, each iteratively 

improving both speed and accuracy. This ongoing 

development has made YOLO a popular choice for 

various object detection applications, including 

security, surveillance, robotics, and industrial 

automation [29]. 

3.1.2. YOLO working mechanism 

The YOLO model, which was initially trained 

on the ImageNet dataset, was adapted for object 

detection [28,30]. The final layer predicts both the 

likelihood of an object belonging to a specific class 

and the coordinates defining its location in the 

image. YOLO realizes this by partitioning the input 

image into an S x S grid. Each cell in the grid is 

tasked with detecting objects whose centers fall 

within its boundaries. Each cell generates multiple 

bounding box predictions, each with an associated 

confidence score indicating the model's certainty 

that the box contains an object and the accuracy of 

its prediction. To refine the output, YOLO selects 

the most accurate bounding box for each individual 

cell. This is achieved by calculating the Intersection 

over Union (IOU), which is a metric measuring the 

overlap between the predicted and actual bounding 

boxes, and selecting the box with the highest IOU. 

Non-maximum suppression (NMS) further 

improves YOLO's accuracy by eliminating 

redundant or inaccurate bounding boxes after the 

initial predictions. This ensures that each object is 

represented by a single, well-defined bounding 

box.

 

Fig. 2. Illustration of YOLO’s structure (adapted from [30]) 
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For instance, in an image of multiple ships, 

YOLO first divides the image into a grid. Each cell 

then analyzes its assigned area and predicts 

multiple bounding boxes for potential ships. YOLO 

then calculates the IOU for each box, selecting the 

one with the highest overlap with the actual ship. 

Finally, NMS removes any redundant or 

overlapping boxes, leaving only accurate bounding 

boxes for each ship in the image. This multi-step 

process allows YOLO to efficiently and accurately 

detect objects in real-time, making it useful in 

various applications, such as autonomous 

vehicles, security systems, and industrial 

automation. 

3.2. Performance indices of model 

Performance metrics are the primary tools to 

assess the accuracy and effectiveness of object 

detection models. The key metrics were mean 

average precision (mAP), precision, and recall [29]. 

To understand these metrics, it is helpful to first 

define four common variables using a binary 

confusion matrix, as shown in Fig. 3. The axes of 

this matrix represent two properties of the label: 

'True' and 'False'. When both the actual and 

predicted labels are 'True', the case is labeled as 

true positive (TP). When both labels are 'False', it's 

labeled as true negative (TN). False negative (FN) 

denotes the situation where the actual label is 

'True' but the predicted label is 'False'. Conversely, 

false positive (FP) indicates that the actual label is 

'False' while the predicted label is 'True' [31]. 

 

Fig. 3. Binary Confusion Matrix 

Precision, ranging from 0 to 1, represents the 

proportion of correctly predicted "True" labels 

among all predicted "True" labels. In the ship 

detection context, high precision indicates high 

confidence in the identification of a specific ship 

type:  

P = 
TP

TP+FP
 ∈ [0, 1] 

Recall, which ranges from 0 to 1, represents 

the proportion of correctly predicted "True" labels 

among the total number of actual "True" labels. 

High recall for ship detection indicates the 

algorithm's strong ability to detect all instances of a 

particular ship type in the dataset:  

R = 
TP

TP+FN
 ∈ [0, 1] 

mAP is a metric used to evaluate the 

performance of computer vision models. It is 

calculated as the average of the Average Precision 

(AP) metric across all classes in the model. The 

mAP can be used to compare different models on 

the same task or different versions of the same 

model. Higher mAP values ranging from 0 to 1 

indicate better performance. For a given category, 

Average Precision (AP) refers to the area under the 

curve plotted using recall and precision: 

APi = ∫ Pi
1

0
(Ri)dRi 

The mAP of multiple categories is defined as 

follows: 

mAP =  
∑ APi

n
1

n
 ∈ [0, 1] 

In ML, optimizing the loss function is critical 

for effective model training.  For object detection 

tasks using the YOLO algorithm, the loss function 

is composed of three components: box loss, class 

loss, and object loss. 

Box loss measures the algorithm's capacity 

to accurately locate an object's center and predict 

its bounding box. It quantifies the discrepancy 

between the predicted and actual bounding boxes 

for objects in the training data. A smaller box loss 

value indicates a close match between the 

predicted and actual bounding boxes. Here, object 

loss is the probability that an object exists within a 
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defined region of interest (ROI). A high object loss 

value indicates that the object exists in the target 

image region. Optimizing object loss focuses on 

improving the model's ability to correctly identify 

the presence of objects. Class loss evaluates the 

algorithm's ability to assign the correct class label 

to each detected object. The error between the 

predicted class probabilities of each object and the 

ground truth labels was measured. Lower class 

loss values correspond to more accurate class 

predictions. The variation in box, class, and object 

losses is typically tracked over epochs, which 

represents the number of iterations through the 

entire training dataset. Because the dataset was 

divided into batches, each epoch involved training 

on all batches. The chosen number of epochs, 

often determined by experience and intuition, can 

be quite large, with values exceeding 3000 not 

uncommon. 

3.3. Methodology workflow 

The ship detection workflow using the YOLO 

algorithm is illustrated in Figure 4. This process 

involves the following steps: 

a) Data preparation: Images of the ships 

were collected and labeled. 

b) Data splitting: The dataset was divided 

into training, validation, and testing sets. 

c) YOLO model training: The YOLO version 

is selected, training parameters (epochs, learning 

rate) are configured, and the model is trained on 

the training set. 

d) Model validation: The model was 

evaluated on the validation set using performance 

metrics. 

e) Model testing: The model was tested on a 

testing set. If the performance requirements are 

satisfied, the model proceeds to deployment. 

Otherwise, it moves to optimization and fine-tuning 

steps. 

f) Model optimization and fine-tuning: Based 

on the testing results, the hyperparameters were 

adjusted and optimized. This may involve returning 

to either the data preparation or model training 

steps. 

g) Model deployment: The trained model 

meets the performance criteria and is exported and 

deployed on the target device or application for 

ship detection. 

 

Fig. 4. Methodology workflow 

4. Results and discussion 

4.1. Model construction and development 

A ship detection model was developed using 

the YOLOv8 algorithm, leveraging its pretrained 

architecture for object detection tasks. The 17,707 

image dataset was preprocessed to standardize 

image dimensions and enhance training efficiency. 

The preprocessing steps included resizing, 

normalization, and data augmentation techniques, 

which improved the model's ability to handle 

variations in ship appearance, weather conditions, 

and image quality. The pre-trained YOLOv8 model 

was then fine-tuned on the prepared dataset using 

backpropagation and gradient descent 
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optimization to minimize the combined box, object, 

and class loss functions. Hyperparameter tuning, 

which involves adjusting the learning rate and 

batch size, was performed to optimize model 

performance. Note that the pretrained YOLOv8 

model was fine-tuned using the automated 

capabilities provided by the Roboflow platform to 

optimize its performance on the curated dataset. 

The model's performance was rigorously assessed 

on the validation set using metrics such as mAP, 

precision, and recall, to guide further iterative 

refinement. The final model was evaluated on an 

independent test set to assess its generalizability. 

The results of this evaluation are presented in the 

following section. 

The initial model was trained using 1139 

images. Although this limited dataset provided a 

foundation for model development, the resulting 

performance, as illustrated in Figure 5, revealed an 

mAP of 87.2%, a precision of 89.7%, and a recall 

of 83.9%. These metrics, while indicating 

promising initial results, also highlight the potential 

for improvement with a larger and more diverse 

training set. The relatively high precision suggests 

that the model was generally confident in its 

positive ship identifications, with few false 

positives. However, the lower recall indicates that 

a significant proportion of actual ships in the 

images were not detected. This could be attributed 

to the limited size and variability of the initial 

dataset, which may not have adequately captured 

the full range of ship appearances and 

environmental conditions encountered in real-

world scenarios. The performance obtained on this 

smaller dataset served as a baseline for further 

model development. Subsequent training iterations 

incorporated a larger dataset to address the 

limitations identified in the initial phase and 

ultimately enhance the model's overall accuracy 

and robustness. 

The model was further refined by 

incorporating additional images and applying 

image augmentation techniques, such as rotation, 

expanding the total dataset to 17,707 images. 

Despite reducing the loss functions observed 

during training on this augmented dataset (Figure 

6), the overall performance metrics did not 

substantially improve. In fact, the recall rate 

decreased by 1.8% compared to the previous 

model iterations. The final performance metrics for 

this version were: mAP 88.8%, precision 91.0%, 

and recall 82.1%. The reduction in recall despite 

the increased dataset size and augmentation 

technique indicates that the specific augmentation 

methods employed may have introduced artifacts 

or noise that negatively affected the model's 

detection capabilities. Further investigation and 

adjustment of the augmentation strategies are 

required to ensure their positive impact on model 

performance. 

The model was further refined through a 

detailed examination of the dataset, during which 

low-quality images and those with incorrect or 

missing labels were removed (Figure 7). The 

curation process reduced the dataset size from 

17,707 images to 16,530 images. Subsequent 

retraining on the refined dataset resulted in a 

significant improvement in model accuracy and a 

decrease in all loss functions compared to the 

previous iteration (Figure 8). This underscores the 

importance of data quality in ML because even a 

small proportion of problematic images can 

adversely affect model performance. Removing 

these potentially misleading or uninformative 

examples enabled the model to better learn the 

distinguishing features of ships and their 

surrounding environments. Consequently, more 

accurate predictions and improved generalizability 

to new images were obtained. The enhanced 

performance obtained following dataset curation 

demonstrates the critical role of data preprocessing 

in the development of robust and reliable ML 

models. 

Table 1 presents a comprehensive summary 

of the performance metrics for each model version. 

This table serves as a valuable reference for 

comparing model iterations and assessing their 

predictive capabilities.



JSTT 2024, 4 (3), 39-52                                                        Tran et al 

 

 
46 

 

(a) 

   

(b) (c) (d) 

Fig. 5. Training process of Version 1 model: (a) mAP; (b) Box loss; (c) Class Loss; (d) Object Loss 

 

(a) 
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(b) (c) (d) 

Fig. 6. Training process of Version 2 model: (a) mAP; (b) Box loss; (c) Class Loss; (d) Object Loss 

   

(a) (b) (c) 

Fig. 7. Illustration of excluded images from the database: (a, b) Image with labeling problems; (c) Image 

without labeling 

 

(a) 
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(b) (c) (d) 

Fig. 8. Training process of Version 3 model: (a) mAP; (b) Box loss; (c) Class Loss; (d) Object Loss 

Table 1. Accuracy of different developed YOLO models 

Version No. of images mAP (%) Precision (%) Recall (%) 

Version 1 1139 87.2 89.7 83.9 

Version 2 17707 88.8 91.0 82.1 

Version 3 16530 98.4 96.6 95 

 

4.2. Model performance 

In this section, the final refined ship detection 

model's performance is evaluated using an 

independent test set. The evaluation focused on 

the model's accuracy in identifying and locating 

diverse ship types under various image conditions. 

A selection of images from the test set along 

with their corresponding detection results are 

presented to visually demonstrate the model's 

capabilities. Each image shows the detected ships 

enclosed within bounding boxes, accompanied by 

confidence scores indicating the model's certainty 

in its predictions. These examples illustrate the 

model's proficiency in detecting a wide range of 

ship types, including container ships, passenger 

vessels, barges, ferries, canoes, fishing boats, and 

sailboats, under diverse viewpoints, lighting 

conditions, and occlusion levels. 

The evaluation results indicate that the model 

performed well on the test set. The high mAP, 

precision, and recall scores across the various ship 

classes demonstrate the model's accuracy and 

robustness. Several factors contributed to this 

performance, including the utilization of the 

efficient and accurate YOLOv8 algorithm, the 

comprehensive and diverse dataset that reflects 

real-world imaging conditions, and the thorough 

data curation process that removed inaccurate or 

noisy samples, thereby allowing effective model 

learning. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 9. Illustration of model performance showing 

the confidence on: (a) fishing, (b) sailing, (c) 

container ship, (d) passenger ships 

The model's ability to generalize across 

diverse ship types, viewpoints, lighting conditions, 

and occlusion levels positions it as a potential tool 

for various maritime applications, such as 

surveillance, traffic management, and search and 

rescue operations. Reference [32], utilizing Faster 

R-CNN on a dataset of 7000 ship images, reported 

an mAP between 89.38% and 93.92%. In contrast, 

the proposed YOLOv8 model, which was trained 

on a more extensive and diverse dataset, achieved 

a considerably higher mAP of 98.4%. This result 

indicates the potential of our approach, which 

employs the YOLOv8 architecture and a larger 

dataset, to achieve superior ship detection 

accuracy in various scenarios. 

4.3. Model deployment 

To illustrate the practical application and real-

world potential of the developed ship detection 

model, a mobile-friendly deployment was 

implemented. The model is optimized for efficient 

execution on mobile devices, retaining core 

detection capabilities and reducing computational 

requirements. A QR code linked to a web-based 

interface hosting the model is provided to facilitate 

access and demonstration. Users can scan the 

code on their smartphone or tablet to directly 

interact with the proposed model. The interface 

allows uploading or capturing images of 

waterways, which are then processed in real time. 

The detected ships are highlighted in the image 

and displayed with their respective confidence 

scores (Fig. 10). 

 

Fig. 10. Model deployment using QR code 

This deployment strategy aims to enhance 

accessibility by using a QR code and a web-based 

interface, thereby making the model readily 

available to users who do not require specialized 

software or technical knowledge. The interface 

allows for real-time interaction with the model, 

allowing users to directly experience its capabilities 

through instant processing and analysis of 

uploaded or captured images. The mobile-friendly 

nature of this deployment emphasizes the model's 

potential for real-world maritime surveillance, traffic 

monitoring, and recreational boating.  This 

interactive demonstration underscores the 

practicality of the proposed model and its potential 

integration into existing or future maritime 

monitoring systems. 

5. Conclusions and Perspectives 

In this study, an automated ML model for 

detecting various ship types was developed. 

Rigorous evaluation of the model's predictive 

capabilities were rigorously evaluated using mAP, 

precision, and recall. The results showed an mAP 

of 98.4%, precision of 96.6%, and recall of 95.0%, 

demonstrating the model's high reliability and 
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accuracy in ship identification. These findings 

highlight the potential of the model for real-world 

maritime applications. For instance, integrating the 

model into existing vessel traffic service (VTS) 

systems could provide operators with real-time 

information on vessel locations and classifications, 

thereby aiding traffic management, collision 

avoidance, and search and rescue operations, 

ultimately enhancing maritime safety and 

efficiency. Additionally, the model's accurate 

identification of specific ship types can be used to 

monitor compliance with fishing regulations. 

Automatic vessel classification would enable 

authorities to more effectively identify and track 

illegal, unreported, and unregulated (IUU) fishing 

activities, thereby contributing to sustainable 

fisheries management. The model's robust 

performance across diverse conditions, including 

variations in lighting and weather, suggests its 

potential deployment in challenging environments 

where manual surveillance is difficult or 

impractical, thus extending the reach of maritime 

monitoring and enforcement. 

In summary, the proposed automated ship 

detection model represents a significant step 

forward in maritime surveillance and management. 

The accuracy, reliability, and adaptability of the 

system to various scenarios opens up a wide range 

of potential applications for improving safety, 

efficiency, and sustainability in the maritime sector. 

Although this study established a reliable method 

for general ship detection, future investigations 

could explore the finer-grained classification of 

individual ship types, potentially increasing their 

utility in specific maritime applications. 
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