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Abstract: California Bearing Ratio (CBR) is an essential parameter utilized to 

evaluate the strength of the soil subgrades and base course materials of different 

types of pavements. In this study, the Machine Learning (ML) approach has been 

adopted using Random Forest (RF) model to estimate the CBR of the soil based on 

10 input parameters such as Plasticity Index (PI), Liquid Limit (LL), Silt Clay content 

(SC), Fine Sand content (FS), Coarse sand content (CS), Optimum Water Content 

(OWC), Organic content (O), Plastic Limit (PL), Gravel content (G), and Maximum 

Dry Density (MDD), which can be easily determined in the laboratory. An 

experimental database was collected from 214 soil samples, which were classified 

according to AASHTO M 145(clayey, gravel, sand, silty and clayey soils). The data 

was divided into 70% training and 30% test data in the model study. Model 

performance was evaluated using standard statistical measures such as coefficient 

of determination, correlations, and errors (relative error, MAE, and RMSE). Based 

on the analysis results shows the RF model is capable of correct prediction of the 

CBR of the Soil. 
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1. Introduction 

California Bearing Ratio (CBR) is a 

parameter of great importance in geotechnical 

engineering to evaluate the strength of subgrade 

material of pavements structures of roadways, 

railways, and airfields [1]. CBR can be 

determined in the field as well as in the 

laboratory. In the field CBR test method, a 

loading jack is used to force a piston into the soil 

mass and subgrade material at the test site, and 

piston load is compared to the depth of 

penetration to measure the relative strength of in-

situ soils and base course material for pavement 

design. Field CBR equipment is costly and 

difficult to carry at different locations/ sites. 

Therefore, laboratory methods are generally 

employed for the determination of CBR of soil 

and subgrade material. In the laboratory, CBR is 

determined by inserting a plunger of standard 

diameter at a rate of 1.3 mm/min into a 

compacted soil specimen prepared at Optimum 

Water Content (OWC) [2]. The CBR values of 

any soil samples can be estimated either in 

soaked conditions or in un-soaked conditions. 

Normally, the CBR values of soaked soil samples 

are always lower than the values of un-soaked 

samples. Therefore, the CBR values of soaked 

samples are generally accepted as a quality 

estimation of subgrade materials. However, the 

soil samples prepared at OWC need to be kept in 

water saturation condition for 4 days, and the 

entire exercise of determining the soil CBR is a 
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time- consuming process [2, 13] and hence, the 

construction time is affected significantly by this 

process. Generally, CBR is to be determined for 

a number of samples, which is costly and time-

consuming. Moreover, there is a possibility of 

Plastic Limit (PL), Optimum Water Content 

(OWC), disturbance of (LL), Plasticity Index (PI), 

and Maximum Dry Density (MDD). 

Nowadays, many researchers have applied 

computer soft techniques as an effective method 

to predict the desired output data, combining the 

real-life problems of geotechnical engineering [3, 

5-8, 10, 12, 14-24] such as Layer Perceptron 

Neural Network (MLPN), Support Vector Machine 

(SVM), Gene Expression Programming (GEP), 

Artificial Neural Network (ANN), Multi- Group 

Method of Data Handling (GMDH), etc. (Table 1).

Table 1. The previous ML study models used in predicting the CBR of soil 

Reference Model(s) used Prediction 

accuracy 

Number of 

soil samples 

[3] GEP, ANN 0.910<R2<0.918 151 

[4] ANN R2 = 0.80–0.95 124 

[5] ANN R2 = 0.928 207 

[6] GMDH, ANN 0.9703<R2<0.978

3 

158 

[7] GEP, SVM 0.7930<R2<0.912 389 

[8] Particle Swarm Optimization (PSO) - 134 

[9] Bayesian Programming (BP), Levenberg–Marquardt 

Backpropagation (LMBP), and Conjugate Gradient 

(CG) 

R2 = 0.90 129 

[10] ANN, alternating model trees (AMT), Gaussian 

processes regression (GPR), elastic net 

regularization regression (ENRR), least median of 

squares regression (LMSR), lazy Kstar (LKS), M-5 

model trees, and random forest (RF) 

0.80< R2<0.92 97 

[11] Multivariate adaptive regression splines with 

piecewise-linear and piecewise-cubic (MARS-L, 

MARS-C), Gaussian process regression (GPR), and 

genetic programming (GP)  

R2 = 0.9686, 

RMSE = 0.0359 

312 

[12] ELM coupled-improved PSO (ELM-IPSO), ELM 

coupled-TAC PSO (ELM-TPSO), and ELM coupled-

modified PSO (ELM-MPSO) 

0.81< R2<0.91 312 

    

In this study, we have used Random Forest 

(RF) Machine Learning (ML) model based on 214 

soil samples for the estimation of CBR soil 

samples during laboratory experiments. 

Therefore, indirect estimation of CBR may be 

adopted using other physico-mechanical 

parameters of soils and subgrade materials which 

can be determined easily in the laboratory such as 

Gravel content (G), Coarse sand content (CS), 

Fine Sand content (FS), Silt Clay content (SC), 

Organic content (O), Liquid Limit based on limited 

geo-mechanical input parameters which can be 

easily determined in the laboratory. Matlab 

software was used for modeling and data 

visualization. 

2. Materials and Methods 

2.1. Study area 
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The study area is along 80.23 km route 

between Km70+108 and Km150+ at the Van Don 

- Mong Cai expressway project, Quang Ninh 

province, Vietnam (Fig 1). The scale of the 

project: specification meets TCVN 5729:2012 [25] 

with 4 lanes, design speed is 100 km/h. The width 

of the roadbed is 24.5 m, the total width of the 

vehicle lanes is 4x3.5 m, the width of the median 

strip is 0.5 m, the width of the inner safety strip is 

2x0.5 m, and the width of the outer safety strip is 

2x0.5 m, the width of the emergency stop lane 

(reserved platform) is 2x4.0 m. 

Soil samples were collected from soil mines 

along the route (Fig 2) for laboratory testing. The 

testing works were carried out between, 

November 8, 2019 to July 1, 2021 of 214 

samples. The tests included Particle size analysis, 

test for determining the Liquid limit, test for 

determination of Organic content, test for 

Moisture–Density relations, and test for the CBR. 

 
Fig 1. Location of study area 

 

Fig 2. Soil sample collections along road 

2.2. Brief description of determination of geo-

mechanical properties of soils 

The soil compaction process is the 

densification by mechanical impacts (Fig 3). Soil 

densification leads to air out of the soil, soil 

comes to more densification which improves the  

strength characteristics of soils, and reduces 

permeability. Using setup compaction energy, the 

density of soil varies as a math function of water 

content. This relationship is called the moisture-

density curve, or the compaction curve. Steps to 

find this curve equation has been standardized 
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and are generally determined by Standard 

Proctor (ASTM D 698 [26] and AASHTO T 99 

[27]) and Modified Proctor (ASTM D 1557 [28] 

and AASHTO T 180 [29]) tests. These tests can 

apply to cohesive soils. For cohesionless soils, 

should be used (ASTM D 4253 [30] and ASTM D 

4254 [31] [32]). 

   

Fig 3. Testing work of California Bearing Ratio (CBR) of Laboratory-Compacted Soils 

Identifying the swelling properties of soils in 

the road subgrade is a key component of the 

geotechnical survey. Soil locations distributed at 

shallow depths beneath the proposed pavement 

elevation are generally sampled as part of the 

survey, and their swell potential may be identified 

in a number of methods. Atterberg’s limits are 

used as a common method for identifying swell 

potential. The plastic and liquid limits and/or 

shrinkage limits will usually be performed in the 

laboratory [1]. Determining Liquid Limit (LL), 

Plastic Limit (PL), and Plasticity Index (PI) of soils 

according to AASHTO T 89 [33] and ASTM D 

4318 [34]. LL is defined as the moisture content, 

when it increases than will cause plastic soil to do 

as a liquid. The PL is defined as the moisture 

content, when it increases than will cause semi-

solid soil to become plastic. The PI is the 

difference between the liquid limit and the plastic 

limit (PI = LL - PL). The soils that have a higher 

PI tend to be predominantly clay, on the other 

hand, those with a lower PI tend to be 

predominantly silt [32]. 

The classification of soils is very important 

(through laboratory tests) in order to evaluate the 

vertical and horizontal variability of the subgrade. 

The classification through laboratory testing also 

provides information to determine stabilization 

requirements to improve the strength of the 

subgrade should additional support be required 

[1]. We have to determine particle size, particle-

size analysis of soils was conducted according to 

AASHTO T 88 [35] and ASTM D 422 [36]. 

CBR value is obtained as the average of 

the ratio of laboratory stress to standard stress 

for the two penetration depths and expressed as 

a percentage and referenced to optimum water 

content and a maximum dry density are 

determined by a standard compaction test [37]. 

The CBR value was determined according to 

AASHTO T 193 [2] (Fig 3). 

The organic content was determined 

according to AASHTO T 267 [38]. 

2.3. Data used 

2.3.1. CBR values determined in the 

laboratory 

CBR test method was developed by the 

California Department of Highways in the late 

1920s with the purpose to determine properties of 

the cohesive soil in the subgrade and subbase 

layers of road pavement sections. The test 

method was specified by the American 

Association of State Highway and Transportation 

Officials [39] and the American Society for 

Testing and Materials and Materials [40]. 

In the United States, some organizations 

such as Federal Highway Administration (FHWA), 

Federal Aviation Administration (FAA), and 

AASHTO, etc. have used CBR values for 

designing highways, airports, parking lots, and 

other pavement. Researchers determined the 



JSTT 2021, 1 (5), 48-62          Vu et al. 
 

 

52 

empirical correlation between CBR and resilient 

modulus and a variety of other engineering soil 

properties. CBR is not a fundamental material 

property so that it is unsuitable for application in 

mechanistic and mechanistic-empirical design 

procedures. However, it has a long history in 

pavement design, this test performs relatively 

easy and inexpensively, and it has reasonably 

well correlations with more fundamental 

properties like resilient modulus. Therefore, it 

continues to be used in practice [1]. 

The subgrade materials are typically 

characterized by their strength and stiffness. The 

United States commonly used three basic 

subgrade stiffness/strength characterizations: the 

California Bearing Ratio (CBR), the modulus of 

subgrade reaction (k), and the elastic (resilient) 

modulus. Although there are other factors related 

to evaluating subgrade materials (such as swell 

in the case of materials that have clay content), 

however, stiffness is the most common 

characterization [32]. 

Further, pavement performance also 

depends on subgrade uniformity. However, it’s 

difficult to obtain a perfect subgrade due to the 

inherent variability properties of the soil and the 

influence of water, temperature, and construction 

activities. In the United States, the research of 

[32] has shown that with a subgrade strength of 

less than a CBR value of 10, the subbase layer 

will deflect under traffic loadings in the same 

manner as the subgrade. That deflection then 

impacts the pavement, initially for flexible 

pavements, but ultimately rigid pavements as 

well. 

2.3.2. Influencing factors (input parameters) 

In this study, we considered 10 influencing 

factors: Plasticity Index (PI), Liquid Limit (LL), Silt 

Clay content (SC), Fine Sand content (FS), 

Coarse sand content (CS), Optimum Water 

Content (OWC), Organic content (O), Plastic 

Limit (PL), Gravel content (G), and Maximum Dry 

Density (MDD)for the estimation of CBR using FR 

model. 

To obtain a high-quality subgrade, a proper 

understanding of soil characteristics, proper 

grading, and quality control testing are required. 

However, pavement design requirements and the 

level of engineering effort should be consistent 

with the relative importance, scale, and cost of 

projects. Therefore, must to has knowledge of 

subgrade soil's basic engineering characteristics 

is required for design. These include soil 

classification, soil density, coefficient of lateral 

earth pressure, and estimated CBR or resilient 

modulus. Typical CBR values of different soils 

relate to soil types are available in the American 

Concrete Pavement Association, Asphalt Paving 

Association, State of Ohio, State of Iowa, and 

Rollings et al. [1, 32, 41]. 

According to AASHTO M 145 [42] and 

ASTM D 2487 [43], the classification of soils 

needs to determine particle-size distribution, 

liquid limit, and plasticity index. Especially, ASTM 

D 2487 [43] also takes into account organic 

content. 

The water content and the dry density as 

well as the texture of the soil affect the CBR. 

Normally, the CBR test in the laboratory is 

conducted on test samples that have different 

moisture, further, water content is likely to be 

achieved in the field. The difficulty is to determine 

the stable moisture content to find maximum dry 

density. Many other countries usually use the 4-

day soaked CBR samples for determining CBR 

values [44]. 

2.4. Methods used 

A database comprising of 10 input variables 

(G, CS, FS, SC, O, LL, PL, PI, OWC, and MDD) 

was employed, such that 70% of the data was 

used for training whereas the remaining 30% was 

selected for testing. Random Forest model was 

formulated and its performance was evaluated 

using prominent statistical indices namely RMSE, 

MAE, and R2. 
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Fig 4. Methodological framework used for this study 

Table 2. Statistical analysis of the parameters used in this study 

Parameters Codes Unit 
Minimu

m 
Maximum Mean Median StD 

Inputs        

G X1 (%) 0.00 51.40 22.057 24.750 13.295 

CS X2 (%) 3.00 46.30 24.101 23.700 7.017 

FS X3 (%) 2.50 41.50 9.035 7.250 6.468 

SC X4 (%) 17.87 88.70 44.807 44.550 10.447 

O X5 (%) 0.12 2.94 1.509 1.511 0.372 

LL X6 (%) 2.08 48.45 39.514 39.994 6.173 

PL X7 (%) 1.17 28.49 20.316 20.833 3.067 

PI X8 (%) 0.91 27.48 19.198 18.436 4.078 

OWC X9 (%) 9.30 21.50 14.010 14.273 2.618 

MDD X10 (g/cm3) 1.672 2.140 1.881 1.871 0.118 

Output        

CBR Y1 (%) 3.09 41.26 11.804 7.953 8.175 

*St.D. = Standard Deviation 

2.4.1. Random Forest ML model 

Random forests [45] are a set of 

approaches for creating an ensemble of decision  

trees using a randomized version of the tree 

induction procedure. The way random forests 

methods add random perturbations into the 

induction procedure distinguishes them from 

other decision trees. The challenge is to inject 

randomness into arbitrary decision trees while 

minimizing (x) and retaining a low bias. 
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The ensemble of decision trees was first 

introduced by Kwok and Carter [46]. The 

averaging many decision trees with diverse 

structures consistently generate better outcomes 

than any of the ensemble's individual 

components. However, this method was neither 

random nor totally automatic: decision trees were 

created by manually selecting splits towards the 

top of the tree that was almost as good as the 

ideal splits, and then expanding them using the 

conventional ID3 induction mechanism. 

Breiman [47] a formerly technical study was 

one of the first to show, both numerically and 

practically, that combining numerous versions of 

a predictor into an ensemble might result in 

significant improvements in reliability. He 

observes and demonstrates that the mean model 

EL{ϕL} ELL has a smaller anticipated 

generalization error than the model L. As a result, 

Bagging consists in approximating EL{ϕL} of 

merging models developed from bootstrap 

samples [48] Lm (for m = 1, . . . , M) of the 

training set L. The {Lm} form is a set of L replicas, 

each of which contains N cases (x, y), picked at 

random but with replacing from L. Even though 

|L| = |Lm| = N, the bootstrap replication shows 

that 37% of the couples (x, y) from L are absent 

on average. Indeed, after N drawings with 

replacing, the likelihood of never being chosen is 

high. 

1 1
1 0.368

N

N e

 
   

 
 (1) 

When the training set L is small, however, 

subsampling 67% of the objects may result in an 

increase in bias (for example, due to a reduction 

in model accuracy) that is too great to be 

balanced by a reduction in variance, resulting in 

overall lower performance. However, bagging has 

proven to be a useful method in a variety of 

situations, with one of its advantages being that it 

could be used to enhance any type of model, not 

just decision trees. 

Breiman [45] couples Bagging [47] with the 

random variable selection at each node in his 

seminal Random Forests (RF) study [49]. 

Combining both methodologies and modifying 

randomness results in one of the most effective 

off-the-shelf machine learning algorithms, which 

works shockingly well for practically any task. 

Random Forests are shown to be competitive 

with boosting [50] and arcing algorithms [51], 

which also are designed to reduce bias whereas 

forests emphasize minimizing the error. 

2.4.2. Validation indicators 

The statistical performance of the 

developed Random Forest model was assessed 

by deploying three analytical standard evaluation 

indices, such as, coefficient of determination 

(R2), mean absolute error (MAE), and root mean 

square error (RMSE). These indices are given 

from Eq. 2 to Eq. 4 [52-55]: 

 
2

2 1

2

1

1



 

 
 

 





n

i i

n

i i

X Y
R

Y Y

 

(worst value = -∞; best value = +1) 

(2) 

1

1
 

n

i iMAE X Y
n

 

(best value = 0; worst value = +∞) 

(3) 

(best value = 0; worst value = +∞) 

(4) 

Such that Xi and Yi are the ith experimental 

and measured outputs, respectively; X̅i and Y̅i are 

mean of the experimental and measured outputs, 

respectively, whereas n refers to the total 

samples. 

The level of correlation between actual and 

estimated values is considered to be high when 

the R2 value is more than 0.8. Second, RMSE is 

preferable because larger residual errors are 

dealt with more sensitively, and RMSE≈0 

represents the least errors [56]. Conversely, there 

are cases when RMSE isn't the best option for 

reaching a greater level of accuracy, and in those 

cases, MAE is used since it works well with both 

smooth and continuous data. Furthermore, higher 

R and lower RMSE and MAE values indicate 

reliable model performance and accurate 

calibration [52, 57]. 

 
2

1

1
 

n

i iRMSE X Y
n
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Fig 5. Correlation analysis of input variables and output variable used in this study 
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3. Results and discussions 

The CBR value for soils will depend on their 

density, setup moisture content, and moisture 

content after soaking. Note, the results of 

laboratory compaction should closely represent 

the results of field compaction. The first two of 

these variables must be carefully controlled 

during the preparation of laboratory samples for 

testing. Unless it can be ascertained that the soil 

being tested will not accumulate moisture and be 

affected by it in the field after construction. The 

CBR tests should be conducted on soaked 

samples [32]. 

The U.S. Army Corps of Engineers 

(USACE) used the CBR as an efficient evaluation 

of strength in cohesive soils. The USACE reports, 

“the un-soaked CBR values are high on the dry 

side of optimum, but there is a dramatic loss in 

strength as setup moisture content is increased” 

[58, 59]. To measure strength, from tests using 

penetration resistance, Hilf obtained the same 

results [60]. When soil is in a dry state, it exhibits 

high strength due to an appreciable inter-particle, 

the attractive force created by the high curvature 

of the Menisci between soil particles. However, 

further moisture increasing greatly reduces this 

friction strength due to lubrication of the soil 

particles [32]. 

The comparison of actual and anticipated 

results for output 'CBR' for training and testing 

data is shown in Fig 6 (a and b). The predicted 

results nearly match the expected values, as can 

be shown. The R2 values of 0.98 and 0.92, 

respectively, reflect the close prediction of the 

training and testing datasets (Fig 7, Table 3). R2 

greater than 0.8 indicates that the predicted and 

experimental values are highly correlated [9, 52, 

61-64]. MAE interprets values of 0.87 and 2.25 

(Fig 8) in the same way, showing the assessment 

of actual and predicted findings. The forecasted 

values were drawn on the y-axis and the 

measured results were put on the x-axis. [52, 61]. 

The regression line's slope is near to that of the 

optimum fit (experimental: prediction), indicating 

a high association. For both the training and 

testing data, error-values are displayed against 

the data samples for the created model for 

prediction of CBR (Fig 8), which indicates a 

focused fluctuation around the zero-horizontal 

line. For the training and testing data, the RMSE 

was 1.43 and 3.96, respectively. 
 

 

 
Fig 6. Comparison of the predicted and actual results: (a) training and (b) testing 
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Fig 7. R2 values of the model: (a) training dataset and (b) testing dataset 

 

 

Fig 8. RMSE values of the model: (a) training, (b) testing 

Table 3. Model performance 

No Parameters 
Datasets 

Training Testing 

1 R2 0.98 0.92 

2 MAE 0.87 2.25 

3 RMSE 1.43 3.96 

4. Conclusions 

In this research, the Random Forest model 

was trained and developed for the prediction of 

the CBR of soils. The input parameters of the 

models are G, CS, FS, SC, O, LL, PL, PI, OWC, 

and MDD. Following are the main conclusions: 

1. The constructed Random Forest model is 
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a reliable model in predicting soil CBR based on 

the obtained R2 value: 0.98, which is greater than 

the prediction accuracy of soft computing 

methodologies available in the literature (Table 1) 

[7, 9, 11, 65, 66]. The prediction accuracy will 

depend on the dataset and methodology 

adopted. 

2. The correlation coefficient (R2) values 

acquired during the testing process of the 

Random Forest model were much lower than 

those obtained during the training process, 

indicating over-fitting concerns. The Random 

Forest model showed no signs of over-fitting 

during the training phase, registering equal 

coefficient of determination values. 

3. As part of future work, further refinement 

of the RF model can be attempted using more 

input values and results may be compared with 

other ML models. 
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