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Abstract: This paper presents the development of an Artificial Intelligence (AI) 

and Machine Learning (ML) model designed to detect cracks on concrete 

surfaces. The objective is to enhance the automation, precision, and 

performance of crack detection using the computer vision algorithm. Employing 

a ML approach and the YOLOv9 algorithm, this study developed a system to 

accurately identify concrete cracks from a diverse dataset. A total of 16,301 

images of concrete surfaces, balanced between those with and without cracks, 

were utilized. The dataset was split into various sets with different ratios to 

ensure comprehensive model training. A transfer-learning methodology was 

employed to optimize the model's performance. The accuracy of the model was 

measured in each experiment to determine the optimal result. The most 

successful experiment resulted in a model with a mean Average Precision 

(mAP) of 94.6%, a Precision of 94.1%, and a Recall of 88.4%. These results 

demonstrate the effectiveness of AI and ML in concrete crack detection. 

Keywords: Artificial intelligence; Concrete; Crack detection; Machine learning; 

Computer vision. 

 

 

1. Introduction  

Concrete is a composite material consisting 

of aggregate bonded with fluid cement that 

hardens over time. As the second-most-used 

substance globally after water and the most widely 

used building material, concrete plays a crucial role 

in construction and infrastructure [1]. A crack in 

concrete refers to a complete or partial separation 

of the material into two or more parts due to 

breaking or fracturing [2]. Surface cracks in 

concrete structures are critical indicators of 

structural damage and compromise its durability 

[3]. Detecting these cracks is essential for the 

inspection, diagnosis, and maintenance of 

concrete structures [4]. However, automatic crack 

detection presents significant challenges [5]. The 

importance of crack detection in concrete 

structures is growing, as it is vital for effective 

inspection, evaluation, and maintenance. 

Manual visual inspection, the most 

commonly employed method in practice, is 

inefficient in terms of cost, time, accuracy, and 

safety [3]. Inspectors typically rely on their 

experience, skill, and engineering judgment to 

visually assess defects in concrete structures. This 

method can involve determining the optimal 

binarization parameters of commonly used image 

binarization techniques and conducting 

comparative analyses to identify their 

characteristics in crack detection. Optimal 

parameters are obtained by minimizing the 

discrepancy between crack widths measured by 
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digital cameras and optical microscopes [3]. 

Monitoring is usually conducted by regularly 

evaluating the onset of surface cracks using optical 

methods or extensometers [6]. However, this 

process is inherently subjective, labor-intensive, 

time-consuming, and complicated by the need to 

access to numerous parts of complex structures 

[7]. 

Advancements in automated inspection 

techniques, particularly through AI and ML, are 

addressing these challenges by providing more 

objective, efficient, and comprehensive 

assessments of concrete structures. Automated 

systems can analyze large volumes of data with 

high precision, reducing the reliance on manual 

inspection and enabling more proactive 

maintenance strategies. These technologies 

facilitate continuous monitoring, early detection of 

potential issues, and improved allocation of 

resources for maintenance, ultimately enhancing 

the safety and longevity of concrete structures. 

AI image recognition has become widely 

applied, with object detection being a fundamental 

problem in computer vision involving the 

recognition and localization of objects within an 

image [8]. The YOLOv3 algorithm has been 

employed for real-time detection, calculating the 

sizes of detected cracks based on the positions of 

projected laser beams on structural surfaces [9]. A 

method for real-time logo identification using a 

deep learning network architecture has also been 

developed, customizing the YOLO algorithm to 

simultaneously detect and identify logos in input 

color images. Experimental results with the popular 

FlickrLogos-47 dataset demonstrate that this 

approach achieves high accuracy, with the added 

benefits of simplicity, effectiveness, and fast 

execution time, meeting the requirements of real-

time computing for logo recognition systems [10]. 

Furthermore, a method using ResNet-50 for 

feature extraction and non-maximum suppression 

(NMS) for selecting high-quality suggestion boxes 

showed increased accuracy in detecting 

improperly worn masks. This method enhances 

practical applications and improves epidemic 

prevention by accurately detecting mask usage 

through feature extraction and prediction frame 

generation [11]. Additionally, a novel real-time 

object detection model based on the YOLOV2 

framework has been developed for detecting tiny 

vehicles in Automatic Driving Systems (ADS) and 

Driver Assistance Systems [12]. An adaptive 

learning model based on the YOLOV3 deep 

learning network has been applied in self-driving 

vehicle systems, traffic management, and vehicle 

flow measurement at critical locations and routes 

[13]. The YOLO model has also been utilized to 

develop the HandGun Detector-C500, which 

recognizes handguns through surveillance 

cameras to provide early warnings related to 

crimes involving firearms [14]. Moreover, automatic 

crack detection and segmentation of masonry 

structures have been achieved using YOLOV9-

Seg 2 and edge detection techniques [15]. Cha et 

al. proposed a crack detection algorithm using 

deep learning with a Convolutional Neural Network 

(CNN), as well as algorithms for detecting multiple 

types of damage, including steel delamination, 

steel corrosion, and bolt corrosion, using a Faster 

Region-based CNN (R-CNN) [9],[10]. These 

advancements highlight the versatility and 

effectiveness of AI and deep learning algorithms in 

various applications, from structural health 

monitoring to traffic management and security, 

demonstrating their potential to enhance efficiency 

and accuracy in numerous fields. 

In the field of concrete crack identification, 

several deep learning approaches have been 

proposed. Choi et al. introduced SDDNet, a deep 

learning network optimized for crack detection in 

images with diverse background features [16]. 

Zhang et al. developed CrackU-net, a state-of-the-

art pixelwise crack detection architecture utilizing 

advanced deep convolutional neural network 

technology. This "U"-shaped model architecture, 

involving convolution, pooling, transpose 
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convolution, and concatenation operations, 

surpasses traditional methods as well as fully 

convolutional network (FCN) and U-net models for 

pixelwise crack detection [17]. Kim et al. proposed 

a method using R-CNN for crack identification and 

a square-shaped marker for measuring the size of 

detected cracks [18]. Beckman et al. suggested a 

Faster Region-based Convolutional Neural 

Network (Faster R-CNN) method for detecting 

concrete spalling damage. This approach 

automatically performs damage quantification by 

processing depth data, identifying surfaces, and 

isolating damage after merging outputs from the 

Faster R-CNN with the depth stream of the sensor 

[19]. Park et al. proposed a validated system 

capable of successfully detecting cracks and 

estimating their sizes without prior knowledge or 

any installation [9]. Various published studies have 

employed different algorithms for object detection, 

with many utilizing versions of the YOLO algorithm 

. Some research focused specifically on pavement 

crack images and bridge inspection tasks, such as 

the model proposed by Zhang et al., which was 

trained and validated using 3,000 pavement crack 

images (2,400 for training and 600 for validation) 

with the Adam algorithm. CrackU-net achieved a 

performance of loss = 0.025, accuracy = 0.9901, 

precision = 0.9856, recall = 0.9798, and F-measure 

= 0.9842 with a learning rate of 10−2 [17]. 

Research has also confirmed that, to date, no deep 

learning method has been able to automatically 

detect concrete spalling. The trained Faster R-

CNN presented an average precision (AP) of 

90.79%, with volume quantifications showing a 

mean precision error (MPE) of 9.45% at distances 

ranging from 100cm to 250cm between the 

element and the sensor [19]. These advancements 

highlight the ongoing efforts to enhance the 

accuracy and efficiency of concrete crack detection 

through deep learning methodologies. 

Concrete cracks found in structures vary in 

terms of their width, depth, orientation, and 

complexity due to the impact of environmental 

conditions and structural loads. These variations 

present challenges in accurately detecting and 

classifying cracks. The YOLO (You Only Look 

Once) algorithm, recognized for its real-time object 

detection capabilities, is a potential solution due to 

its capacity to process diverse object types and 

scales within a unified framework. Prior research 

has shown the effectiveness of YOLO in various 

object detection applications, and its utilization for 

concrete crack detection offers a chance to 

enhance accuracy and efficiency in real-world 

construction site inspections. 

This study developed an AI computer vision 

model using YOLOv9 based on a database of 

16,301 images collected from various sources. The 

paper is structured into five sections: Introduction, 

Database Description and Analysis, Machine 

Learning (ML) Methods, Results and Discussion, 

and Conclusions and Future Research Directions. 

This study contributes to the field by developing a 

robust and efficient AI model for concrete crack 

detection, utilizing the YOLOv9 algorithm and a 

diverse dataset of 16,301 images, and 

demonstrating its practical applicability for 

enhancing infrastructure maintenance. 

2. Database description and analysis  

The dataset comprised 16,301 images of 

various types of concrete cracks collected from 

multiple sources, with 1,233 images sourced from 

the internet and the remaining 15,068 images 

obtained from an open database repository [20]. 

The training process aimed to diversify the dataset 

to encompass a wide range of scenarios. The 

selected images included various types of cracks 

on concrete structures, considering factors such as 

scale, observation location, observation direction, 

and illumination level. Each image in the synthetic 

dataset was precisely annotated with crack labels 

and bounding boxes using the Roboflow platform, 

which is designed for data management and 

preparation in computer vision problems. The 

dataset was divided into three subsets: training, 

validation, and test sets. By default, the dataset 
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was split in a 70-15-15 ratio, used during training to 

tune the model's hyperparameters and to monitor 

and evaluate the model's performance after the 

training and tuning process. Examples of the 

collected dataset are shown in Fig. 1, whereas the 

labeling process of images is shown in Fig. 2.  

 

Fig. 1. Illustration of images collected in the dataset 

 

Fig. 2. Example of labeling process of images 



JSTT 2024, 4 (3), 11-23                                                          Nguyen et al 

 

 
15 

3. Machine learning methods 

3.1. YOLO overview 

YOLO (You Only Look Once) is a unified, 

real-time object detector designed to address 

object detection as a regression problem, 

predicting spatially separated bounding boxes and 

associated class probabilities from full images in a 

single evaluation [8]. Since its introduction in 2015, 

YOLO has undergone several iterations, with the 

latest version, YOLOv9, released in 2024. This 

version has achieved high detection accuracy and 

fast inference times as a single-stage detector, 

surpassing many other object detection algorithms. 

Fig. 3 illustrates these advancements. 

Developed by Chien-Yao Wang, I-Hau Yeh, 

and Hong-Yuan Mark Liao, YOLOv9 stands out as 

the fastest general-purpose object detector 

currently available, pushing the state-of-the-art in 

real-time object detection. Its ability to generalize 

well to new domains makes it ideal for applications 

requiring rapid and robust object detection [21]. 

Processing images with YOLO involves running a 

single convolutional network on the image and then 

thresholding the resulting detections based on the 

model’s confidence. This process is illustrated in 

Fig. 4. 

 

Fig. 3. Development process of YOLO 

 

Fig. 4. The detection system of YOLO 

3.2. Performance indices of model 

Determining the training set, validation set, 

and test set is crucial in a ML project. The training 

set is fundamental for learning and model 

development, the validation set is essential for 

tuning and preventing overfitting during training, 

and the test set is critical for an unbiased final 

evaluation of the model's performance. A 

successful ML project requires all three sets to 

ensure the model is well-trained, properly tuned, 

and accurately evaluated [22]. 

In object detection, Average Precision (AP) 

summarizes the precision-recall curve into a single 

value representing the area under the curve, 

providing a single metric for evaluation. Mean 

Average Precision (mAP) is crucial for a balanced 

evaluation in tasks like object detection and multi-

class classification, offering a comprehensive view 

of model performance. Additionally, Precision and 

Recall are critical metrics for evaluating model 

performance, with values that vary as the 

confidence threshold changes. Various loss 

components are used to train object detection 

models effectively by penalizing different types of 

prediction errors. Box loss evaluates the accuracy 

of the model's predictions regarding the location 

and size of objects within each image. Class loss 

measures the error in predicting the class labels of 

detected objects, ensuring the model accurately 

identifies the class of each object within the 
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detected bounding boxes. Object loss, or 

confidence loss, evaluates the confidence score 

and error in predicting a bounding box. Each of 

these losses plays a crucial role in training a robust 

object detection model by ensuring accurate 

localization, classification, and confidence in object 

detection. The combination of these losses allows 

the model to learn to detect and classify objects in 

images effectively. 

3.3. Methodology workflow 

The methodology for the ML process in this 

study is illustrated in Fig. 5. The workflow for this 

paper encompasses several key stages, starting 

with data collection and preparation, where a 

comprehensive dataset of concrete crack images 

was compiled from various sources. This dataset 

was then divided into training, validation, and test 

sets. The training set was used to develop the 

model, the validation set was employed to tune the 

model and prevent overfitting, and the test set was 

utilized for unbiased evaluation of the model's 

performance. 

Following data preparation, the images were 

annotated with crack labels and bounding boxes to 

ensure accurate detection and classification. The 

annotated dataset was processed through a 

convolutional neural network, specifically the 

YOLOv9 algorithm, to predict bounding boxes and 

class probabilities. Various loss components, 

including box loss, class loss, and object loss, were 

used to penalize prediction errors and refine the 

model. During training, the model's 

hyperparameters were tuned using the validation 

set to achieve optimal performance. The final 

model's accuracy and effectiveness were 

evaluated using the test set, considering metrics 

such as mean Average Precision (mAP), Precision, 

and Recall. This comprehensive workflow ensured 

the development of a robust and accurate model 

for detecting cracks in concrete structures. 

 

Fig. 5. Methodology workflow 

4. Results and discussion 

4.1. Model construction and development 

Different versions were tested to verify the 

results. The training process of model V1 (Fig. 6), 

which used 343 images, involved a 

train/test/validation split of 60%/20%/20%. The 

mAP was plotted as a function of the training 

epoch. However, the training process was 

observed to be unstable, with low accuracy and 

lack of convergence after multiple iterations. This 

highlighted the need for adjustments in the training 

approach to achieve more reliable and accurate 

results. The training process of the V2 model, 

which utilized 16,293 images and was split into 

train/test/validation sets (60%/20%/20%), and the 

V4 model, which used 16,301 images with the 

same split, are shown in Figs. 7 and 9. The training 

process for both models stabilized after 60 

iterations, with no further improvement observed in 

mAP beyond this point. The accuracy remained 

high, and the mAP converged to approximately 0.9 

after 60 epochs. This indicates that the models 

achieved good performance and stability within a 

relatively short training period. 
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The training process for the V3 model, which 

used a dataset split of 70%/15%/15% and included 

16,293 images resized to 640x640 pixels, is shown 

in Fig. 8. Similarly, the V5 model, which used 

16,301 images and applied Histogram 

Equalization, is shown in Fig. 10. Both training 

processes demonstrated stability, with high 

accuracy achieved after only 15 epochs. This 

indicates that the preprocessing steps and dataset 

splits effectively contributed to the models' 

performance and rapid convergence.  

The training process of the V6 model, which 

utilized 16,301 images with a train/test/validation 

split of 80%/10%/10%, is illustrated in Fig. 11. The 

training process stabilized after a few iterations, 

with no further improvement observed, with mAP 

increasing from 50 to 95. High accuracy was 

achieved after just 10 epochs, with mAP 

converging to over 0.9 within this period. Using a 

dataset specifically labeled for cracks, the 

performance of the YOLOv9 model in crack 

detection was significantly enhanced. The mAP 

increased from 89% to 94.6%, and the recall 

improved notably from 78% to 88.4%. This 

demonstrates the effectiveness of the labeled 

dataset and the robust performance of the YOLOv9 

model in detecting concrete cracks. 

After removing low-resolution, mislabeled, 

and unlabeled images, the refined database of 

16,301 images showed improved accuracy and 

performance. The results of different versions of 

the model are presented in Table 1 below. 

 

(a) mAP 

   

(b) Box Loss (c) Class Loss (d) Object Loss 

Fig. 6. Training process of V1 model 
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(a) mAP 

   

(b) Box Loss (c) Class Loss (d) Object Loss 

Fig. 7. Training process of V2 model 

 

(a) mAP 

   

(b) Box Loss (c) Class Loss (d) Object Loss 

Fig. 8. Training process of V3 model 
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(a) mAP 

   

(b) Box Loss (c) Class Loss (d) Object Loss 

Fig. 9. Training process of V4 model 

 

(a) mAP 

   

(b) Box Loss (c) Class Loss (d) Object Loss 

Fig. 10. Training process of V5 model 
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(a) mAP 

   

(b) Box Loss (c) Class Loss (d) Object Loss 

Fig. 11. Training process of V6 model 

Table 1. Accuracy of different models 

 Preprocessing Dataset Split 
No. of 

images 
mAP (%) Precision (%) Recall (%) 

V1 Orientation 60-20-20 343 21.9 63.5 19.9 

V2 Orientation 70-20-10 16,293 85.4 92.6 74.4 

V3 

Orientation 

Resize: Stretch to 

640x640 

70-15-15 16,293 89.6 93.8 78.0 

V4 Orientation 70-15-15 16,301 89.5 92.5 80.0 

V5 

Orientation 

Contrast: using 

Histogram Equalization 

70-15-15 16,301 88.4 92.7 78.1 

V6 Orientation 80-10-10 16,301 94.6 94.1 88.4 
 

4.2. Model performance 

This section presents the model 

performance, focusing on the best version used to 

predict the test set (Fig. 12). Several images are 

shown to illustrate the predictions and highlight the 

model's effectiveness. The results reveal that the 

model performs well in detecting various types of 

cracks. Comparing the performance across the 

training, validation, and test sets, the model 

demonstrates high accuracy and consistency, with 

minimal differences between these sets. The 

results indicate that the model effectively detects 
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cracks in concrete structures, suggesting its 

suitability for this type of problem. ML models like 

YOLOv9 offer significant advantages, including 

high accuracy, real-time detection capabilities, and 

robustness against diverse background features. 

However, challenges remain in handling low-

resolution images and ensuring comprehensive 

labeling. 

Comparing these findings with previous 

studies, such as those by Choi et al. [16] and 

Zhang et al. [19], the model's performance aligns 

closely with state-of-the-art results. Specifically, the 

results in this work show higher mAP and recall 

rates, demonstrating superior performance in 

certain aspects. These improvements underscore 

the effectiveness of the refined dataset and the 

robust capabilities of the YOLOv9 model in 

concrete crack detection. 

   

   

Fig. 12. Illustration of model performance on crack concrete 
 

4.3. Model deployment 

This section details the deployment of the 

crack detection model on concrete datasets. The 

model was built, debugged, and trained to achieve 

high accuracy and performance. A QR code and a 

link are provided (Fig. 13) below to enable users to 

test the model on real images using a computer or 

smartphone. The best-performing model was 

deployed to predict new images, with several 

examples presented to demonstrate its 

capabilities. The model consistently identifies 

cracks with high accuracy across various types of 

concrete surfaces. The comparison between the 

training, validation, and test sets shows that the 

model maintains excellent performance and 

robustness, indicating a successful deployment. 

The practical application of this model confirms its 

effectiveness for real-world crack detection 

problems. The model offers high precision, ease of 

use, and adaptability to different scenarios. 

However, potential limitations include the need for 

high-quality images and accurate labeling. 

 

Fig. 13. Model deployment using QR code 
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5. Conclusions and Perspectives 

This research presents a ML model 

developed to automatically identify various types of 

cracks in concrete structures. The study utilized a 

substantial dataset comprising 16,301 images of 

concrete cracks, annotated for accurate labeling 

during the training phase. The dataset was divided 

into training, validation, and test sets, adhering to a 

typical ML workflow. The training process utilized 

the YOLOv9 architecture, known for its high 

accuracy and speed in real-time object detection. 

Various hyperparameters were tuned to optimize 

the model's performance. The model's 

performance was evaluated based on mAP, 

precision, and recall. The model achieved an mAP 

of 94.6%, precision of 94.1%, and recall of 88.4%, 

demonstrating high reliability and accurate 

predictive capabilities. The findings from this study 

suggest significant potential for practical 

applications in real-time crack detection within 

concrete structures. Implementing this technology 

enables continuous and automated monitoring, 

facilitating timely assessment and intervention. 

This capability can significantly improve the 

efficiency of inspection, diagnosis, evaluation, and 

maintenance procedures for concrete structures.  

This study demonstrates the potential of AI 

and ML in automating concrete crack detection, but 

acknowledges limitations due to factors like image 

quality, lighting, and the diversity of crack types in 

the training data. Future research could address 

these limitations by incorporating more diverse 

datasets, exploring advanced image 

preprocessing techniques, and investigating the 

model's generalizability to different concrete 

structures. Integrating this model with other non-

destructive testing methods could provide a more 

comprehensive assessment of concrete structure 

health. Additionally, future work could focus on 

incorporating crack classification capabilities into 

the model, utilizing additional labeling and training 

data that includes specific crack attributes such as 

shape, size, and depth, aligning with allowable 

limits defined by relevant standards. While the 

current model focuses on general crack detection, 

this initial step is practically valuable as a screening 

tool. 
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