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Abstract: California Bearing Ratio (CBR) is an essential parameter utilized to 

evaluate the strength of the soil subgrades and base course materials of 

different types of pavements. In this study, the Machine Learning (ML) 

approach has been adopted using Random Forest (RF) model to estimate the 

CBR of the soil based on 10 input parameters such as Plasticity Index (PI), 

Liquid Limit (LL), Silt Clay content (SC), Fine Sand content (FS), Coarse sand 

content (CS), Optimum Water Content (OWC), Organic content (O), Plastic 

Limit (PL), Gravel content (G), and Maximum Dry Density (MDD), which can 

be easily determined in the laboratory. An experimental database was collected 

from 214 soil samples, which were classified according to AASHTO M 

145(clayey, gravel, sand, silty and clayey soils). The data was divided into 70% 

training and 30% test data in the model study. Model performance was 

evaluated using standard statistical measures such as coefficient of 

determination, correlations, and errors (relative error, MAE, and RMSE). Based 

on the analysis results shows the RF model is capable of correct prediction of 

the CBR of the Soil. 
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1. Introduction 

California Bearing Ratio (CBR) is a 

parameter of great importance in geotechnical 

engineering to evaluate the strength of subgrade 

material of pavements structures of roadways, 

railways, and airfields [1]. CBR can be determined 

in the field as well as in the laboratory. In the field 

CBR test method, a loading jack is used to force a 

piston into the soil mass and subgrade material at 

the test site, and piston load is compared to the 

depth of penetration to measure the relative 

strength of in-situ soils and base course material 

for pavement design. Field CBR equipment is 

costly and difficult to carry at different locations/ 

sites. Therefore, laboratory methods are generally 

employed for the determination of CBR of soil and 

subgrade material. In the laboratory, CBR is 

determined by inserting a plunger of standard 

diameter at a rate of 1.3 mm/min into a compacted 

soil specimen prepared at Optimum Water Content 

(OWC) [2]. The CBR values of any soil samples 

can be estimated either in soaked conditions or in 

un-soaked conditions. Normally, the CBR values of 

soaked soil samples are always lower than the 

values of un-soaked samples. Therefore, the CBR 

values of soaked samples are generally accepted 

as a quality estimation of subgrade materials. 

https://jstt.vn/index.php/en
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However, the soil samples prepared at OWC need 

to be kept in water saturation condition for 4 days, 

and the entire exercise of determining the soil CBR 

is a time- consuming process [2,13] and hence, the 

construction time is affected significantly by this 

process. Generally, CBR is to be determined for a 

number of samples, which is costly and time-

consuming. Moreover, there is a possibility of 

Plastic Limit (PL), Optimum Water Content (OWC), 

disturbance of (LL), Plasticity Index (PI), and 

Maximum Dry Density (MDD). 

Nowadays, many researchers have applied 

computer soft techniques as an effective method to 

predict the desired output data, combining the real-

life problems of geotechnical engineering [3,5-8, 

10,12,14-24] such as Layer Perceptron Neural 

Network (MLPN), Support Vector Machine (SVM), 

Gene Expression Programming (GEP), Artificial 

Neural Network (ANN), Multi- Group Method of 

Data Handling (GMDH), etc. (Table 1). 

In this study, we have used Random Forest 

(RF) Machine Learning (ML) model based on 214 

soil samples for the estimation of CBR soil samples 

during laboratory experiments. Therefore, indirect 

estimation of CBR may be adopted using other 

physico-mechanical parameters of soils and 

subgrade materials which can be determined 

easily in the laboratory such as Gravel content (G), 

Coarse sand content (CS), Fine Sand content (FS), 

Silt Clay content (SC), Organic content (O), Liquid 

Limit based on limited geo-mechanical input 

parameters which can be easily determined in the 

laboratory. Matlab software was used for modeling 

and data visualization.

Table 1. The previous ML study models used in predicting the CBR of soil 

Reference Model(s) used Prediction 

accuracy 

Number of 

soil samples 

[3] GEP, ANN 0.910<R2<0.918 151 

[4] ANN R2 = 0.80–0.95 124 

[5] ANN R2 = 0.928 207 

[6] GMDH, ANN 0.9703<R2<0.978

3 

158 

[7] GEP, SVM 0.7930<R2<0.912 389 

[8] Particle Swarm Optimization (PSO) - 134 

[9] Bayesian Programming (BP), Levenberg–Marquardt 

Backpropagation (LMBP), and Conjugate Gradient 

(CG) 

R2 = 0.90 129 

[10] ANN, alternating model trees (AMT), Gaussian 

processes regression (GPR), elastic net 

regularization regression (ENRR), least median of 

squares regression (LMSR), lazy Kstar (LKS), M-5 

model trees, and random forest (RF) 

0.80< R2<0.92 97 

[11] Multivariate adaptive regression splines with 

piecewise-linear and piecewise-cubic (MARS-L, 

MARS-C), Gaussian process regression (GPR), and 

genetic programming (GP)  

R2 = 0.9686, 

RMSE = 0.0359 

312 

[12] ELM coupled-improved PSO (ELM-IPSO), ELM 

coupled-TAC PSO (ELM-TPSO), and ELM coupled-

modified PSO (ELM-MPSO) 

0.81< R2<0.91 312 

2. Materials and Methods 

2.1. Study area 

The study area is along 80.23 km route 

between Km70+108 and Km150+ at the Van Don - 
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Mong Cai expressway project, Quang Ninh 

province, Vietnam (Fig 1). The scale of the project: 

specification meets TCVN 5729:2012 [25] with 4 

lanes, design speed is 100 km/h. The width of the 

roadbed is 24.5 m, the total width of the vehicle 

lanes is 4x3.5 m, the width of the median strip is 

0.5 m, the width of the inner safety strip is 2x0.5 m, 

and the width of the outer safety strip is 2x0.5 m, 

the width of the emergency stop lane (reserved 

platform) is 2x4.0 m. 

Soil samples were collected from soil mines 

along the route (Fig 2) for laboratory testing. The 

testing works were carried out between, November 

8, 2019 to July 1, 2021 of 214 samples. The tests 

included Particle size analysis, test for determining 

the Liquid limit, test for determination of Organic 

content, test for Moisture–Density relations, and 

test for the CBR.

 
Fig 1. Location of study area 

 
Fig 2. Soil sample collections along road 

2.2. Brief description of determination of geo-

mechanical properties of soils 

The soil compaction process is the 

densification by mechanical impacts (Fig 3). Soil 
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densification leads to air out of the soil, soil comes 

to more densification which improves the  

strength characteristics of soils, and reduces 

permeability. Using setup compaction energy, the 

density of soil varies as a math function of water 

content. This relationship is called the moisture-

density curve, or the compaction curve. Steps to 

find this curve equation has been standardized and 

are generally determined by Standard Proctor 

(ASTM D 698 [26] and AASHTO T 99 [27]) and 

Modified Proctor (ASTM D 1557 [28] and AASHTO 

T 180 [29]) tests. These tests can apply to cohesive 

soils. For cohesionless soils, should be used 

(ASTM D 4253 [30] and ASTM D 4254 [31] [32]). 

Identifying the swelling properties of soils in 

the road subgrade is a key component of the 

geotechnical survey. Soil locations distributed at 

shallow depths beneath the proposed pavement 

elevation are generally sampled as part of the 

survey, and their swell potential may be identified 

in a number of methods. Atterberg’s limits are used 

as a common method for identifying swell potential. 

The plastic and liquid limits and/or shrinkage limits 

will usually be performed in the laboratory [1]. 

Determining Liquid Limit (LL), Plastic Limit (PL), 

and Plasticity Index (PI) of soils according to 

AASHTO T 89 [33] and ASTM D 4318 [34]. LL is 

defined as the moisture content, when it increases 

than will cause plastic soil to do as a liquid. The PL 

is defined as the moisture content, when it 

increases than will cause semi-solid soil to become 

plastic. The PI is the difference between the liquid 

limit and the plastic limit (PI = LL - PL). The soils 

that have a higher PI tend to be predominantly clay, 

on the other hand, those with a lower PI tend to be 

predominantly silt [32]. 

The classification of soils is very important 

(through laboratory tests) in order to evaluate the 

vertical and horizontal variability of the subgrade. 

The classification through laboratory testing also 

provides information to determine stabilization 

requirements to improve the strength of the 

subgrade should additional support be required [1]. 

We have to determine particle size, particle-size 

analysis of soils was conducted according to 

AASHTO T 88 [35] and ASTM D 422 [36]. 

CBR value is obtained as the average of the 

ratio of laboratory stress to standard stress for the 

two penetration depths and expressed as a 

percentage and referenced to optimum water 

content and a maximum dry density are 

determined by a standard compaction test [37]. 

The CBR value was determined according to 

AASHTO T 193 [2] (Fig 3). 

The organic content was determined 

according to AASHTO T 267 [38]. 

   

Fig 3. Testing work of California Bearing Ratio (CBR) of Laboratory-Compacted Soils 

2.3. Data used 

2.3.1. CBR values determined in the laboratory 

CBR test method was developed by the 

California Department of Highways in the late 

1920s with the purpose to determine properties of 

the cohesive soil in the subgrade and subbase 

layers of road pavement sections. The test method 

was specified by the American Association of State 

Highway and Transportation Officials [39] and the 

American Society for Testing and Materials and 
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Materials [40]. 

In the United States, some organizations 

such as Federal Highway Administration (FHWA), 

Federal Aviation Administration (FAA), and 

AASHTO, etc. have used CBR values for designing 

highways, airports, parking lots, and other 

pavement. Researchers determined the empirical 

correlation between CBR and resilient modulus 

and a variety of other engineering soil properties. 

CBR is not a fundamental material property so that 

it is unsuitable for application in mechanistic and 

mechanistic-empirical design procedures. 

However, it has a long history in pavement design, 

this test performs relatively easy and 

inexpensively, and it has reasonably well 

correlations with more fundamental properties like 

resilient modulus. Therefore, it continues to be 

used in practice [1]. 

The subgrade materials are typically 

characterized by their strength and stiffness. The 

United States commonly used three basic 

subgrade stiffness/strength characterizations: the 

California Bearing Ratio (CBR), the modulus of 

subgrade reaction (k), and the elastic (resilient) 

modulus. Although there are other factors related 

to evaluating subgrade materials (such as swell in 

the case of materials that have clay content), 

however, stiffness is the most common 

characterization [32]. 

Further, pavement performance also 

depends on subgrade uniformity. However, it’s 

difficult to obtain a perfect subgrade due to the 

inherent variability properties of the soil and the 

influence of water, temperature, and construction 

activities. In the United States, the research of [32] 

has shown that with a subgrade strength of less 

than a CBR value of 10, the subbase layer will 

deflect under traffic loadings in the same manner 

as the subgrade. That deflection then impacts the 

pavement, initially for flexible pavements, but 

ultimately rigid pavements as well. 

2.3.2. Influencing factors (input parameters) 

In this study, we considered 10 influencing 

factors: Plasticity Index (PI), Liquid Limit (LL), Silt 

Clay content (SC), Fine Sand content (FS), Coarse 

sand content (CS), Optimum Water Content 

(OWC), Organic content (O), Plastic Limit (PL), 

Gravel content (G), and Maximum Dry Density 

(MDD) for the estimation of CBR using FR model. 

To obtain a high-quality subgrade, a proper 

understanding of soil characteristics, proper 

grading, and quality control testing are required. 

However, pavement design requirements and the 

level of engineering effort should be consistent with 

the relative importance, scale, and cost of projects. 

Therefore, must to has knowledge of subgrade 

soil's basic engineering characteristics is required 

for design. These include soil classification, soil 

density, coefficient of lateral earth pressure, and 

estimated CBR or resilient modulus. Typical CBR 

values of different soils relate to soil types are 

available in the American Concrete Pavement 

Association, Asphalt Paving Association, State of 

Ohio, State of Iowa, and Rollings et al. [1, 32, 41]. 

According to AASHTO M 145 [42] and ASTM 

D 2487 [43], the classification of soils needs to 

determine particle-size distribution, liquid limit, and 

plasticity index. Especially, ASTM D 2487 [43] also 

takes into account organic content. 

The water content and the dry density as well 

as the texture of the soil affect the CBR. Normally, 

the CBR test in the laboratory is conducted on test 

samples that have different moisture, further, water 

content is likely to be achieved in the field. The 

difficulty is to determine the stable moisture content 

to find maximum dry density. Many other countries 

usually use the 4-day soaked CBR samples for 

determining CBR values [44]. 

2.4. Methods used 

A database comprising of 10 input variables 

(G, CS, FS, SC, O, LL, PL, PI, OWC, and MDD) 

was employed, such that 70% of the data was used 

for training whereas the remaining 30% was 

selected for testing. Random Forest model was 

formulated and its performance was evaluated 

using prominent statistical indices namely RMSE, 

MAE, and R2. 
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Fig 4. Methodological framework used for this study 

Table 2. Statistical analysis of the parameters used in this study 

Parameters Codes Unit Minimum Maximum Mean Median StD 

Inputs        

G X1 (%) 0.00 51.40 22.057 24.750 13.295 

CS X2 (%) 3.00 46.30 24.101 23.700 7.017 

FS X3 (%) 2.50 41.50 9.035 7.250 6.468 

SC X4 (%) 17.87 88.70 44.807 44.550 10.447 

O X5 (%) 0.12 2.94 1.509 1.511 0.372 

LL X6 (%) 2.08 48.45 39.514 39.994 6.173 

PL X7 (%) 1.17 28.49 20.316 20.833 3.067 

PI X8 (%) 0.91 27.48 19.198 18.436 4.078 

OWC X9 (%) 9.30 21.50 14.010 14.273 2.618 

MDD X10 (g/cm3) 1.672 2.140 1.881 1.871 0.118 

Output        

CBR Y1 (%) 3.09 41.26 11.804 7.953 8.175 

*St.D. = Standard Deviation 

2.4.1. Random Forest ML model 

Random forests [45] are a set of approaches 

for creating an ensemble of decision trees using a 

randomized version of the tree induction 

procedure. The way random forests methods add 

random perturbations into the induction procedure 

distinguishes them from other decision trees. The 

challenge is to inject randomness into arbitrary 

decision trees while minimizing (x) and retaining a 

low bias. 

The ensemble of decision trees was first 

introduced by Kwok and Carter [46]. The averaging 

many decision trees with diverse structures 

consistently generate better outcomes than any of 

the ensemble's individual components. However, 

this method was neither random nor totally 

automatic: decision trees were created by 

manually selecting splits towards the top of the tree 
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that was almost as good as the ideal splits, and 

then expanding them using the conventional ID3 

induction mechanism. 

Breiman [47] a formerly technical study was 

one of the first to show, both numerically and 

practically, that combining numerous versions of a 

predictor into an ensemble might result in 

significant improvements in reliability. He observes 

and demonstrates that the mean model EL{ϕL} ELL 

has a smaller anticipated generalization error than 

the model L. As a result, Bagging consists in 

approximating EL{ϕL} of merging models 

developed from bootstrap samples [48] Lm (for m 

= 1, . . . , M) of the training set L. The {Lm} form is 

a set of L replicas, each of which contains N cases 

(x, y), picked at random but with replacing from L. 

Even though |L| = |Lm| = N, the bootstrap 

replication shows that 37% of the couples (x, y) 

from L are absent on average. Indeed, after N 

drawings with replacing, the likelihood of never 

being chosen is high. 

N
1 1

1 0.368
N e

 
−   

 
 (1) 

When the training set L is small, however, 

subsampling 67% of the objects may result in an 

increase in bias (for example, due to a reduction in 

model accuracy) that is too great to be balanced by 

a reduction in variance, resulting in overall lower 

performance. However, bagging has proven to be 

a useful method in a variety of situations, with one 

of its advantages being that it could be used to 

enhance any type of model, not just decision trees. 

Breiman [45] couples Bagging [47] with the 

random variable selection at each node in his 

seminal Random Forests (RF) study [49]. 

Combining both methodologies and modifying 

randomness results in one of the most effective off-

the-shelf machine learning algorithms, which works 

shockingly well for practically any task. Random 

Forests are shown to be competitive with boosting 

[50] and arcing algorithms [51], which also are 

designed to reduce bias whereas forests 

emphasize minimizing the error. 

2.4.2. Validation indicators 

The statistical performance of the developed 

Random Forest model was assessed by deploying 

three analytical standard evaluation indices, such 

as, coefficient of determination (R2), mean 

absolute error (MAE), and root mean square error 

(RMSE). These indices are given from Eq. 2 to Eq. 

4 [52-55]: 

( )
n 2

i i2 1

2
n

i i1

X Y
R 1

Y Y
−

−
= −

 
− 

 





 

(worst value = -∞; best value = +1) 

(2) 

n

i i

1

1
MAE X Y

n
= −  

(best value = 0; worst value = +∞) 

(3) 

(best value = 0; worst value = +∞) 

(4) 

Such that Xi and Yi are the ith experimental 

and measured outputs, respectively; X̅i and Y̅i are 

mean of the experimental and measured outputs, 

respectively, whereas n refers to the total samples. 

  

( )
n

2

i i

1

1
RMSE X Y

n
= −
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Fig 5. Correlation analysis of input variables and output variable used in this study 

The level of correlation between actual and 

estimated values is considered to be high when the 

R2 value is more than 0.8. Second, RMSE is 

preferable because larger residual errors are dealt 

with more sensitively, and RMSE≈0 represents the 

least errors [56]. Conversely, there are cases when 

RMSE isn't the best option for reaching a greater 

level of accuracy, and in those cases, MAE is used 

since it works well with both smooth and 

continuous data. Furthermore, higher R and lower 

RMSE and MAE values indicate reliable model 

performance and accurate calibration [52, 57]. 

3. Results and discussions 

The CBR value for soils will depend on their 

density, setup moisture content, and moisture 

content after soaking. Note, the results of 

laboratory compaction should closely represent the 

results of field compaction. The first two of these 

variables must be carefully controlled during the 
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preparation of laboratory samples for testing. 

Unless it can be ascertained that the soil being 

tested will not accumulate moisture and be affected 

by it in the field after construction. The CBR tests 

should be conducted on soaked samples [32]. 

The U.S. Army Corps of Engineers (USACE) 

used the CBR as an efficient evaluation of strength 

in cohesive soils. The USACE reports, “the un-

soaked CBR values are high on the dry side of 

optimum, but there is a dramatic loss in strength as 

setup moisture content is increased” [58, 59]. To 

measure strength, from tests using penetration 

resistance, Hilf obtained the same results [60]. 

When soil is in a dry state, it exhibits high strength 

due to an appreciable inter-particle, the attractive 

force created by the high curvature of the Menisci 

between soil particles. However, further moisture 

increasing greatly reduces this friction strength due 

to lubrication of the soil particles [32]. 

The comparison of actual and anticipated 

results for output 'CBR' for training and testing data 

is shown in Fig 6 (a and b). The predicted results 

nearly match the expected values, as can be 

shown. The R2 values of 0.98 and 0.92, 

respectively, reflect the close prediction of the 

training and testing datasets (Fig 7, Table 3). R2 

greater than 0.8 indicates that the predicted and 

experimental values are highly correlated [9, 52, 

61-64]. MAE interprets values of 0.87 and 2.25 (Fig 

8) in the same way, showing the assessment of 

actual and predicted findings. The forecasted 

values were drawn on the y-axis and the measured 

results were put on the x-axis. [52, 61]. The 

regression line's slope is near to that of the 

optimum fit (experimental: prediction), indicating a 

high association. For both the training and testing 

data, error-values are displayed against the data 

samples for the created model for prediction of 

CBR (Fig 8), which indicates a focused fluctuation 

around the zero-horizontal line. For the training and 

testing data, the RMSE was 1.43 and 3.96, 

respectively. 

 

 
Fig 6. Comparison of the predicted and actual results: (a) training and (b) testing 
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Fig 7. R2 values of the model: (a) training dataset and (b) testing dataset 

Table 3. Model performance 

No Parameters 
Datasets 

Training Testing 

1 R2 0.98 0.92 

2 MAE 0.87 2.25 

3 RMSE 1.43 3.96 

 

 
Fig 8. RMSE values of the model: (a) training, (b) testing 
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4. Conclusions 

In this research, the Random Forest model 

was trained and developed for the prediction of the 

CBR of soils. The input parameters of the models 

are G, CS, FS, SC, O, LL, PL, PI, OWC, and MDD. 

Following are the main conclusions: 

1. The constructed Random Forest model is 

a reliable model in predicting soil CBR based on 

the obtained R2 value: 0.98, which is greater than 

the prediction accuracy of soft computing 

methodologies available in the literature (Table 1) 

[7, 9, 11, 65, 66]. The prediction accuracy will 

depend on the dataset and methodology adopted. 

2. The correlation coefficient (R2) values 

acquired during the testing process of the Random 

Forest model were much lower than those obtained 

during the training process, indicating over-fitting 

concerns. The Random Forest model showed no 

signs of over-fitting during the training phase, 

registering equal coefficient of determination 

values. 

3. As part of future work, further refinement 

of the RF model can be attempted using more input 

values and results may be compared with other ML 

models. 
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