
A. El Harfouf1, Dung Nguyen Trong2, 3, H. Mes-adī4, Sanaa Hayani Mounir1, Umut Saraq5, Quoc Tuan Tran6, *, Van Cao Long2, Ștefan Țălu7

1 Sultan Moulay Slimane University of Beni Mellal, 25000, Khouribga, Morocco
2 University of Zielona Góra, 65-516 Zielona Góra, Poland
3 Hanoi National University of Education, Hanoi, 100000, Vietnam
4 Université Sultan Moulay Slimane - Beni Mellal, 25000, Khouribga, Maroc
5 Bartın University, 74100, Bartın, Turkey
6 Faculty of Basic Science, University of Transport Technology, 54 Trieu Khuc, Thanh Xuan, Hanoi 100000, Vietnam
7 Technical University of Cluj-Napoca, 400020, Cluj County, Romania

Abstract: In this study, the influence of various factors on the heat transfer characteristics of the steady magnetohydrodynamic Casson nanofluid (Cu+Water) between two infinite parallel plates considering the Cattaneo–Christov heat flux model is explored by means of the Akbari Ganji’s Method. The values of Nusselt number N_u are also determined for different values of viscosity, magnetic, and volume fraction parameters and various metallic and nonmetallic nanoparticles (NPs). The findings reveal that the temperature profile (TP) decreases with rising casson fluid and thermal relaxation parameters. However, an increment in the TP is detected for large values of the volume fraction parameter, radiation parameter, Prandtl number, and Eckert number. It is found that the N_u varies proportionally with the viscosity and volume fraction parameters, but it is inversely proportional to the magnetic parameter. The results also show that different metallic and nonmetallic NPs have different values of N_u.

Keywords: Magnetohydrodynamic Casson Nanofluid, Akbari Ganji’s Method, Magnetic field, Cattaneo-Christov Heat Flux Model, Heat Transfer Characteristics.

1. Introduction

In recent years, researchers have focused on non-Newtonian fluids, which have important engineering and industrial applications [1-4]. However, it is very difficult to analyze non-Newtonian fluids because of their complexity [5].
Therefore, researchers suggested different models to examine them such as Casson, micropolar, viscoelastic, etc [5, 6]. The Casson fluid is classified as a non-Newtonian fluid because of its rheological properties [3]. The Casson fluid is a shear thinning liquid with infinite viscosity at zero shear rates and zero viscosity at infinite shear rates [3, 5, 7]. The study examined the influence of chemical reaction on Casson fluid flow over an inclined porous plate [8]. Another study investigated the momentum and heat transfer properties of Casson fluid flow over an inclined plate [9].

The nanofluids consist of the base fluid (oil and water) containing carbide, metal, and oxide nanoparticles (NPs) [3, 10, 11]. They are special functional fluids that are very useful for raising the heat transfer rate, increasing the thermal conductivity, and reducing the energy loss [10, 11]. In addition, there are some studies on the Magnetohydrodynamic (MHD) Casson nonofluids. A numerical study showed that the presence of magnetic fields enhances the thermal transfer [12]. In another numerical study by Chamkha et al. [13], it was shown that the Nusselt number \(N_u \) is more significantly affected by laminar NPs than other NPs. The role of diverse parameters on the temperature and concentration profiles of steady MHD nanofluid between parallel plates was also established [14].

Many different numerical and analytical methods such as Differential Transformation Method (DTM) [14-17], Homotopy Perturbation Method (HPM) [18-22], Akbari Ganji’s Method (AGM) [7, 23], Runge-Kutta Method (RKM) [5, 11, 24, 25], etc. have been applied to various problems in the fields of science and engineering. Among them, the AGM is one of the more recent and effective semi-analytical methods [7]. Furthermore, it is efficient and has sufficient accuracy compared to other semi-analytical and numerical methods [7, 23].

To explore the thermal relaxation time characteristic, the Cattaneo-Christov Heat Flux (CCHF) model is assumed thermally. The study revealed the analytical solutions for the temperature governing equation via CCHF model for coupled flow and heat transfer of an upper-convected Maxwell fluid [26]. The study explored the spinning flow of viscoelastic fluids due to a stretching sheet by means of the CCHF model [27]. In another research, the steady three-dimensional boundary layer flow and heat transfer characteristics to Burgers fluid was studied by employing the CCHF model [28]. Considering the CCHF model, the efficiency of the binary chemical reaction on MHD Casson fluid was explored by Reddy et al [29]. The study also examined the unsteady squeezing MHD nanofluid flow and heat transfer between two parallel plates considering the CCHF model [30]. The results indicated that the \(N_u \) increased (decreased) with increasing heat source (thermal relaxation) parameter. It was also reported that the temperature profile (TP) decreased with enhancing volume fraction, magnetic, and thermal relaxation parameters and increased with increasing radiation parameter and squeeze number [30]. Other related studies on the simulation of nanofluids and heat transfer are also available in the literature [31–33]. The influence of various factors on the structural and mechanical features of a wide variety of metallic NPs such as Ni [34, 35], Fe [36], AlNi [37], NiFe [38], etc., has been examined in recent studies using the molecular dynamic simulation method. In addition, in a very recent study [7], the analytic solution of steady two-dimensional laminar MHD flow of incompressible viscous nanofluids between two parallel plates has also been discussed by means of the AGM. The results showed that an increase in the magnetic and viscosity parameters induced a decrease in the velocity profile. It was also revealed that the skin friction coefficient increased with rising viscosity, magnetic, and volume fraction parameters [7]. This study aims to explore the impact of various
factors on the heat transfer characteristics of steady MHD Casson nanofluid (Cu+Water) between two infinite parallel plates considering the CCHF model by means of the AGM. The values of N_i are also calculated for various factors and metallic and nonmetallic NPs.

2. Calculation method
2.1. Description of the problem

We consider a steady MHD Casson nanofluid (Cu+Water) flow between two infinite parallel plates. As depicted in Fig 1, two infinite parallel plates are placed horizontally at $y = 0$ and $y = h$. The x-direction extends along the plate while the y-direction is vertical to the plate. To examine the various factors on the heat transfer characteristics, the CCHF model is applied instead of the classical Fourier’s theory. The nanofluid is incompressible and considered non-Newtonian. A uniform magnetic field B_0 is also considered.

![Steady Nanofluid Flow](image)

Fig 1. Schematic model of the present work

2.2. The equations of model
2.2.1. The continuity equation

The nanofluid is considered incompressible, and thus the continuity equation is defined:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(Equation 1)

2.2.2. The momentum equation

Under the conditions mentioned above, the contribution of the electric force is negligible compared to the contribution of the magnetic force, thus the governing equations for momentum are as follows:

$$\rho_{nf} (\nabla \cdot \mathbf{V}) = \rho_{nf} \mathbf{g} + \nabla \cdot \mathbf{\tau} + \mathbf{J} \times \mathbf{B}$$
(Equation 2)

Where $\rho_{nf} \mathbf{g}$ is the buoyancy force, $\mathbf{J} \times \mathbf{B}$ is magnetic force with $\mathbf{J} = \sigma_{nf} (\mathbf{V} \times \mathbf{B})$, σ_{nf} represents the electrical conductivity, $\mathbf{V} = (u, v)$ is velocity vector, $\mathbf{B} = (0, B_0)$ is the magnetic field, $\mathbf{\tau}$ is the Cauchy stress tensor. Hence, we get that: $\mathbf{J} \times \mathbf{B} = -u_{nf} B_0^2 \mathbf{e}_x$.

Where $\sigma, \mathbf{\tau}, \mathbf{I}$ and $\mathbf{\tau}$ correspond to the normal stress, shear stress, 2×2 identity matrix, and deviatoric stress tensor, respectively.

It should be noted here that the mechanical pressure (p) is $p = -\frac{1}{3} (\sigma_{xx} + \sigma_{yy})$.

Finally we get:

$$\rho_{nf} (\nabla \cdot \mathbf{V}) = -\nabla p + \nabla \cdot \mathbf{\tau} - \sigma_{nf} B_0^2 \mathbf{e}_x$$
(Equation 3)

Non-Newtonian Casson nanofluid model:

In equation (3), the term $\nabla \cdot \mathbf{\tau}$ corresponds to
The divgence of the stress tensor and it is described as:

\[
\nabla \cdot \tau = \left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} \right) + \left(\frac{\partial \tau_{yx}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} \right)
\]

(Equation 4)

For two directions (Ox) and (Oy), the following equations can be obtained:

Projection on the x direction:

\[
\left(\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = -\frac{1}{\rho_{\text{nf}}} \frac{\partial p}{\partial x} + \frac{\mu_{\text{nf}}}{\rho_{\text{nf}}} \left(1 + \frac{1}{\beta} \right) \left(2 \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 v}{\partial y \partial x} \right) - B_0^2 \frac{\sigma_{\text{nf}}}{\rho_{\text{nf}}} u
\]

(Equation 5)

Where \(\beta = \frac{\mu_B \sqrt{2\pi} e}{\rho_y} \) is the Casson fluid parameter.

Projection on the y direction:

\[
\left(\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} \right) = -\frac{1}{\rho_{\text{nf}}} \frac{\partial p}{\partial y} + \frac{\mu_{\text{nf}}}{\rho_{\text{nf}}} \left(1 + \frac{1}{\beta} \right) \left(2 \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 u}{\partial y \partial x} \right)
\]

(Equation 6)

If we do \(\frac{\partial (6)}{\partial x} = \frac{\partial (5)}{\partial x} \), we get that:

\[
\frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} = \frac{\mu_{\text{nf}}}{\rho_{\text{nf}}} \left(1 + \frac{1}{\beta} \right) \left(2 \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 u}{\partial y \partial x} \right) - B_0^2 \frac{\sigma_{\text{nf}}}{\rho_{\text{nf}}} u
\]

(Equation 7)

Where \(\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \).

2.2.3. The energy equation

Under the aforementioned conditions, the governing equations for energy are as follows:

\[
\left(\rho c_p_{\text{nf}} \right) \left(\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = -\nabla \cdot q + \frac{1}{\rho c_p_{\text{nf}}} \frac{\partial q_{\text{rad}}}{\partial y} + \frac{\mu_{\text{nf}}}{\rho c_p_{\text{nf}}} \left(1 + \frac{1}{\beta} \right) \frac{\nabla \cdot \tau}{\sigma_{\text{nf}}}
\]

(Equation 8)

Where: \(\mathbf{J} \cdot \mathbf{J} = \sigma_{\text{nf}}^2 B_0^2 u^2 \) corresponds to the Joule heating, \((\rho c_p)_{\text{nf}} \) indicates the heat capacity of the nanofluid, \(\mu_{\text{nf}} \) is the dynamic plastic viscosity and \(\Psi = \left[2 \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + 2 \left(\frac{\partial v}{\partial y} \right)^2 \right] \) represents the dissipation viscous function in the 2D case form.

\(q_{\text{rad}} \) represents the radiative heat flux. Applying the Rosseland approximation for radiation we acquire:

\[
q_{\text{rad}} = -\frac{4\sigma T^4}{3k_{\text{nf}}^3} \frac{\partial T}{\partial y}
\]

(Equation 9)

Where \(\sigma^* \) and \(k_{\text{nf}}^* \) correspond to the Stefan–Boltzmann constant and the mean absorption coefficient, respectively. Moreover, we assume that the temperature difference within the flow is such that \(T^4 \) maybe expanded in a Taylor series. Finally, we find:

\[
q_{\text{rad}} = -\frac{16\sigma^* T^4}{3k_{\text{nf}}^*} \frac{\partial T}{\partial y}
\]

(Equation 10)

The heat flux vector \(q \) is defined by the following equation according to the CCHF model.

\[
q + \Omega_E \left[\nabla \cdot (\nabla q) + (\nabla \cdot q) - q \cdot (\nabla \nabla) \right] = -k_{\text{nf}} \nabla T
\]

(Equation 11)

Here, \(\Omega_E \) shows the relaxation time of heat flux and \(k_{\text{nf}} \) represents the thermal conductivity.

The classical Fourier’s law can be derived from equation (11) by applying \(\Omega_E = 0 \). When the incompressibility of the nanofluid \((\nabla \cdot V = 0) \) is used in Eq. (11), we have:

\[
q + \Omega_E \left[\nabla \cdot (\nabla q) + (\nabla \cdot q) - q \cdot (\nabla \nabla) \right] = -k_{\text{nf}} \nabla T
\]

(Equation 12)

The flux vector \(q \) can be eliminated between the two Eqs. (8) and (12), then we get:
\[
\left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y}\right) + \Omega \Delta_E = \nabla \cdot k_{nf} (\rho C_p)_{nf} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) - \frac{\partial q_{rad}}{\partial y} + B_0^2 \frac{\sigma_{nf}}{(\rho C_p)_{nf}} u^2 + \frac{\mu_{nf}}{(\rho C_p)_{nf}} \left(1 + \frac{1}{\beta} \right) \left[2 \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + 2 \left(\frac{\partial \nu}{\partial y}\right)^2\right]
\]

(Equation 13)

Where:

\[
\Delta_E = u \frac{\partial u}{\partial x} + u^2 \frac{\partial^2 T}{\partial x^2} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + v \frac{\partial u}{\partial y} + v^2 \frac{\partial^2 T}{\partial y^2} + 2uv \frac{\partial^2 T}{\partial y \partial x}
\]

(Equation 14)

The governing equation for the heat transfer in this problem is given by the following equation:

\[
\left(\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y}\right) + \Omega \Delta_E = \nabla \cdot k_{nf} (\rho C_p)_{nf} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) - \frac{\partial q_{rad}}{\partial y} + B_0^2 \frac{\sigma_{nf}}{(\rho C_p)_{nf}} u^2 + \frac{\mu_{nf}}{(\rho C_p)_{nf}} \left(1 + \frac{1}{\beta} \right) \left[2 \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + 2 \left(\frac{\partial \nu}{\partial y}\right)^2\right]
\]

(Equation 15)

Here, \(\rho_{nf}\) corresponds to the effective density, \(\mu_{nf}\) shows the effective dynamic viscosity, \((\rho C_p)_{nf}\) represents the heat capacity and \(k_{nf}\) indicates the thermal conductivity, and \(\sigma_{nf}\) is the electric conductivity of the nanofluid. They are as follows [18]:

\[
\rho_{nf} = (1 - \Phi) \rho_i + \Phi \rho_p
\]

(Equation 16)

\[
(\rho C_p)_{nf} = (1 - \Phi)(\rho C_p)_i + \Phi (\rho C_p)_p
\]

(Equation 18)

\[
K_{nf} = \frac{K_s + 2K_i - 2\Phi (K_i - K_s)}{K_s + 2K_i + 2\Phi (K_i - K_s)} K_i
\]

(Equation 19)

\[
\sigma_{nf} = \left[1 + \frac{3(\sigma_p - \sigma_i)\varphi}{(\sigma_p + 2\sigma_i) - (\sigma_p - \sigma_i)\varphi}\right]
\]

(Equation 20)

2.2.4. The boundary conditions

In this work, the relevant boundary conditions are as follows [14]:

\[
u|_{y=0} = ax, \quad v|_{y=0} = 0, \quad T|_{y=0} = T_0,
\]

\[
u|_{y=h} = 0, \quad v|_{y=h} = 0, \quad T|_{y=h} = T_h
\]

(Equation 21)

The viscosity parameter \(R\), magnetic parameter \(M\), Prandtl number \(P_r\), radiation parameter \(N\), thermal relaxation parameter \(\beta_E\) and Eckert number \(E_c\) are non-dimensional quantities and they are described as:

\[
R = \frac{ah^2}{u_i}, \quad \delta^2 = \frac{h^2}{x^2}, \quad M = \frac{B_0^2 h^2}{\rho_i u_i}, \quad N = \frac{k_{nf} k_i}{4\sigma T_0^3},
\]

\[
P_r = \frac{\mu_{cp} f}{k_i}, \quad E_c = \frac{\alpha^2 x^2}{(T_0 - T_h)c_p}, \quad \beta_E = \alpha \Omega_E
\]

(Equation 22)

Here, \(A_1\), \(A_2\), \(A_3\), \(A_4\) and \(A_5\) are dimensionless constants:

\[
A_1 = \frac{\rho_{nf}}{\rho_i}, \quad A_2 = \frac{\sigma_{nf}}{\sigma_i}, \quad A_3 = \frac{\mu_{nf}}{\mu_i},
\]

\[
A_4 = \frac{k_{nf}}{k_i}, \quad A_5 = \frac{(\rho C_p)_{nf}}{(\rho C_p)_i}
\]

(Equation 23)

With these boundary conditions:

\[
f'(0) = 1, \quad f(0) = 0, \quad \Theta(0) = 1 \quad \text{at} \quad x = 0
\]

(Equation 24)

\[
f'(1) = 0, \quad f(1) = 0, \quad \Theta(1) = 0 \quad \text{at} \quad x = 1
\]

(Equation 25)

The \(N_i\) in this problem is defined as:
\[N_0 = \left| A_4 \left(\frac{3N + 4}{3N} \right) \theta'(0) \right| \]

(Equation 26)

2.3. Homotopy Perturbation Method (HPM)

2.3.1. Basic Idea of the HPM

In the HPM method, the following equation is considered [39]:

\[A(u) - f(r) = 0, \quad r \in \Omega \]

(Equation 27)

With the boundary condition of:

\[B \left(u, \frac{\partial U}{\partial n} \right) = 0, \quad r \in \Gamma \]

(Equation 28)

Where \(A \) and \(B \) represent a general differential operator and a boundary operator, respectively. The \(f(r) \) corresponds to a known analytical function and \(\Gamma \) indicates the boundary of the domain \(\Omega \) [39]. A differential operator can be divided into two parts, linear \(L \) and nonlinear \(N \). Thus, the Eq. 27 becomes as follows:

\[H(v, p) = (1 - p)[L(v) - L(u_0)] + p[L(v) + N(v) - f(r)] = 0 \]

(Equation 29)

Where

\[v = v_0 + pv_1 + p^2v_2 + p^3v_3 + \ldots \]

(Equation 30)

And:

\[u = \lim_{p \to 1} v = v_0 + v_1 + v_2 + \ldots \]

(Equation 31)

2.3.2. Implementation of the method

According to the HPM, a homotopy can be formed as: (Equation 32)

\[H(\theta, p) = (1 - p)[\Theta^*(p) - \Theta^*_0(0)] + \]

\[\left[\begin{array}{c} \theta^*(\eta) + \left(\frac{3N + 4}{3N} \right) \left(A_2 + \frac{A_5}{A_4} \right) f(\eta) \Theta^*(\eta) + \right. \\
- \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) f(\eta) \Theta^*(\eta) \\
+ \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) \left(f(\eta) f^2(\eta) \Theta^*(\eta)^2 + \right. \\
+ \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) \left(f^2(\eta) \Theta^*(\eta)^2 \right) + \\
+ \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) \left(4f^2(\eta) \Theta^*(\eta)^2 \right) \right] \\
\left| \begin{array}{c} \theta^*(\eta) + \left(\frac{3N + 4}{3N} \right) \left(A_2 + \frac{A_5}{A_4} \right) f(\eta) \Theta^*(\eta) + \right. \\
- \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) f(\eta) \Theta^*(\eta) \\
+ \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) \left(f(\eta) f^2(\eta) \Theta^*(\eta)^2 + \right. \\
+ \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) \left(f^2(\eta) \Theta^*(\eta)^2 \right) + \\
+ \left(- \frac{3N}{3N + 4} \right) A_5 \left(\frac{A_5}{A_4} \right) \left(4f^2(\eta) \Theta^*(\eta)^2 \right) \right] \\
\left| \end{array} \right] = 0 \]

We consider \(f \) and \(\theta \) as follows:

\[f(\eta) = f_0(\eta) + p^1f_1(\eta) + p^2f_2(\eta) + p^3f_3(\eta) + \ldots = \sum_{i=0}^{N} p^i f_i(\eta) \]

(Equation 33)

\[\theta(\eta) = \theta_0(\eta) + p^1\theta_1(\eta) + p^2\theta_2(\eta) + p^3\theta_3(\eta) + \ldots = \sum_{i=0}^{N} p^i \theta_i(\eta) \]

(Equation 34)

With some rearrangements based on powers of \(p \)-terms, we get: \(p^0 f_0 = 0, \theta_0 = 0 \)

Boundary conditions:

\[f_0^\prime(0) = 1, \quad f_0(0) = 0, \quad \theta_0(0) = 1 \quad \text{at} \quad x = 0 \]

\[f_0^\prime(1) = 0, \quad f_0(1) = 0, \quad \theta_0(1) = 0 \quad \text{at} \quad x = 1 \]

(Equation 35)

The solution of equations is obtained when \(p \to 1 \), will be as follows:

\[f(\eta) = f_0(\eta) + f_1(\eta) + f_2(\eta) + f_3(\eta) + \ldots = \sum_{i=0}^{N} f_i(\eta) \]

\[\theta(\eta) = \theta_0(\eta) + \theta_1(\eta) + \theta_2(\eta) + \theta_3(\eta) + \ldots = \sum_{i=0}^{N} \theta_i(\eta) \]

(Equation 36)

2.4. Akbari–Ganji’s method (AGM)

2.4.1. Basic Idea of the AGM

The general form of equation with the boundary conditions is: (Equation 37)

\[p_x : f(u, u', u'', \ldots, u^{(m)}) = 0; \quad u = u(x) \]

The nonlinear differential equation of \(p \), the parameter \(u \) and their derivatives are considered as follows:

Boundary conditions:

\[u(x) = u_0, u'(x) = u_1, \ldots, u^{(m-1)} (x) = u_{m-1} \quad \text{at} \quad x = 0 \]

\[u(x) = u_m, u'(x) = u_{m+1}, \ldots, u^{(m-1)} (x) = u_{2m-1} \quad \text{at} \quad x = L \]

(Equation 38)

We suppose that the solution of this equation is given by:

\[u(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x^1 + a_2 x^2 + a_3 x^3 \ldots + a_n x^n \]

(Equation 39)

The larger \(n \), the more accurate the solution will be obtained. By inserting Eq. (39) into Eq. (37), the residuals can be obtained. According to
boundary conditions and residuals at boundaries, the constant parameters in Eq. (38) can be reached [7].

2.4.2. Applying the boundary conditions

(a) The boundary conditions are applied for the solution of the differential Eq. (39) as follows:
When \(x = 0 \): (Equation 40)
\[
\begin{align*}
\eta (0) &= 0 = u_0 = u_0'
\end{align*}
\]
And when \(x = L \):
\[
\begin{align*}
\eta (L) &= a_0 + a_1 + a_2 + a_3 + \ldots + a_n = u_L \\
\eta' (L) &= a_1 + 2a_2 + 3a_3 + \ldots + na_n = u_L' \\
\eta'' (L) &= 2a_2 + 6a_3 + 12a_4 + \ldots + n(n - 1)a_n = u_L''
\end{align*}
\]

(Equation 41)

2.4.3. Application of the AGM

Taking into account the AGM, initially, we introduce the residuals [7]:
\[
F(\eta) = \left(1 + \frac{1}{\beta}\right)f'(\eta) - \left[A_1 \frac{A_3}{A_3} - \left[A_2 \frac{A_3}{A_3}\right]\right]
\]
\[
G(\eta) = \phi(\eta) + \left[3 \frac{N}{4} \left[A_6 \frac{A_4}{A_4} + \left[A_2 \frac{A_3}{A_3}\right]\right]f(\eta)\phi'(\eta)
\]
\[
+ \left[3 \frac{N}{4} \left[A_6 \frac{A_4}{A_4} + \left[A_2 \frac{A_3}{A_3}\right]\right]f(\eta)\phi'(\eta)\right]
\]

(Equation 42)

The solutions of the equations are considered as:
\[
\eta(\eta) = \sum_{i=0}^{9} a_i^i, \phi(\eta) = \sum_{i=0}^{9} b_i^i
\]

(Equation 43)

Where: \(R \) : Dimensionless viscous number, \(B_0 \) : Magnetic field \((kg \cdot s^{-2} \cdot A^{-1})\), \(A_1, A_2, A_3, A_4, A_5 \) : Dimensionless constants, \(P \) : Density \((kg/m^3)\), \(\mu \) : Dynamic viscosity \((Pa\cdot s)\), \(\sigma \) : Cauchy stress tensor, \(P \) : Nano-solid-particles, \(nf \) : Nanofluid, \(v \) : Kinematic viscosity \((m^2/s)\), \(v \) : Velocity in y direction \((m/s)\), \(P \) : Pressure term \((Pa)\), \(M \) : Dimensionless Magnetic parameter, \(u \) : Velocity in x direction \((m/s)\), \(\phi \) : Solid volume fraction, \(\mu_b \) : Dynamic plastic viscosity \((Pa\cdot s)\), \(\sigma_{nf} \) : Electrical conductivity \((Siemens/m)\), \(x, y \) : Cartesian coordinates \((m)\), \(\sigma \) : Normal stress, \(\tau \) : Deviatoric stress tensor, \(N_{nf} \) : Nusselt number, \(e_{ij} \) : Deformation rate, \(f \) : Base fluid, \(f; f' \) : Dimensionless velocity.

3. Results and discussion

Table 1. The results obtained using the HPM and the AGM for \(-f^*(1)\) and \(-\theta^*(1)\) when \(N = 1, Ec = 0.01, M = 1, R = 1, \delta = 0.1, \beta = 0.8, \beta_b = 0.5, \phi = 0.02 \) and \(P = 6.2 \).

<table>
<thead>
<tr>
<th>R</th>
<th>HPM</th>
<th>AGM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-f^*(0))</td>
<td>(-\theta^*(0))</td>
</tr>
<tr>
<td>0.1</td>
<td>4.06360928</td>
<td>0.83216004</td>
</tr>
<tr>
<td>0.2</td>
<td>4.06777559</td>
<td>0.84380209</td>
</tr>
<tr>
<td>0.5</td>
<td>4.08027014</td>
<td>0.87944411</td>
</tr>
<tr>
<td>0.8</td>
<td>4.09275806</td>
<td>0.91616823</td>
</tr>
<tr>
<td>1.0</td>
<td>4.10107958</td>
<td>0.94125739</td>
</tr>
<tr>
<td>1.2</td>
<td>4.10993806</td>
<td>0.96683536</td>
</tr>
<tr>
<td>1.5</td>
<td>4.12187000</td>
<td>1.00612573</td>
</tr>
</tbody>
</table>
Fig 2. The results acquired using the HPM and the AGM for \(f(\eta) \) (a), \(f'(\eta) \) (b), and \(\theta(\eta) \) (c).

Table 2. Thermophysical characteristics of pure water and various metallic and nonmetallic NPs [7]

<table>
<thead>
<tr>
<th></th>
<th>(\rho) (Kg / m(^3))</th>
<th>(C_p) (J / Kg)</th>
<th>(K) (W / mK)</th>
<th>(\sigma) (S m(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>8933</td>
<td>385</td>
<td>401</td>
<td>5.96 (\times 10^7)</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
<td>0.05</td>
</tr>
<tr>
<td>Al(_2)O(_3)</td>
<td>3970</td>
<td>765.0</td>
<td>40.000</td>
<td>1(\times 10^{-10})</td>
</tr>
<tr>
<td>Ag</td>
<td>10.500</td>
<td>235</td>
<td>429</td>
<td>6.3 (\times 10^7)</td>
</tr>
<tr>
<td>Au</td>
<td>19.300</td>
<td>129</td>
<td>318</td>
<td>4.52 (\times 10^7)</td>
</tr>
</tbody>
</table>

In this study, the impacts of various factors on the heat transfer characteristics and the values of \(N_u \) calculated for various parameters and metallic and nonmetallic NPs are illustrated in the form of graphs and tables for clarity. To validate the semi-analytical solution obtained using the AGM, the results are compared with those obtained using the HPM. This comparison is depicted in Fig 2 and Table 1. As clearly noticed from Table 1 and Fig 2, the comparison indicates a perfect agreement. Table 2 shows the thermophysical characteristics of pure water and various metallic and nonmetallic NPs.

The change in the TP as a function of casson fluid parameter \(\beta \) is depicted in Fig 3. Fig 3 indicates that the TP decreases with increasing \(\beta \). The variation in the TP versus the \(M \) is graphically presented in Fig 4. It is clear from Fig 4 that the TP increases as the \(M \) increases, which is in good agreement with the previous report [40]. This change in the TP can mainly be attributed to the presence of the Joule heating effect, which
leads to the thickening of the temperature boundary layer. Accordingly, it is concluded that higher values of M parameter are more appropriate where the heating is required.

The effect of N on the TP is presented in Fig 6. Increasing N parameter gives rise to an increment in the TP as observed in Fig 6 which is consistent with the result of a previously published study [40].

Fig 3. The effect of β on the $\theta(\eta)$

Fig 4. The influence of M on the $\theta(\eta)$

Fig 5. The influence of R on the $\theta(\eta)$

Fig 6. The effect of N on the $\theta(\eta)$

Fig 7. The impact of Pr on the $\theta(\eta)$

Fig 8. The influence of Ec on the $\theta(\eta)$
Fig 7 depicts the influence of Pr on the TP. As clearly noticed from Fig 7 that the TP increases for large numbers of Pr. The main reason for this change is that a large number of Pr cause a significant reduction in thermal diffusivity and thickness of the thermal boundary layer.

The effect of Ec on the TP is exposed in Fig 8. It is found that the TP increases for increasing values of the Ec. This increase in the TP is expected as the Ec plays a direct role on the heat dissipation process.

Fig 9 shows how the β_E affects the TP. The change in the TP is primarily caused by the fact that, as β_E values rise, NPs need more time to transfer heat energy to their neighboring NPs. This explains the non-conductive behavior of the environment and results in the decay of the TP in the flow region. However, when $\beta_E = 0$, the temperature field predominates because $\beta_E = 0$ represents the flow of heat moving at infinite speed. Contrary to the classical Fourier's theory, the TP appears to be suppressed when the CCHF model is used, which is consistent with the report of a published study [30].

Besides, from an industrial point of view, momentum and heat transport coefficients have numerous advantages. The numerical values of N_u' for different control parameters and various metallic and nonmetallic NPs are calculated when $N = 1$, $E_c = 0.01$, $\varphi = 0.02$, $M = 1$, $\delta = 0.1$, $\beta = 0.8$, $\beta_E = 0.5$ and $P_r = 6.2$. The effect of the R on the N_u' is presented in Table 3. It is clear from Table 3 that the Nu varies proportionally with the R, which is consistent with the results of a previous study [14].

The variation of N_u' as a function of the M is shown in Table 4. Table 4 reveals that the N_u' is inversely proportional to the M. This result is in good agreement with that reported in [14].

The N_u' values against the φ values are given in Table 5. The results show that the N_u' changes proportionally with the φ. Similar enhancement in the N_u' with increasing φ was also reported for $\mathrm{Al}_2\mathrm{O}_3$-water nanofluid in a triangular duct and $\mathrm{Al}_2\mathrm{O}_3$-water and TiO_2-water nanofluids in turbulent flow in previous experimental and numerical studies [42, 43].

The N_u' values for various metallic (Ag, Cu, and Au) and nonmetallic ($\mathrm{Al}_2\mathrm{O}_3$) NPs are also
determined and the obtained results are shown in Table 6. As distinctly noticed from Table 6, different metallic and nonmetallic NPs have different values of the \(N'_u \).

Table 3. The influence of the \(R \) on the \(N'_u \).

<table>
<thead>
<tr>
<th>(R)</th>
<th>(N'_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.37837326</td>
</tr>
<tr>
<td>0.2</td>
<td>0.38366767</td>
</tr>
<tr>
<td>0.5</td>
<td>0.39987276</td>
</tr>
<tr>
<td>0.8</td>
<td>0.41650778</td>
</tr>
<tr>
<td>1.0</td>
<td>0.42797852</td>
</tr>
<tr>
<td>1.2</td>
<td>0.43960852</td>
</tr>
<tr>
<td>1.5</td>
<td>0.45747339</td>
</tr>
</tbody>
</table>

Table 4. The variation of \(N'_u \) as a function of the \(M \).

<table>
<thead>
<tr>
<th>(M)</th>
<th>(N'_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.42883319</td>
</tr>
<tr>
<td>0.2</td>
<td>0.42873799</td>
</tr>
<tr>
<td>0.5</td>
<td>0.42845276</td>
</tr>
<tr>
<td>0.8</td>
<td>0.42816805</td>
</tr>
<tr>
<td>1.0</td>
<td>0.42797852</td>
</tr>
<tr>
<td>1.2</td>
<td>0.42778922</td>
</tr>
<tr>
<td>1.5</td>
<td>0.42750570</td>
</tr>
</tbody>
</table>

Table 5. The \(N'_u \) values with respect to the \(\phi \).

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(N'_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.41219198</td>
</tr>
<tr>
<td>0.01</td>
<td>0.42287993</td>
</tr>
<tr>
<td>0.02</td>
<td>0.43375665</td>
</tr>
<tr>
<td>0.03</td>
<td>0.44485357</td>
</tr>
<tr>
<td>0.04</td>
<td>0.45614831</td>
</tr>
<tr>
<td>0.05</td>
<td>0.46765462</td>
</tr>
</tbody>
</table>

Table 6. The values of \(N'_u \) for various metallic and nonmetallic NPs.

<table>
<thead>
<tr>
<th>NPs</th>
<th>(N'_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>0.43276765</td>
</tr>
<tr>
<td>Cu</td>
<td>0.42797852</td>
</tr>
<tr>
<td>Ag</td>
<td>0.42711319</td>
</tr>
<tr>
<td>Al_{2}O_{3}</td>
<td>0.42693013</td>
</tr>
</tbody>
</table>

4. Conclusion

This work highlights the effect of various factors such as \(\beta, R, M, \phi, N, Pr, E_c, \) and \(\beta_E \) on the heat transfer characteristics of the steady MHD Casson nanofluid (Cu + Water) between two infinite parallel plates considering the CCHF model. The governing equations are solved by means of the AGM. The values of the \(N'_u \) are also determined for the \(R, M, \) and \(\phi \) parameters and various metallic and nonmetallic NPs. There is a perfect agreement between the results obtained using the AGM and the HPM, confirming the accuracy of the AGM. The important findings obtained within the scope of this study are as follows:

- Rising \(M \) causes an increment in the TP, indicating that higher values of \(M \) are more appropriate where the heating is required.
- The TP decreases with increasing \(\beta \) while it increases with increasing \(R \).
- Increasing \(N, Pr, Ec \), and \(\phi \) result in an increment in the TP.
- A decreasing trend in the TP is found for large values of the \(\beta_E \).
- The \(N'_u \) varies proportionally with the \(R \) and \(\phi \) parameters, but it is inversely proportional to the \(M \) parameter.
- Different metallic and nonmetallic NPs have different values of the \(N'_u \).

Author Contributions:

A. El Harfouf: Conceptualization, Methodology, Investigation, Validation, Writing-original draft-review & editing, Formal analysis.

Dung Nguyen Trong: Writing-original draft-review & editing-revew.

Hassane Mes-adi: Writing-original draft.

S. Hayani Mounir: Writing-original draft.

Umut Saraç: Writing-original draft-review & editing-editing.

Doan Phuong Lan: Writing-original draft.
Van Cao Long: Writing-original draft.
Ştefan Țălu: Writing-original draft & editing-review.
All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external unding.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

ORCID:
A. El Harfouf, https://orcid.org/0002-9836-4923
Dung Nguyen Trong, http://orcid.org/0000-0002-7706-1392
Hassane Mes-adì, https://orcid.org/0000-0003-4315-9786
S. Hayani Mounir, http://orcid.org/0000-0001-6014-9702
Umut Saraç, https://orcid.org/0000-0001-7657-173X
Doan Phuong Lan, https://orcid.org/0000-0002-6514-3657
Van Cao Long, https://orcid.org/0000-0002-0885-302X
Ştefan Țălu, http://orcid.org/0000-0003-1311-7657

References
[34] D N Trong, C N Chinh and H T Vinh RSC Adv. 7 25406 (2017).