Synthesis and CO gas adsorption properties of GO/ZnFe$_2$O$_4$ nanocomposites

Vinh Thanh Nguyen1, Tuan Quoc Tran1, Cuong Van Nguyen1, Hung Van Nguyen2, Hai Thanh Nguyen2, Hang Thi Bui2, Dang Van Tran2, Quy Van Nguyen2

1University of Transport Technology, Ha Noi 100000, Viet Nam
2International Training Institute for Materials Science, Ha Noi University of Science and Technology, Ha Noi 100000, Viet Nam

Article info
Type of article: Original research paper

*Corresponding author: E-mail address: quy@itims.edu.vn

Received: 26/11/2022
Accepted: 19/12/2022
Published: 27/12/2022

Abstract: In this work, ZnFe$_2$O$_4$ nanoparticles were synthesized by hydrothermal method while the hummer method was used to synthesize GO nanosheet. GO/ZnFe$_2$O$_4$ nanocomposites (GO/ZFO) were prepared by mixing GO with ZnFe$_2$O$_4$ in mass ratio of 1:99, respectively. The structure, morphology, and physical – chemical characteristics were determined by Raman spectroscopy, Transform Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). The CO gas adsorption properties of GO/ZFO were investigated in the range of 25 – 200 ppm at room temperature using quartz crystal microbalance (QCM). GO/ZFO nanocomposites show great adsorption – desorption capacity, high repeatability, and the largest adsorption performance of 1.21‰ (0.098 µg.cm$^{-2}$) at 200 ppm. The results show that this new approach is promising of spinel structure materials for CO adsorption at room temperature.

Keywords: ZnFe$_2$O$_4$, GO, QCM, CO, Adsorption.

1. Introduction

Carbon monoxide (CO) is one of the most common toxic gases that results from the incomplete burning of fossil fuels. CO is a colorless, odorless and tasteless gas, known as the “silent killer” [1], [2], [3]. In addition, CO is considered as the major gaseous pollutant causing about 40,000 cause of poisoning per year in the United States of American [4]. The industry’s booming together with the increasing number of motor vehicles have led to a dramatically increase in CO emissions which is directly posing a serious threat to human life, work and living environment. Thus, CO treatment, adsorption and detection are researches of great significance to our society.

Recently, quartz crystal microbalance (QCM) coated with sensing materials is used to detect CO gas through physical/chemical adsorption. These studies not only make a great contribution to the development of sensor technology but also give us a comprehensive understanding of the gas adsorption properties [5], [6]. On the other hand, CO adsorption sensitivity studies can be approached by density functional theory. These calculation results indicate that the materials based on graphene can be considered as potential adsorption materials for toxic gases, such as carbon monoxide [7]-[9]. Furthermore, using the experimental approach, QCM coated with graphene oxide nanosheets (GO NSs) demonstrate a quick response, good repeatability and long-term stability to CO tests at room temperature [10]. In addition, QCM sensors based
on iron oxide/iron oxide-hydroxide and zinc ferrite nanoparticles (ZnFe$_2$O$_4$ NPs) nanomaterial also show CO detection capacity via physical interaction [11], [12].

From this viewpoint, the combination between GO NSs and ZnFe$_2$O$_4$ NPs promises an excellent CO adsorbent. Therefore, GO/ZnFe$_2$O$_4$ nanocomposites were created in this work and our experiments were carried out to understand their CO adsorption characteristics. In the present study, we report new results related to the adsorption capacity, repeatability and adsorption – desorption time of GO/ZnFe$_2$O$_4$ nanocomposites for CO gas at room temperature in the concentration range of 25 – 200 ppm. These promising results provide an interesting research direction in the near future.

2. Experiment

2.1. GO/ZnFe$_2$O$_4$ (GO/ZFO) nanocomposites synthesis

Chemicals used in this experiment include: zinc nitrate hexahydrate (Zn(NO$_3$)$_2$.6H$_2$O, > 98%), ferric nitrate nonahydrate (Fe(NO$_3$)$_3$.9H$_2$O, > 98%), sodium hydroxide (NaOH, > 98%), acid sulfuric (H$_2$SO$_4$, 98%), sodium nitrate (NaNO$_3$, > 98%), potassium permanganate (KMnO$_4$, > 98%) and hydrogen peroxide (H$_2$O$_2$) supplied from Xilong Scientific Co., Ltd (Guang-dong, China) while flake graphite was bought from VNGraphene Co. (Ha Noi, Viet Nam). The 5 MHz AT-cut quartz crystal microbalance was purchased from Quartz Pro Co (Sweden). Deionized water (DI) was used in all experiment steps.

In order to synthesize GO NSs, a typical hummer method was used, which is really helpful because it is easy to make and produce in large quantities. Furthermore, hummer method provides GO NSs with either hydroxyl, epoxide-rich or more carbonyl-rich [13], [14], [15] while the gas adsorption capacity of nanomaterial has been shown to strongly depend on active functional groups (-OH, -COOH, C-O-C, …) or vacancies, defects.

In this study, the basic steps of hummer method are as follow: (i) a mixture of 0.2 g flake graphite and 0.1 g NaNO$_3$ was added to 16 ml of 98% H$_2$SO$_4$. This solution was stirred for 2 hours at room temperature. 0.8 g of KMnO$_4$ was then slowly added for 15 minutes. The reaction released gas and changed the color of solution into brown. This solution was continuously stirred for 48 hours at room temperature. After that, 50 ml of DI was added to dilute the solution. In the next step, an amount of H$_2$O$_2$ was slowly dropped into the solution, until the solution’s color was completely changed into yellow. The final product was washed and filtered by centrifugation using DI and HCl till the pH reached 7. Additionally, the concentration of GO NSs solution was 1.32 mg/ml.

The synthesis of ZnFe$_2$O$_4$ nanoparticles (ZFO NPs) via hydrothermal method has already been reported in our previous work. These results indicate that the product of hydrothermal method has high crystallinity, uniform morphology, stability, porosity and large specific surface area. These factors enhance gas adsorption properties [11]. Moreover, 482 mg of ZFO NPs and 3.69 ml of GO NSs solution were dropped into 30 ml of DI, which was quickly mixed using magnetic stirrer for 30 minutes followed by 30 minutes of ultrasonic vibration. This two-steps process was repeated for 4 times. Finally, the as-prepared sample was dried at 60 °C for 48 hours. Obtained GO/ZFO composite exhibits the black powder.

2.2. Characteristics

The Raman spectra of GO/ZFO nanocomposites were recorded by Via Micro-Raman Microscope (Renishaw) using the excitation laser wavelength of 633 nm while FT-IR Jasco 4600 spectrophotometer was used to examine the physicochemical of the as-prepared sample in the wavenumber range of 4000 – 400 cm$^{-1}$. The morphology of GO/ZFO nanocomposites was observed by Transmission Electron
Microscopy (TEM, JOEL 1010).

2.3. Gas adsorption properties test

In order to fabricate QCM sensor, an AT-cut 5 MHz QCM was washed by ethanol and dried by N₂ flow. Then, 80.72 µg.cm⁻² of the GO/ZFO mass density (Δm₀) was coated on the QCM’s active electrode by spray-coating method. The coating process has been described in details in the previous works [16]. The gas adsorption properties of GO/ZFO nanocomposites (including: adsorption – desorption, repeatability and adsorption performance) were assessed through the change of mass density on the QCM’s electrode (Δm, µg/cm²) and the CO sorption capacity per unit mass density of material sensing (S, ‰) [17], respectively. In which, the CO molecules are continuously adsorbed/desorbed by GO/ZFO during the test experiments causing Δm, and Δm is determined by Sauerbrey’s formula [18]:

$$\Delta m = -\frac{\Delta f}{C_f}$$

(1)

where Δf is frequency shift or response of QCM sensor in Hz; $C_f = 56.6$ Hz cm²/µg is sensitive factor. Furthermore, the repeatability of material sensing is visually recognized by relative error (R-error in %), which can be calculated as followed [16]:

$$R \text{- error} = \frac{|\Delta m_1 - \Delta m_n|}{\Delta m_1} \times 100$$

(2)

Δm_1 & Δm_n are CO mass densities absorbed on GO/ZFO sensing layer at the first and n^{th} cycle of the sensor. Additionally, S of GO/ZFO was determined by formula (3):

$$S = \frac{\Delta m}{\Delta m_0} \times 1000$$

(3)

In addition, limit of detection (LOD, ppm), one of the important factors, is determined by formula (4):

$$LOD = \frac{3S_b}{S}$$

(4)

S_b is the standard deviation of the response and S is the rope of the calibration curve [19].

3. Results and Discussion

Fig.1 shows the characteristics of the as-prepared GO/ZFO nanocomposites powder. The three main peaks at around 353, 508, and 660 cm⁻¹ can be clearly observed in Raman spectra, as depicted in Fig. 1a, which correspond to the three first-order modes (F₂g (2), F₂g(3) and A₁g) of ZnFe₂O₄ NPs, respectively [20], [21], [22]. Moreover, two strong peaks at 1314 cm⁻¹ and 1588 cm⁻¹ are known as D band and G band of GO NSs, respectively. Thus, these characteristic peaks confirm that GO NSs and ZnFe₂O₄ NPs are component of GO/ZFO nanocomposites [23]. Fig. 1b illustrates the FT-IR spectra of GO/ZFO. It clearly shows that the adsorption peak at 3407 cm⁻¹ corresponds to the stretching vibration of O-H and H-O-H, while the strongest peaks in the range of 1350 – 1650 cm⁻¹ represent the important bindings of GO NSs, such as: C=C (1645 cm⁻¹) and C-O (1381 cm⁻¹) [24], [25]. Moreover, ferrite often has metallic-oxygen bonds at 555 and 414 cm⁻¹, which were assigned to the bonds at tetrahedral site (M₄tetra – O) and octahedral site (M₄octa – O) of ZFO cubic structure, respectively [26]. The sample’s morphology was disclosed by TEM image (Fig. 1c). It shows that the small cubic particles are the main shapes of ZFO in this sample, these particles size ranges from 6 to 30 nm. On the other hand, the pale plates on the cubic particles are assigned to GO NSs. Thus, these results in Fig.1 indicate that GO/ZFO nanocomposites were successfully synthesized.
The CO adsorption/desorption kinetics were investigated under a large concentration range of 25 – 200 ppm at room temperature using QCM. There were two stages for each cycle test. In the first stage, CO/N₂ gas mixture was blown into the testing gas chamber. The mass on the active electrode increased because GO/ZFO sensing layer tended to adsorb CO molecules, QCM sensor responded by reducing the resonant frequency. In the second stage, CO molecules were removed by N₂ gas flow, causing a mass decrease on the QCM’s electrode and an increase in resonance frequency simultaneously. The response of QCM sensor is frequency shift, using equation (1) to calculate the absorbed CO mass density. Fig. 2a shows adsorption – desorption curve for five CO expose cycles of the sensor. In other words, the change of mass density is determined by the Δm difference between the two times “CO in” and “CO out” for each cycle, as shown Fig. 2a. Moreover, it could be observed that the adsorbed mass density significantly increases with the increasing of CO concentration. Namely, the change of mass densities on the QCM’s electrode was 0.005/0.010/0.034/0.069/0.098 µg.cm⁻² at 25/50/100/150/200 ppm, respectively.

The adsorption performance was calculated by formula (3), which are 0.06‰ (25 ppm), 0.12‰ (50 ppm, 0.42‰ (100 ppm), 0.85‰ (150 ppm) and 1.21‰ (200 ppm). In this case, the maximum experiment test is 200 ppm (ppm is mean parts per million) which is converted to 229.122 µg/l, and this is very small concentration. Furthermore, at this concentration, the adsorption performance is 1.21‰, that means 1000 µg of GO/ZFO nanocomposites can absorb 1.21 µg CO (~ 2.6 x 10¹⁶ CO molecules) per a square centimeter. This is a big number in the micro world. Additionally, the change values of mass density are illustrated in Fig. 2b and the adsorption performance results are compared to some references and summarized in Table. 1. The CO adsorption performance of GO/ZFO nanocomposites is linearly proportional to CO concentration in the range of 25 – 200 ppm, the correlation coefficient (R²) is 0.98904. The high value of R² represents the fit of linear model between CO adsorption performance and CO concentration. From the data in Fig. 2b, S and Sb were calculated and had values of 5.924 x 10⁻⁴ and 3.864 x 10⁻³, respectively. Using equation (4), LOD was calculated to have value of 19.57 ppm. Moreover, the short averaging times of CO exposure are recommended (remain valid) by World Health Organization (WHO), these values are 30.55 ppm (30 mg/m³) and 87.29 ppm (100 mg/m³) for 1 hour and 15 minutes, respectively [1]. Thus, the LOD of this research represents a great meaning because GO/ZFO nanocomposites can self-adsorb CO under the recommended level.

In order to examine the repeatability, the GO/ZFO sensor was exposed at 150 ppm for four cycles. It is clear that the curves are identical at all
periods. The results demonstrate that the adsorption-desorption process is good reversible, as observed in Fig. 3. The average change of mass density is 0.071 µg/cm² and the relative error is determined by equation (2) that is 4.2%. Therefore, GO/ZFO nanocomposites show high repeatability adsorption/desorption at room temperature.

Fig. 4 describes the adsorption kinetics of GO/ZFO when this sensor is exposed to 150 ppm CO. The mass density of CO was adsorbed to the saturation in 679 s while desorption time is only 337 s, and the change of mass density is 0.071 µg/cm². Moreover, the adsorption/desorption rate is 0.1046/0.2107 ng/(cm² s), respectively. It is clear that desorption rate is approximately twice as much as the adsorption rate. The adsorption mechanism of GO/ZFO sensing layer toward CO gas is based on the interaction between active groups on the surface of GO/ZFO and CO molecules via hydrogen bond [10].

Table 1. Comparison between this work and reported researches

<table>
<thead>
<tr>
<th>Sensing material</th>
<th>Con. (ppm)</th>
<th>S-factor (Hz/ppm)</th>
<th>S (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrocene</td>
<td>0-2000</td>
<td>0.0036</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chitosan</td>
<td>0-2000</td>
<td>0.0373</td>
<td>-</td>
<td>[5]</td>
</tr>
<tr>
<td>Ferrocene-Chitosan</td>
<td>0-2000</td>
<td>0.0544</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>GO NSs</td>
<td>150</td>
<td>0.0613</td>
<td>-</td>
<td>[10]</td>
</tr>
<tr>
<td>Fe₃O₄/FeOOH</td>
<td>150</td>
<td>0.0560</td>
<td>-</td>
<td>[12]</td>
</tr>
<tr>
<td>GO/ZFO nanocomposites</td>
<td>200</td>
<td>0.0369*</td>
<td>1.21</td>
<td>This work</td>
</tr>
</tbody>
</table>

* Using formula: \(S-factor = (C_f \times \Delta m/Con.) \)

Fig. 2. (a) The adsorption – desorption curves of GO/ZFO sensor and (b) the relationship between sensor adsorption performance and CO concentrations
Fig. 3. The repeatability of GO/ZFO sensor at 150 ppm CO

Fig. 4. The saturation adsorption curve of GO/ZFO sensor at 150 ppm CO

4. Conclusion

In summary, the GO/ZnFe$_2$O$_4$ nanocomposites were successfully synthesized and CO adsorption performance was tested by using QCM. The as-prepared material indicates the excellent CO adsorption properties at room temperature, such as: the maximum of adsorption performance is 1.21‰ at 200 ppm; high linear proportional adsorption performance according to target gas concentration ($R^2 = 0.98904$); great repeatability for four cycles with low relative error (R-error = 4.2%); low limit of detection (LOD = 19.57 ppm) and fast saturation as well as adsorption/desorption. These results are unwavering premises for the development of reusable CO adsorption material systems in the coming future.

Acknowledgments

This research is funded by Hanoi University of Science and Technology (HUST) under project number T2022-TĐ-004.

References

[24] W. Ma, R. Yang, Z. Yang, C. Duan, and T.
