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Abstract: The Axial Load Capacity (ALC) of Concrete-Filled Steel Tubular 

(CFST) structural members is regarded as one of the most crucial technical 

factors for the design of these composite structures. This work proposes the 

development and application of the Extreme Gradient Boosting (XGB) model 

to forecast the ALC of circular CFST structural components using the affecting 

input parameters, namely column diameter, steel tube thickness, column 

length, steel yield strength, and concrete compressive strength.  A dataset of 

2073 experimental results from the literature was used for the model 

development. The performance of the XGB model was evaluated using 

statistical criteria such as Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), Coefficient of Determination (R2), and Mean Absolute Percentage 

Error (MAPE). The five-fold cross-validation technique and Monte Carlo 

simulation method were used to evaluate the model's performance. The results 

show good performance of the XGB model (R2 = 0.999, RMSE = 242.757 kN, 

MAE = 157.045 kN, and MAPE = 0.057) in predicting the circular CFST’s ALC.  

Keywords: Concrete-filled steel tube; axial load capacity; machine learning, 

Extreme gradient boosting. 

  
 

1. Introduction  

Concrete-Filled Steel Tube (CFST) columns 

are a type of composite structure made of hollow 

steel tubes filled with concrete. Because of many 

advantages over hollow steel columns and 

reinforced concrete columns [1–4], this type of 

structure is prevalent in modern construction. 

These advantages include high axial bearing 

capacity, good ductility and strength, large energy 

absorption capacity, convenient construction, 

material savings, and high fire resistance [5–7]. In 

addition, because there is no need for formwork, 

the construction process is quicker. It also costs 

less to construct and they are more 

environmentally friendly because steel tubes can 

be reused along with recycled aggregates in 

concrete [8–10]. According to several studies 

[11,12], CFST columns exhibit excellent efficiency 

under compression. As a result, the cross-section 

of the chosen CFST column is frequently 

symmetrical, such as a circular, square, or 

rectangle. The circular CFST column is the most 

often utilized due to its excellent confinement 

performance, higher stiffness, and yield strength 

[13–15]. 

Numerous investigations have been 
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conducted over the past decades to assess Axial 

Load Capacity (ALC) and CFST columns’ 

behavior. Several experiments have been 

performed on CFST circular columns, including 

examination of the effects of loads, the strength of 

concrete [16,17], the diameter-to-thickness ratio of 

the tube [18,19], or bond action among steel tubes 

and concrete [4,20]. The first contribution was 

Knowles and Park’s work [21], carried out in the 

late 1960s to assess the behavior of CFST 

columns under eccentric and centered loads. In 

addition, the behavior of CFST columns under 

cyclic dynamic loads is evaluated in a study by Liu 

and Goel [22]. In another attempt, the impact of 

employing high-strength concrete in CFST 

columns is investigated by Kilpatrick and Rangan 

[23]. On 114 CFST columns, Sakino et al. [24] 

investigated the effects of steel pipe shape and 

strength, tube diameter to thickness ratio, and 

concrete strength and proposed design formulae to 

determine their ultimate ALC. It is worth noting that 

in the literature, many works have attempted to 

compile the outcomes of these investigations into 

different databases. However, obtaining the long 

time data is the main challenge, as it needs a 

significant investment in terms of funds, high-end 

test equipment systems, and a considerable 

amount of time and labor.  

The behavior of CFST columns under axial 

compression is also studied using numerical 

modeling. For instance, to model compressive 

CFST stub columns, Dai et al. [25] used the Finite 

Element Model (FEM) created by an ABAQUS 

solver. Choi et al. [26] put out a numerical approach 

to examine the axial behavior of CFST columns 

and estimate various interactions between the 

steel tube and concrete. However, the models lack 

the ability to estimate the behavior of these 

members with an appropriate level of precision 

since it is difficult to consider all the complicated 

boundary conditions and mechanical 

characteristics of the material in numerical 

simulations [26]. 

In addition, CFST column calculation 

provisions have been suggested in published 

design standards such as EC4 [27], ACI [28], AISC 

[29], and AS/NZS 2327 [30]. Their usefulness is, 

however, limited to CFST columns with a certain 

section slenderness ratio and material grade. Due 

to their restricted applicability, none of the above-

mentioned methods have been extensively 

adopted. Therefore, creating a standardized and 

precise procedure for designing circular CFST 

columns is necessary. 

In recent years, with the rapid advancement 

of computer science, Machine Learning (ML) 

techniques have become pervasive in all scientific 

domains, including Civil Engineering. ML 

approaches are methods that construct 

complicated mathematical models with great 

precision to reflect the connection between the 

input and output parameters of a given data set. 

Based on this perspective, numerous scientists 

currently utilize ML to identify the structures' 

behavior [32–38]. The application of ML to forecast 

the ALC of circular CFST columns has also been 

the subject of substantial research [31–35]. 

Specifically, Ahmadi et al. propose the ANN model 

to estimate the ALC of the circular CFST column 

under the effect of axial load based on a dataset of 

268 experimental results and obtain a forecast 

performance of R = 0.899. In the study by Sarir et 

al., a gene expression program (GEP) is developed 

using 303 experimental results and five input 

parameters to estimate the ALC of the circular 

CFST column. The best predictive model is 

selected with model performance R2 = 0.939 and 

RMSE = 606.28 kN. In a recent study by Liu et al., 

a PSO-ANN hybrid model consisting of an artificial 

neural network (ANN) optimized using a particle 

swarm algorithm (PSO) has been proposed to 

predict the ALC of a circular CFST column with a 

dataset of 227 experimental results. The model's 

performance is equivalent to R = 0.989. The above 

studies have shown that machine learning 

algorithms are powerful numerical tools to predict 

the ALC of circular CFST columns. However, these 

studies have not evaluated the effect of input 

factors on the ALC of columns nor considered a 

limited amount of data. Moreover, the predictive 
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potential of these investigations needs additional 

development.  

As a result, this research aims to propose an 

ML model, the Extreme Gradient Boosting (XGB) 

model, to predict the ALC of circular CFST 

columns. A data set of experimental findings 

containing 2073 circular CFST column samples 

was employed to train and test the developed 

model. The database includes parameters such as 

the structural members' geometry and the 

component materials' mechanical properties. This 

dataset is the largest ever created, providing solid 

results when training and testing the model. 

Simultaneously, feature importance and sensitivity 

analysis are studied using one-dimensional partial 

dependence plots (PDP). The results of the model 

were evaluated using standard statistical 

measures, namely Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Coefficient 

of Determination (R2), and Mean Absolute 

Percentage Error (MAPE). 

2. Database description and analysis 

In this study, the 2073 data points on circular 

CFST columns studies are collected from the 

published literature, including 1305 data from two 

well-known databases of Denavit [36] and Goode 

[37], and 768 finite element results of high-strength 

concrete columns from Tran’s study [38]. Fig. 1 

depicts the experimental setup to determine the 

ALC of CFST columns in general. Initial 

imperfections in column geometry and residual 

stresses during member production are 

disregarded and not considered input parameters 

in this database due to their insignificant effect on 

the CFST column [39]. For each CFST specimen, 

several geometric and material parameters are 

gathered. The geometric characteristics consist of 

the physical parameters of CFST columns, i.e., 

column length (L), tube thickness (t), and tube 

diameter (D). The material properties include steel 

yield strength (fy) and concrete compressive 

strength (fc). Table 1 presents the primary material 

and geometric characteristics of the collected 

database. Notably, the concrete compressive 

strength determined by the tests is based on both 

cylinder and cube specimens, and the cube 

strength is converted into cylinder strength for use 

in calculations. Table 1 shows that the cross-

section diameter ranges from 44.5 mm to 1020 

mm, with an average value of 264.87 mm and a 

standard deviation of 176.58 mm. The thickness of 

the steel tube ranges from 0.52 mm to 30 mm, with 

an average of 8.38 mm and a standard variation of 

6.75 mm. The length of the member spans from 

152.35 mm to 5560 mm, with an average of 

1658.31 mm and a standard deviation of 1287.19 

mm. Steel tube yield strength ranges from 178.28 

MPa to 1153 MPa, with an average value of 342.59 

MPa and a standard variation of 105.59 MPa. The 

compressive strength of concrete ranges from 7.01 

MPa to 200 MPa, with an average value of 84.79 

MPa and a standard variation of 57.79 MPa. The 

observed axial load varies from 45.2 to 75194.86 

kN, with an average value of 12574.56  kN and a 

standard deviation of 16560.77 kN. 

Fig. 2 depicts histograms of inputs and output 

parameters used in this study. In addition, a 

correlation study between input and output 

variables is also carried out to investigate the linear 

statistical correlation between the variables in the 

database. The Pearson technique is used to 

calculate the correlation coefficient R. Fig. 3 

depicts the correlation matrix between the pairs of 

parameters, in which the bottom triangle reflects 

the correlation coefficient value and the top triangle 

depicts the correlation based on the intensity and 

size of the circles. The diagonal represents the 

connection between the variables. Tabachnick et 

al. [40] define strongly correlated parameter pairs 

as having an absolute value of R greater than 0.75. 

The greatest absolute value of R in the gathered 

input space is 0.74, indicating that it is suitable to 

use the existing input space to create the ML model 

in this study. 

The dataset is randomly divided into two sub-

datasets, including the first part (70% of the data) 

used to train the model, called the training part. The 

second part (the remaining 30% of data) is used to 
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verify the model, called the testing part. This split 

ratio is chosen to ensure efficiency during training 

and testing, as the relevant literature suggested 

[41]. 

 
Fig 1. Schematic diagram showing experimental set up of (a) the CFST columns under axial force, (b) 

the cross-section of circular column 

Table 1. Statistical characteristics of the input and output parameters in the database. 

Parameter Unit Mean Std Min 25% 50% 75% Max 

Input 

Diameter of tube (D) mm 264.87 176.58 44.45 114.30 190.70 400.00 1020.00 

Thickness of steel tube (t) mm 8.38 6.75 0.52 3.35 5.84 12.5 30.00 

Length of column (L) mm 1658.3

1 

1287.1

9 

152.35 661.50 1200.0

0 

2400.0

0 

5560.00 

Yield strength of steel tube 

(fy) 
MPa 342.59 105.59 178.28 275.00 332.02 374.00 1153.00 

Compression strength 

concrete (fc) 
MPa 84.79 57.79 7.01 34.85 59.00 140.00 200.00 

Output 

ALC (Pu) kN 12574.

56 

16560.

77 

45.20 945.00 2500.6

9 

21048.

33 

75194.8

6 Std=Standard deviation; 
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Fig 2. Histograms of the parameters used in the database for the model study 

 
Fig 3. Correlation of input and output parameters of the database 

3. Method used 

3.1. Machine learning methods 

In this study, the Extreme Gradient Boosting 

(XGB), is an ensemble machine-learning technique 

that Chen and Guestrin created in 2016 [42], has 

been used for the prediction of ALC. This approach 

is an improved gradient-boosting decision tree 

algorithm that aims to produce high accuracy with 
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little chance of overfitting. In addition to effectively 

building gradient-boosting trees, XGB can also 

tackle regression and classification issues while 

operating in parallel. This is an efficient and easy-

to-use algorithm that delivers high performance 

and accuracy as compared to other algorithms. 

The XGB model introduces a component to the 

loss function as an enhancement over the gradient 

boosting approach. As such, the loss function of 

the XGB model takes the form: 

( ) ( ) ( )Obj L =  +   (1) 

where L is the loss function in the training 

process,  is the rule set of the decision tree. The 

loss function or error rate is used to measure the 

model's performance during training (model 

building). Rule sets are used to control the 

complexity of the model and avoid redundancy or 

lack of information in the data. There are different 

methods used to determine the complexity of the 

model. However, the complexity of each decision 

tree is usually determined by the following formula: 

( )
T

2

j
j 1

1
f T

2
  

=
 = +   (2) 

where T is the number of leaves on the 

decision tree,  is the vector of scores on the 

leaves (of the decision tree). The core of the XGB 

algorithm is the objective function, which is 

determined by the following equation: 

( )
T

2

j j j j
j 1

1
I G H T

2
   

=

 
=  + + + 

 
 (3) 

where j are independent variables. The goal 

of real XGB math is to minimize the Obj function so 

that the error rate is minimal. 

3.2. Performance indices of models 

The RMSE, MAE, R2, and MAPE are the 

performance metrics used in this study to assess 

the effectiveness and precision of the XGB model 

in predicting the ALC of the CFST column. The 

following formulas are used to determine these 

performance indicators: 

( )
N 2

tt,i db,i
i 1

1
RMSE Y Y

N =
=  −  (4) 

N

tt,i db,i
i 1

1
MAE Y Y

N =
=  −  (5) 

N
tt,i db,i

i 1
tt,i

Y Y1
MAPE 100%

N Y=

−
=    (6) 

( )

( )

N 2

tt,i db,i2 i 1

N 2

tt,i tt
i 1

Y Y
R 1

Y Y

=

=

 −
= −

 −

 (7) 

where Ytt,i is the actual test value of the ith 

sample, ttY  is the average of the actual test values, 

Ydb,i is the predicted value corresponding to the ith 

sample, calculated according to the model's 

predictions, whereas N denotes the sample 

numbers. Out of these, the optimum value of 

performance metrics is achieved when RMSE, 

MAE, and MAPE are equal to 0, whereas R2 is 

equal to 1. 

4. Results and Discussion 

4.1. Hyperparameter tuning of the XGB model 

The model’s parameters are the most 

important notions in machine learning, and the 

training model identifies the optimal ones for 

improved performance. The parameters are 

separated into model parameters and 

hyperparameters, with the hyperparameters 

requiring setting before training the ML model 

because they determine its architecture. Tuning 

hyperparameters is crucial since they enhance 

learning models' performance. In this context, an 

extensive trial and error test is used to adjust the 

XGB model's hyperparameters. Four 

hyperparameters, n estimators, max depths, 

learning rate, and minimum child weight, that have 

a significant impact on the XGB algorithm are 

chosen for tweaking based on past research 

[43,44]. Table 2 presents the associated search 

domains for hyperparameters. The XGB package 

utilizes the default values for the remaining hyper-

parameters in Python.  

To prevent overfitting and increase the 

reliability of the training operations, a 5-fold Cross-

Validation (CV) methodology is used. The training 
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dataset is randomly split into five equal folds. The 

cross-validation training is then carried out by 

selecting four folds randomly to serve as the 

training component and the remaining fold as the 

validation part. The performance metrics are 

calculated using the mean after training and 

verifying five times. The validation dataset created 

by such 5-fold CV method tests and compares the 

model’s performance throughout the training 

phase. The performance of the model is assessed 

using RMSE criteria. When the model has the 

lowest RMSE, the optimal hyperparameters for the 

XGB model are selected.  

Fig. 4 illustrates the four hyperparameters' 

effect on the model's performance on the validation 

dataset. It can be observed that the lowest RMSE 

value achieved is 400 kN, hence, this RMSE value 

may be used to identify the optimal XGB model. An 

ML model, on the other hand, is termed stable if it 

performs well on both the validation and test data 

sets. As a result, five models performing well on the 

validation dataset are chosen for further 

examination to establish the best predictive model. 

These five models are carefully tested on the test 

dataset to compare their predicting ability. Table 3 

presents the hyperparameters of the five models 

that are chosen. The performance of five ML 

models is assessed using standard statistical 

criteria. 

Fig. 5 depicts the models' performance using 

two criteria, RMSE  and R2. In addition to the 

validation dataset, the training and validation 

datasets are utilized to compare model 

performance. Table 4 shows the detailed values of 

the statistical criteria relating to the 5 XGB models. 

Based on these values, it is obvious that the XGB-

05 model outperforms the others, including both 

validation and test datasets. Interestingly, this 

model does not have the best validation score on 

the validation set. The other four models perform 

well, but are less accurate on the testing set. As a 

consequence, XGB-05 is chosen as the best 

model, and typical results are shown in the 

following section. 

Table 2. Search domain of 4 hyperparameters tuned in XGB model 

n_estimators (Ne) learning_rate () max_depth 
min_child_weight 

(M.C.W) 

100 - 1000 0.1, 0.3, 0.5 1 - 10 1, 2, 3, 4 
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Fig 4. RMSE validation scores of different XGB models  

 Table 3. Optimal hyperparameters of 5 XGB models 

Model XGB_01 XGB_02 XGB_03 XGB_04 XGB_05 

n_estimators (Ne) 700 800 1000 800 1000 

learning_rate 0.1 0.3 0.3 0.3 0.3 

max_depth 4 3 3 3 3 

min_child_weight 1 4 1 3 2 

Table 4. Summary of prediction results of 5 XGB models. 

 RMSE (kN) MAE (kN) R2 MAPE 

XGB_01 

5-fold CV score 424.002 216.145 0.999 0.068 

Training part 97.252 60.993 0.999 0.019 

Testing part 329.212 186.995 0.999 0.059 

XGB_02 

5-fold CV score 419.678 223.866 0.999 0.090 

Training part 103.464 64.804 0.999 0.022 

Testing part 309.067 182.719 0.999 0.066 

XGB_03 

5-fold CV score 430.664 214.422 0.999 0.078 

Training part 99.006 61.577 0.999 0.019 

Testing part 281.085 176.423 0.999 0.066 

XGB_04 

5-fold CV score 442.268 218.178 0.999 0.090 

Training part 122.477 77.251 0.999 0.026 

Testing part 300.474 191.672 0.999 0.073 

XGB_05 

5-fold CV score 451.234 216.891 0.999 0.090 

Training part 97.903 61.212 0.999 0.019 

Testing part 277.050 173.223 0.999 0.066 
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Fig 5. Performance comparison of 5 XGB models 

4.2. Representative prediction results 

This section presents the typical outcomes of 

200 Monte Carlo simulations of the XGB 05 model. 

The Monte Carlo simulation aims to generate 

several separate training and testing parts so that 

the model's generalizability can be evaluated [45]. 

The comparison between the predicted value 

and the actual ALC of the circular CFST column is 

depicted in Fig. 6 under the regression graph, in 

which Fig. 6a represents the training part, and Fig. 

6b represents the testing part. The horizontal axis 

reflects the ALC based on the circular CFST 

column's actual values, while the vertical axis 

represents the predicted values. The solid black 

line shows the diagonal, whereas the black dotted 

lines and blue dashed lines represent 10% and 

20% error contours, respectively. Most data points 

lie along the y=x line, indicating that the suggested 

model achieves near-absolute performance in the 

training and testing parts. The robust prediction 

ability of the XGB_05 model could thus be 

demonstrated using the results obtained in such 

regression analysis.  

In addition, the distribution histogram and 

cumulative distribution of the error between the 

predicted and actual ALC of the circular CFST 

columns for the training part (Fig. 7a) and testing 

part (Fig. 7b) clearly show this excellent prediction 

ability. Among the 1451 training and 623 testing 

data samples, there is a significant error value of 

around 0. Only six samples in the training part 

(representing 0.4% of the training part) have errors 

beyond the range [-300, 300] kN, which is an 

insignificant proportion compared to the total 

number of samples. The testing part has a greater 

error with a maximum error value of 1500 kN with 

only two samples. In addition, the quantitative 

values of the XGB_05 model performance 

evaluation criteria are provided in Table 5. It can be 

observed that the model's prediction ability is 

robust. Therefore, using the XGB_05 model to 

accurately predict the ALC of circular CFST 

columns is conceivable, thereby saving time and 

cost on trials. 

Table 5. Statistical criteria values for typical results of XGB_05 model 

 RMSE (kN) MAE (kN) R2 MAPE 

Training part 90.086 56.502 0.999 0.018 

Testing part 242.757 157.045 0.999 0.057 

All dataset 152.848 86.670 0.999 0.030 
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Fig 6. Regression charts between experimental and true values of ALC of circular CFST columns for the 

training part; and testing part 

  

Fig 7.  Error results (a) training part; and (b) testing part 

4.3. Comparison with design codes and 

empirical equations 

To further validate the proposed ML-based 

prediction model and illustrate its superiority, the 

performance of the XGB_05 model is compared to 

that of four existing design codes and four empirical 

equations developed by other researchers. Four 

design codes are investigated, including EC4 [27], 

ACI [28], AISC [29], AN/NZS [30], and the empirical 

equations of Ding  [46], Wang  [47], Han [48], and 

Du et al. [49]. This study employs all collected data 

for comparison purposes, using R2, RMSE, MAE, 

and MAPE to assess the performance of the 

models. Fig. 8 illustrates the regression analysis, 

whereas Table 6 indicates the prediction results 

between the actual and output data using design 

codes and empirical equations. As can be seen, all 

previously proposed design codes and 

experimental formulae have a large deviation 

between the actual value and the predicted output. 

Compared to the experimental model with minimal 

error, i.e. Wang's model, the XGB_05 model 

improved in R2, RMSE, and MAE by 3.09%, 

98.31%, and 98.12%, respectively. There are a 

variety of causes for the considerable variance in 

error: (1) the design codes and empirical equations 

frequently have constraints on the calculation 

assumptions, such as the condition of the column's 

slenderness, the condition of the steel's strength, 

and the compressive strength of the concrete; (2) 

ML models are capable of learning the effect of 

column length, whereas the design code and 

empirical equations are not, although column 

length has a significant impact on the axial load 

capacity of the column in general. Again, this 

demonstrates the proposed ML approach’s 

advantages in improving prediction accuracy and 

generalization. 
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Fig 8.  Regression model of design codes, empirical formulas, and XGB_05 model 

Table 6. Statistical criteria values of design codes and empirical formulas in predicting the axial load of 

CFST columns  

Models 
Criteria 

RMSE (kN) MAE (kN) R2 MAPE 

ACI [28] 12692.379 6892.101 0.966 0.701 

EC4 [27] 13725.388 7141.012 0.956 1.081 

AISC [29] 13089.701 7119.080 0.968 0.700 

AN/NZS [30] 15729.399 8485.992 0.949 1.715 

Ding [46] 18803.657 10345.129 0.966 0.896 

Wang [47] 9053.863 4615.104 0.969 0.537 

Han [48] 86636.629 48881.878 0.968 3.124 

Du et al. [49] 14887.188 8255.142 0.974 0.755 

This study 152.848 86.670 0.999 0.030 
 

4.4. Feature importance and partial 

dependence analysis  

The developed ML model has a significant 

capacity to predict the ALC of circular CFST 

columns. However, it is also vital to interpret or 

explain the model predictions [50] because ML 

models are "black boxes" in general. Model 

interpretation may guide the model’s development 

and decision-making techniques while fostering 

user confidence in the trained model. This is 

accomplished by feature importance analysis and 

partial dependence analysis [51].  

Analysis of feature significance is the most 

popular method for explaining model results. It 

provides a direct ranking of each feature’s effect on 

the target. The greater the influence of a feature on 

the model's prediction, the greater its importance. 

Fig. 9 gives the relative feature importance results 

for the XGB_05 model for the axial load of the 

circular CFST column. It can be observed that the 

outer diameter of steel tube D plays the most 

critical role. It is also the most dominant input 

parameter compared to the other four. This finding 

is expected because the outer tube diameter D is 

the main contributor to the cross‐sectional area of 

circular CFST columns. Furthermore, the 

compressive strength of concrete (fc) is the second 

most essential input parameter, followed by steel 

tube thickness (t) and yield strength of steel (fy). 

Finally, the column length is the least relevant 

aspect of the circular CFST column's ALC. 
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Fig 9. Feature importance analysis results 

  

  

 
Fig 10. Partial dependence plots (PDP) analysis of the input variables used in this study 
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Feature importance analysis demonstrates 

whether or not the characteristics are important, 

but does not explain how the features impact the 

target. Partial dependence analysis is used to 

overcome the current limitation of feature 

importance analysis. It can show how the model's 

final output varies with the selected feature, and 

reveal if the feature has a positive or negative 

influence on the results. The model output's partial 

dependency on a specific feature X is determined 

by fixing the remaining features while feature X 

varies. 

Fig. 10 depicts the PDP for the five input 

parameters over all samples in the dataset. The 

horizontal axis displays input parameter change, 

while the vertical axis represents the PDP value of 

each parameter. Although column length has a 

negative effect, the remaining factors tend to 

positively influence the ALC of the circular CFST 

column. When the column diameter (D) is 

increased from 44 mm to 600 mm, the ALC of the 

column increases significantly, and remains stable, 

with D being more than 800 mm. The ALC of the 

column varies in three different phases 

corresponding to the column diameter ranging from 

0 to 600 mm, 600 to 800 mm, and above 800 mm. 

Besides, it is clear that the column diameter has 

the most significant impact on the axial load 

capacity of the column. This is based on the 

difference in the PDP value ranging from 1954.195 

to 36681.478. This change is much larger than the 

PDP change of the remaining parameters. This 

observation is in good agreement with the findings 

of the feature importance analysis. Regarding the 

tube thickness (t), when t increases, so do the ALC 

of the CFST circular column, especially when t is in 

the [0.52, 11.5] mm range. However, when t varies 

in a short range, from 11.5 mm to 12 mm, the 

column's axial load capacity tends to decrease. 

The axial load capacity of columns tends to remain 

constant or slightly increase, especially with thicker 

columns.  

When the column length (L) is considered, it 

is clear that the ALC decreases as L increases, 

especially for long columns. This result is 

consistent with the literature [52], since as column 

length grows, the column becomes more narrow, 

limiting bearing capacity. Finally, the PDP curve of 

two factors, the compressive strength of concrete 

and the yield strength of steel, shows that as these 

two values increase, so does the ALC of the 

column. This corresponds to the structure's 

carrying capacity and remarks in the literature [52]. 

In summary, partial dependency plots clearly 

explain how factors impact prediction while 

avoiding high processing costs. 

5. Conclusions  

In this study, an XGB model is developed to 

estimate the ALC of circular CFST structural 

components subjected to compression. The 

dataset of 2073 experimental results of circular 

CFST columns subjected to axial loads is utilized 

to develop the model. Two types of input 

parameters are employed to train the model, 

including the geometric dimensions of the section 

and the material’s mechanical properties. The 

results reveal that the XGB model delivers reliable 

prediction results with R2 = 0.999, RMSE = 242.757 

kN, MAE = 157.045 kN, and MAPE = 0.057. The 

proposed model was also compared with existing 

empirical equations and published standards, 

which shows higher accuracy. In addition, the 

sensitivity analysis employing partial dependence 

plots analysis and feature importance is performed 

to determine the influence of each input variable on 

the output. This study's findings can facilitate and 

simplify the design of circular CFST columns based 

on input parameters. The optimum values provide 

a rapid and accurate assessment of the ALC of a 

circular CFST column for practical applications in 

the construction of civil engineering structures. 
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